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causal variants for traits such as height [4], bodyweight
[5] as well as several complex diseases [6]. However, in
livestock, long range linkage disequilibrium typically re-
sults in imprecise determination of quantitative trait loci
(QTL) locations and the associated genomic regions
containing several positional candidate genes. In
addition, two or more QTL located close to each other
may be misidentified as one QTL. In such situations,
additional analyses need to be performed to distinguish
multiple QTL located close to each other.

To resolve these issues, we need additional informa-
tion over and above association statistics. For traits with
Mendelian inheritance, techniques such as homozygosity
mapping and studies of recombinant haplotypes provide
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important clues due to the unambiguous association of
at least some genotypes with phenotypic differences. For
quantitative traits, no such close associations exist. How-
ever, genomic information of various types do allow rela-
tive prioritization among candidate variants. The
challenges are which information to consider post-
GWAS and how to combine them with GWAS statistics.
Expression quantitative trait loci (eQTL) mapping can
help; expression profiles as the dependent trait in a
GWAS have identified causal genes in some studies [7].
Nevertheless, eQTL studies are time consuming and ex-
pensive. Therefore, alternative approaches to incorporate
gene expression data into GWAS are needed. Other
sources of additional information like variants’ annota-
tion [8] and evolutionary conservation scores [9] have
been used. Unfortunately, these analyses need to be de-
signed on a case-by-case basis [10]. Their implementa-
tion is challenging in livestock due to the sparsity of
annotation data.

In this study, we used an approach to separate mul-
tiple closely linked QTL in dairy cattle by fixing the lead
SNP as a covariate. The analysis detects QTL chromo-
some by chromosome, and generates a list of lead SNPs
for each QTL. The method is demonstrated by applica-
tion to three milk yield traits in Nordic Holstein cattle.
Many previously identified loci were also confi
here. Furthermore, we used the mammalian p
database to help find the candidate genes a
Effect Predictor (VEP) annotations to scree,
causal mutations.

Results

We applied a GWAS analysis appro automatic-
ally and iteratively accounts foilithe effects of QTL iden-
tified in previous iteration(s), ar approach to
conditional analysis ipa ented in GCTA [11]. The

ociations with the trait was searched, as the
top SNIP may not be always located closest to the causal
gene ‘due to differences in: LD, imputation accuracy and
minor allele frequency. Therefore, we included discus-
sion on other relevant genes (based on association re-
sults, known gene function etc.) which could be
candidate genes underlying the QTL.

Our approach of including associated SNPs as covari-
ates in subsequent rounds of analyses did not increase
the type I error rates. We simulated one SNP as a QTN
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and considered ten other SNPs with different levels of
LD (r*) with the QTN in order to test whether our
method introduces type I error into analysis when fixing
lead SNPs detected in previous iterations as covariates
[12]. We generated new phenotypes from the real
phenotypic value plus the simulated QTN effec

from a normal distribution with a
standard deviation (SD) of the p
as 1% of the phenotypic varian
repelicated 100 times. We detec
as the lead SNP in the fir

When the simulated Q as ed in the model as
a covariate, we did erved any of the 10 SNPs in
LD with QTN to_be"sign t (i.e., no false positives
detected).

100 replicates.

The GWAS of fat
d, our approach detected seven add-
nd above the QTL detected in the first
d Table 1). In Table 1, the first SNP on each
is the lead SNP from the first round of
analysis, the rest are the additional SNP(s) detected
romosome. Sixteen SNPs on chromosome 14 have
same P-value in the first round, and these SNPs are in
igh LD with the two known causative polymorphisms in
DGATI [13], BTA14: 1802265 (rs109234250) and BTA14:
1802266 (rs109326954) (Additional file 1: Figure S1). The
variant effect predictor (VEP) [14] annotation showed these
two variants in DGATI are missense mutations. The sec-
ond strongest association signal was located on chromo-
some 5 with lead SNP, BTA5: 93948357 (rs209372883)
located within the intron of MGST1. MGST1 was previ-
ously reported associated with the milk fat content [15]. On
chromosome 26, our lead SNP pointed to COXI5. In a hu-
man study, this gene was proposed involved in biosynthesis
of heme A [16]. Even though this gene is a promising pos-
itional candidate gene, no biological information currently
links this gene to milk fat yield. Another gene known to
affect milk fat content is SCDI [17] located at chromosome
26: 21141592 ~ 21,148,318. Our lead SNP on chromosome
26 (BTA26:20547445, rs136702635) is located close to it.
We estimated the variance explained by QTL. The QTL
(16 QTL) found from the first round explained 22.77% of
the variance of de-regressed proof breeding value (DRP) for
fat yield and all QTL (23 QTL) explained 25.12% of the
DRP variance (Table 4).

The GWAS for protein yield

We ran the analysis on the milk protein yield (Fig. 2),
and found 33 lead SNPs (Table 2), 12 of which were de-
tected in the second or third round. The strongest
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Table 1 Lead SNPs from genome-wide associated regions for fat yield in Nordic Holstein cattle. Base positions are given as position

in UMD 3.1.1 [49]

BTA base position Imputation accuracy Effect ~logio(p) Region Gene Annotation

2 126979882 0.9972 -1.31 1146 126041707~ 127230070 PIGV (near) Downstream

2 85991577° 0.9542 1.30 891 85042155~ 86241732 ANKRD44 Intron

3 7226390 0.9998 -1.09 9.01 6264604~ 7476473 NOSTAP

5 93948357 0.9906 328 6241 93698481~ 94198475 MGSTI1

5 20284735° 0.9692 -1.30 9.79 20035379~ 20534779 5S_rRNA

6 95497933 0.9996 —-145 14.76 95248213~ 95747954 PAQR3

6 32950721° 04975 6.33 11.39 32367171~ 33200834 ENSBTAGOO

7 57287990 0.8807 -1.66 20.11 57038213~ 57538309 KCTD16

9 38715137 0.9809 -147 8.89 38345408~ 38965425 LAM, Intron

" 88771449 0.9876 1.16 1043 88521462~ 89021477 T 00047976 intergenic

1 15323223° 0.8962 -132 9.81 14855568~ 15573444 27 Intron

11 55681193¢ 0.9948 -1.60 991 55423855~ 55931229 Intron

12 68965758 0.9957 -1.10 893 68502223~ 692 ENSBTAG00000045195 intergenic

14° 1802265 0.9398 -6.93 240.56 1549133~ 20494 DGAT1 missense

14° 1802266 0.9362 -6.93 240.56 1 DGATT missense

15 65891100 0.9992 1.50 12.99 ELF5 intergenic

15 25044706° 0.9908 -1.17 9.80 ZBTB16 Intron

17 62543160 0.9898 1.14 1049 6222 TBX5 Intron

18 18970551 0.9442 -1.19 1030 w 203~ 19220732 NKD1 intergenic

19 27522927 0.8500 -132 8 625240~ 27773016 ASGR1 intergenic

20 22609736 0.9813 21664412~ 22859809 MAP3K1 intergenic

26 20547445 0.9993 20297497~ 20797570 COX15 Intron

26 42408595° 0.9998 41409014~ 42658925 TACC2 Intron

29 23609412 07717 22613737~ 23859451 ENSBTAG00000047094 intergenic
Total number of significant 54435

association signal for
lead SNP BTA14:183

PGATI, Additional file 1: Figure S2). This result
at the causal mutation may not necessarily be
the SNP in highest association. The second lead SNP of
this analysis is BTA6: 88477501, which is located near
the well-studied casein genes CSN1S1, CSNI1S2, CSN3
and CSN2 [18]. We estimated the variance explained by
QTL. The QTL (21 QTL) found only from the first
round explained 10.85% of the DRP variance for protein
yield and all QTL (33 QTL) explained 15.34% of the
DRP variance (Table 4).

The GWAS for milk yield

We applied our analysis to milk yield (Fig. 3). A total of
26 lead SNPs (Table 3) were detected, out of which six
were detected in the second or third round. The most
significant association signal was in the DGATI gene.
The second most significant association signal was at
BTA20:29996719 (rs43116343), which is close to
MRPS30. A recent study showed MRPS30 to be associ-
ated with lactation persistence in Canadian Holstein cat-
tle [19]. This lead SNP is also close to the growth
hormone receptor, GHR [20]. The causative mutation of
GHR is BTA20:31909478 (rs385640152), and is known
to affect milk yield [20]. The third strongest lead SNP
was BTA5:93953487 (rs210234664). This SNP is close to
MGSTI. A previous eQTL study showed MGSTI may
affect milk composition [21]. With our approach, we de-
tected BTA6: 38027010 (rs43702337) in the third round,
located in ABCG2. ABCG2 was previously reported to
affect milk yield in dairy cattle [22]. This SNP is a
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Table 2 Lead SNPs from genome-wide associated regions for protein yield in Nordic Holstein cattle. Base positions are given as pos-

ition in UMD 3.1.1 [49]

BTA base position Imputation accuracy Effect ~logio(p) Region gene Annotation
1 63177947 0.9885 —-1.94 12.35 61838881~ 63178271 ENSBTAG00000046854 (near) intergenic
2 124837669 0.9886 1.59 12,63 124834921~ 124837676 PTPRU Intron
3 17160521 09717 -1.15 876 15377852~ 17160986 S100A12 (near)
5 93511826 0.8626 -137 1425 93087740~ 93511841 LMO3 (near)
5 217921837 09813 -1.37 10.39 20072875~ 21792190 SNORD107 (near)
5 87923795° 0.9926 1.50 897 85996611~ 87924188 ETNKT (near)
6 88477501 0.9962 —2.60 2598 87154594~ 88477524 SLC4A4
6 48477272° 07329 149 1359 46907022~ 48477298 ENSBTAGO0000Q#5570 (near)
6 88749792° 03222 -1.66 1213 86831016~ 88749854 GC (near) intergenic
7 41372989 0.9999 -1.54 18.14 41085164~41373119 MGAT intergenic
7 721006197 0.9077 1.59 1329 70118741~ 72100721 intergenic
8 93065787 08573 1.65 10.07 91065857~ 93066321 Intron
8 315381557 1.0000 191 962 30388755~ 31538625 intergenic
9 33267855 0.8655 —146 11.96 32627954~ 332678, SLC35F1/near) intergenic
10 93933304 0.8370 -136 9.90 92043775~ 939333 Intron
M 35512708 0.9999 —145 11.82 ENSBTAG00000027786 (near) intergenic
13 37208792 09279 -1.69 10.90 MKX (near) intergenic
13 77657858° 0.9906 1.17 9.52 PREX1 intron
14 1835440 0.7471 284 4866 BOP1 Intron
14 67981742° 0.7652 1.78 11.60 STK3 (near) intergenic
16 32262983 0.9290 SMYD3 Intron
18 57015407 09754 015676~ 57015473 POLD1 Intron
18 152722317 0.6697 15032157~ 15272234 SNORATT(near) downstream
19 27522927 0.8500 26422519~ 27522980 RNASEK (near) downstream
19 610147937 0.8505 60995058~ 61014874 KCNJ2 (near) intergenic
20 69006609 0.9920 68120719~ 69006661 IRXT (near) intergenic
20 9282667° 06747 7765154~ 9282923 MRPS27 intron
23 10974968 0.9304 9127211~10975139 FGD2 (near) intergenic
25 36403719 36112575~ 36403849 EPO (near) intergenic
26 37695494 -141 14.76 36684176~ 37695588 KIAA1598 (near) intergenic
27 36304978 1.06 852 35875452~ 36305040 ANK1 intron
29 17620617 147 10.37 15650574~ 17620644 NARS2 intron

161 10.11 33464929~ 35459620 NTM intron

38439

ated the variance explained by QTL. The QTL
) found from the first round explained 18.85% of
the DRP variance for milk yield and all QTL (26 QTL) ex-
plained 21.29% of the phenotypic variance (Table 4).

Post-GWAS analysis using the mammalian phenotype
database

The criteria for selecting positional candidate genes was
the gene located closest to the lead SNP. For future
identification and research on genes biologically

associated with milk traits, we tried to find whether
there are other genes which should be considered as po-
tential candidate genes other than the candidate gene list
(Tables 1-3). Considering the high LD structure of cattle
population, the causal genes may be located within the
genome region in LD with lead SNPs. One source of
additional information that may help to prioritize genes,
is to find the link between the gene and the possible
function in the mammalian phenotype database related
to milk and milk-organ related traits [24]. Therefore, we
extracted genes which overlap with the LD region of the
lead SNP and search them in the mammalian phenotype
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Table 3 Lead SNP from genome-wide associated regions for milk yield in Nordic Holstein cattle. Base positions are given as position
in UMD 3.1.1 [49]

BTA base position Imputation accuracy Effect ~10g10(p) Region Gene Annotation

2 80753895 0.9454 1.13 9.95 79587952~ 80754103 NABPT (near) intergenic

3 56402959 0.9308 -136 11.68 56392727~ 56402961 ENSBTAG00000001873 (near) intergenic

4 101547644 0.7008 —-1.66 12.65 100921921~ 101547648 CHRM2 (near)

5 93953487 09726 -2.10 29.52 91953587~ 93953619 MGSTT (near)

5 230227947 07617 1.38 1293 21101742~ 23022797 EEAT (near)

5 85080296° 0.7619 -1.28 11.24 84425435~ 85080331 ENSBTAG00000009778

6 88847595 0.9009 -1.78 2161 88612186~ 88847596 GC (near)

6 46901490° 07413 -1.28 1145 46181675~ 46901554 SELIL3 (near) intergenic

6 380270107 0.9950 —4.75 947 36909885~ 38027583 ABCG2 missense

7 65370850 0.9848 -136 13.58 65256765~ 65370922 GLRA intergenic

8 73877814 0.8453 -137 11.14 71877875~ 73877845 AG 10829 (near) upstream

8 42062591° 0.9595 -1.27 10.07 40245362~ 42062776 2 intergenic

9 33478527 0.8801 -1.25 9.23 31790030~ 33478670 NU: intergenic

10 1989907 0.9469 -1.15 9.92 448434~ 1990092 ENSBTAG00000047622 (near) intergenic

13 36822330 09933 —-1.66 10.74 36663680~ 36822 7 Intron

147 1802667 0.7975 5.98 17835 DGAT1 Intron

14 67577503° 0.8898 =216 11.04 OSR2 intergenic

15 54392611 09577 1.57 16.58 PPMET Intron

16 28384260 0.9984 1.64 10.50 8Q12864~ 28384605 CNIH3 (near) Intergenic

17 66510224 0.9438 1.83 11.63 023~ 66510712 COROIC Intron

18 46583346 0.9829 1.86 11 83~ 46583963 UPKIA (near) upstream

19 27442452 0.7904 -1.26 1 6592355~ 27442492 bta-mir-497 (near) upstream

20 29996719 0.9580 -2.95 27997007~ 29996870 MRPS30 (near) intergenic

23 25076472 09797 23690289~ 25076491 GCM1 Intron

26 37716420 0.9790 12.28 36730021~ 37966463 TRPAT intergenic

28 34972377 0.9991 33464705~ 34972672 ZmIZ1 intergenic
Total number of significant SNPs 57,808

*Eight additional SNPs on chromosome 14 had sam alue. ? indicated this SNP was found on second round, ® indicated this SNP was found on

third round
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Fig. 1 Manhattan plot for association of SNP with fat yield in Nordic Holstein cattle. Red horizontal line indicates genome-wide significance
level [—log10(P) = 8.5]
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Table 4 The genetics variants explained by QTL and the rest of

SNPs
Number of QTL V(G)Vpb (%)° V(G2)/Vpc (%)

Fat1® 16 2277 62.59
Fat2? 23 2512 60.01
Prot1? 21 10.85 74.05
Prot2® 33 1534 68.89
Milk1? 20 18.85 66.67
Milk2? 26 2129 63.97

? Fat means the trait of fat yield, Prot means the trait of protein yield, Milk
means the trait of milk yield; 1 indicate the lead SNP list only included the
lead SNP from the first round, 2 indicated the lead SNP list included all lead
SNP found by our approach.” means the percentage of genetics variants
explained by the QTL,  means the percentage of genetics variants explained
by the rest of SNP other than QTL

database [24]. We only paid attention to two kinds of
phenotypes: “abnormal mammary gland development”
or “abnormal milk composition”. Eight genes from the
GWAS hits were also annotated as related to these two
types of phenotype. This annotation appears to have bio-
logical relevance, although the enrichment of these 8
genes in the mammalian phenotype database analyzed
by Fishers’ exact test was not significant. The results
showed four genes were reported to be related with “ab®
normal milk composition” (Table 5). Out of thi
CSNIS1, CSN2, CSN3 and DGATI were rep

lian phenotype database. In this list
normal phenotype in both ki

Page 6 of 12

closest genes to lead SNP (BTA15: 65891100) associated
with the fat yield (Table 1). ELF5 was previously found
related to mouse mammary development [25] and may
also influence the milk content through milk protein
synthesis in cattle [26]. CAT is also located close to the
same lead SNP as ELF5. CAT is involved in several bio-

ated with fat yield (Table 1). This gene is known a
gene involved in mammary develop i
STK3 is the nearest gene to t
(BTA14: 67981742) on the same
with milk protein yield (Table 2
to play a pivot role in con

his gene was found
oliferation [29]

and tumor suppression in studies.
Annotation of SNPs_in'LD ad SNPs
As shown befo causative mutation maybe located

f the lead SNP. Therefore, we
LD with leading SNPs (r*>0.2)
using VEP [14]. We extracted
annotations

ajority of these SNPs are intergenic variants or intron
% (Fig. 4a). Among the SNPs that changed the
coding sequence of the protein, most of them were
ynonymous variants (Fig. 4b). Using this result, we
hecked if we could prioritize candidate mutations in
the candidate genes. For example GHR, the well-known
causative mutation for GHR is BTA20:31909478
(rs385640152, F279Y) [20]. The annotation for this SNP
is a missense mutation and the SIFT score is 0.02 which
is ‘deleterious’.
Further, we checked whether we can detect some can-

didate mutations in the new candidate genes. Four genes
(CSN1S1, CSN2, CSN3 and DGATI1) were found related

-Log10(p-value

level [—log10(P) = 8.5]

— T T T T T T T 7T T T T T T T T
10 11 12 13 14 15 16 17 18 19 20 21 2223 2425262728 29

Fig. 2 Manhattan plot for association of SNP with protein yield in Nordic Holstein cattle. Red horizontal line indicates genome-wide significance

Chromosome
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Fig. 3 Manhattan plot for association of SNP with milk yield in Nordic Holstein cattle. Red horizontal lineg

T
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to abnormal milk composition and DGATI related to
mammary gland development (Table 5 and Table 6) as
reported previously. In addition to DGAT1, we found
several tolerance missense mutations in CSNISI and
CSN2. In CSN3, we found three tolerance missense mu-
tations and one deleterious mutation (BTA6:87390632,
rs43703017). Moreover, in STK3, we also found toler”
ance missense mutations.

Discussion
Although functional gene clustering is wea
otes genomes than in prokaryotes gen
grouping of the genes with same or si
exists [31]. Therefore, in GWAS an

an analysis ap-
by iteratively

nificant signal. In our study,
proach to detect multiple ne

proach can inflate
ducing addition

phendtype in the mammalian phenotype database [24]
overlapped with milk QTL identified in the present study

Gene name  Location Phenotype

CSNIST BTA6: 87,141,556-87,159,096  abnormal milk composition
CSN2 BTAG6: 87,179,502-87,188,025  abnormal milk composition
CSN3 BTA6: 87,378,398-87,392,750  abnormal milk composition
DGATT BTA14: 1,795,351-1,804,562  abnormal milk composition

d no additional SNP in LD
an the simulated causative vari-
alysis, we were able to detect mul-
tiple QTL as designating the lead SNP for each
QTL) on a ghromosome automatically. For example, we
d a’known QTL on BTA6 (BTA6:38027010,
2337) in the third round and also another QTL at
(in the second round). This SNP is located in the
enne ABCG2 which was previously reported to affect
ilk yield in dairy cattle [22] and this lead SNP was the
most probable causative mutation [23]. Furthermore,
our approach also showed the potential to distinguish
closely linked QTL. For example the lead SNPs on
chromosome 6 of protein content, we detect the first as-
sociation signal at BTA6: 88477501 and the third associ-
ation signal at BTA6: 88749792. Similar conditional
analyses were also applied in human and other livestock
studies [32-34]. Here, we analyzed one lead SNP at a
time, as opposed to Bolormaa et al. [34] who included
all lead SNPs simultaneously in the model. We also
compared the genetic variants explain by the QTL found
by first round and all the QTL found by our approach.
The results showed the QTL found at second and third
round did explain more phenotype variants (Table 4).
Post GWAS, we face the challenge of identifying the
candidate genes. The conventional method is to use the
nearest gene, but this may miss the target as many-a-
time the lead SNP may not be from the causal gene.
This could be due to imputation inaccuracies, multiple
QTL in the vicinity or random chance factor. Therefore,
we need to use additional information to prioritize the
candidate genes. In this study, we used the mammalian
phenotype database to search for candidate genes from
the genes located in association regions. The mammalian
phenotype is based on mouse mutation lines. As a test,
we extracted all genes located within LD of the lead

In 100 replica
with the QTN o

ants. By is
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Table 6 Genes related to “abnormal of mammary gland development” in the mammalian phenotype database [24] overlapped with

milk QTL identified in the present study

Gene name Location Phenotype

CAT BTA15: 65,779,325-65,815,261 decreased mammary gland tumor incidence
ELF5 BTA15: 65,824,442-65,854,386 abnormal mammary gland development
STK3 BTA14: 67,677,676-67,987,801 increased mammary gland tumor incidenc
DGATT BTA14: 1,795,351-1,804,562 abnormal mammary gland developme
CHUK BTA26: 20,966,010-21,008,277 abnormal mammary gland growth during p

SNPs for all three milk yield traits and searched for re-
lated phenotype terms. Here, we searched for two
phenotype terms ‘abnormal mammary gland develop-
ment’ and ‘abnormal milk composition’. We successfully
identified some well-known genes affecting milk related
traits in cattle as well as new candidate genes (Table 5
and Table 6). For the term ‘abnormal milk composition,
we identified four genes. All of which were reported pre-
viously in different studies [35, 36], and only DGAT1I is
the nearest gene to the lead SNP on chromosome 14.
Another term we searched is ‘abnormal in mammary
gland development’ and found five genes. CAT and
CHUK are not the nearest genes to the lead SNP. How-
ever, differences between mice and cattle may introduce
some false positives. In all, using this strategy we no
only found some well-studied genes missing fro
nearest genes method (pick the gene which is n

lead SNP as candidate genes), but also ide d

candidate genes which may be helpful in caus
factors.

We also face another challenge 46f identifying the
causative variant once the causal e is identified as
levels of linkage disequilibrium in ca gh [37]. In

is not the lead SNP

many cases the causative vari
[38] but another SNP hidden

prioritize variants
Ensembl [14] w:

variants. GHR was found nearby

Followed
lead SNPs,

ons within candidate genes and provides a good
e for further functional validation. However, our
pproach will not be able to pinpoint causal variants lo-
ated in the non-coding and regulatory regions due to
lack of annotation of the cattle genome.

Conclusions

In this study, we designed an approach for detecting
closely linked multiple association signals and performed
the analysis in Nordic Holstein cattle for milk, fat and
protein yields. The results showed we not only detected
most of the well-known genes affecting these three milk
yield traits but also detected additional candidate genes.
Post-GWAS, we used information from the mammalian
phenotype database and variant effect predictor to con-
firm known genes and causative mutations. In the mean-
while, we detected additional genes which might be

missense_variant
@ synonymous_variant
@ 3_prime_UTR_variant
@ intron_variant
@ upstream_gene_variant

@ intergenic_variant
© other

annotation that change the protein coding sequence

@ downstream_gene_variant

Fig. 4 The VEP annotation of SNPs in linkage disequilibrium (LD > 0.20) with leading SNPs. a The summary of all annotation. b The summary of

@ stop_gained
missense_variant
@ synonymous_variant

© other
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contributing to variation in milk traits in Nordic Hol-
stein cattle. Therefore, we concluded our approach can
be used routinely for GWAS studies in dairy cattle.

Methods

Phenotype and genotype data
No animal experiments were performed in this study,
and therefore, approval from the ethics committee was
not required.

Phenotypic records for Nordic Holstein cattle are kept
in a centralized database (Nordic Cattle Genetic Evalu-
ation, NAV. http://www.nordicebv.info/). Breeding
values for milk, fat and protein yield (MY, FY and PY)
are based on production figures expressed in kilograms
taken from routine milk records and then combined into
an index for each trait. For details on genetic evaluation
for milk yield traits in Nordic countries see (http://www.
nordicebv.info/production). The breeding values used
for association analysis were de-regressed proof breeding
values [39, 40] from the routine genetic evaluation by
NAV and were available for 5382 progeny tested Hol-
stein bulls.

The association study was carried out by using im-
puted WGS data, as previously described by Iso-Touru
et al. [41] and Wu et al. [42]. A total of 4921 bulls we
genotyped with the Illumina BovineSNP50 Bea
(54 k) ver. 1 or 2 (Illumina, San Diego, CA, US
54 k genotypes were imputed to WGS varia

Dairy Cattle, and 835 Danish Jerse
genotyped with the Illumina Bovine

the WGS level by using a mul Vw
animals from Run4 o 1000{Bull Genomes Project

s University (80 individuals, in-
0 Nordic Red Dairy Cattle, and

arhus University. The whole genome sequence
Aarhus University was analyzed as described by
Brondum et al. [44]; while the same for 1000 Bull
Genome Project was described by Daetwyler et al. [1].
Detailed guidelines are available at http://www.1000bull-
genomes.com. Data from both sources were available as
VCE files. The data from the two sources were combined
using Picards MergeVCFs (https://broadinstitute.github.
io/picard/). As the 1000 Bull Genomes Project only
shares data after variant calling, some markers were not

Page 9 of 12

called for all animals in the combined dataset. To avoid
large gaps of missing markers in the dataset, only
markers that were called in both the Nordic and the
1000 Bull Genomes Project datasets were kept. For posi-
tions containing both a SNP and an INDEL, the INDEL
was discarded, as the imputation methods rely on

allele dosages) below 0.9 were re
sequence data. This was donegin
imputed markers that mi
imputation procedures.

Imputation from 5
putation to the W

data. After excluding SNP with a minor
below 1% or with large deviation from
erg proportions (P < 1.0 °), 15,355,402 SNPs

utosomes in Nordic Holstein cattle were retained

ociation analyses. The average accuracy (r*-values
rom Minimac2) was 0.85 for across breed imputation.
nformation on the distribution of imputation accuracy as a
function of minor allele frequency has previously been
published [42].

The methodology of multiple QTL detection

We developed an analysis approach to run the condi-
tional GWAS analysis, similar to the GCTA-COJO ap-
proach in GCTA [11]. However, GCTA-COJO uses
GWAS summary data while we have reanalyzed the data
after fitting only the lead SNP(s) on a chromosome. Fur-
thermore, we used imputed dosage data instead of num-
ber of copies of the reference allele. This takes account
of inaccuracies in genotype imputation. We first per-
formed a single SNP GWAS analysis using GCTA [11]
for each chromosome as the first round. Then we
ranked the SNP based on their —logoP value in the
GWAS. The SNP with the largest —log;oP value, the lead
SNP, within each chromosome was identified. An
experiment-wise 0.05 type I error rate after Bonferroni
correction for 15,335,402 simultaneous tests corresponds
to a threshold of —log;oP = 8.5. If the —log;oP value of
the lead SNP exceeded 8.5; we extracted the lead SNP’s
genotype dosage, fitted it as a covariate, and scanned the
whole chromosome again as the second round. If the
result of second round detected another SNP with a —
log,oP value exceeding 8.5 and this SNP also was signifi-
cant in the first round (—log;oP > 8.5), we extracted the
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allele dosage of this SNP and fixed it as another covari-
ate and scanned the chromosome in a third round. This
same procedure was iterated until no additional SNP
remained significant. The lead SNP in each round were
collected to build a lead SNP list. Moreover, in each
round solo SNP, that is, SNP with no other significant
SNP within a 1 Mb region were removed. A boundary
for each QTL peak was defined as follows: for each
QTL, we scanned the 1 Mb region up- and down-stream
of each lead SNP, if SNP —log;oP value decreased by
more than 3 units compared to the value at the leading
SNP and the region is larger than 0.25 Mb we set this
SNP as a boundary, otherwise we set +0.25 Mb as the
boundary. The list of candidate genes were generated
from the closest annotated genome feature to the lead
SNP list.

Testing the type | error rate using simulation data

We used simulated phenotype data to test whether our
approach to detecting multiple QTL on a chromosome by
incorporating previously identified QTL as covariates, in-
flates the type I error rates [12]. We selected a SNP ran-
domly from the genome as a causative mutation (QTN)
with a MAF (Minor Allele Frequency) between 0.05 and
0.10 and in Hardy Weinberg equilibrium. Ten additiona
SNP with different levels of LD (linkage disequilibriu
with the simulated QTN were selected. These
have different r* with the QTN as follows: one

phenotype and variance equal
variance. We repeated this si g
analysis 100 times. Lg vestigated how many
times we found a Si the simulated QTN
after we fix t

ese SNPs were annotated by VEP (Variant Effect
) [14]. To find the candidate genes, we extracted
all the genes which overlap with LD regions of the lead
SNP and searched these gene entries in the Mammalian
Phenotype database [24]. We collected all the lead SNPs
and calculated the pairwise r* with SNPs in the
chromosome. The boundary was set to the last SNP that
has r*>0.2. Then we extracted all the genes overlapping
these regions and searched them in the database. We found
411 genes located in the LD regions, of which 375 have
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gene symbols. These 375 genes were searched in the
database and 364 have mutation lines with phenotype
descriptions in the Mammalian Phenotype database. We
refined results using two terms for phenotypes: ‘abnormal
in mammary gland development’ and ‘abnormal in milk
production’.

The genetics variants explained by QTL
We used the lead SNP list to generate th
ship matrix (GRM) as group 1. Then
2.5 Mb SNPs of the lead SNP fro
to generate GRM as group 2. At
ance explained by these twodgro
whole analysis was condugcted
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