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Abstract

Background: The development of next-generation sequencing technologies has facilitated the identification of rare
variants. Family-based design is commonly used to effectively control for population admixture and substructure,
which is more prominent for rare variants. Case-parents studies, as typical strategies in family-based design, are
widely used in rare variant-disease association analysis. Current methods in case-parents studies are based on
complete case-parents data; however, parental genotypes may be missing in case-parents trios, and removing these
data may lead to a loss in statistical power. The present study focuses on testing for rare variant-disease association
in case-parents study by allowing for missing parental genotypes.

Results: In this report, we extended the collapsing method for rare variant association analysis in case-parents studies
to allow for missing parental genotypes, and investigated the performance of two methods by using the difference
of genotypes between affected offspring and their corresponding “complements” in case-parent trios and TDT
framework. Using simulations, we showed that, compared with the methods just only using complete case-parents
data, the proposed strategy allowing for missing parental genotypes, or even adding unrelated affected individuals,
can greatly improve the statistical power and meanwhile is not affected by population stratification.

Conclusions: We conclude that adding case-parents data with missing parental genotypes to complete case-parents
data set can greatly improve the power of our strategy for rare variant-disease association.

Keywords: Rare-variant association analysis, Case-parent trios, Collapsing method

Background
The development of next-generation sequencing tech-
nologies has facilitated association studies of rare vari-
ants (minor allele frequency (MAF) < 1%). Family-based
design, as an important strategy in genetic studies (espe-
cially for rare variants) for human complex diseases, has
some advantages over population-based design [1, 2].
The most prominent advantage is that many family-
based association methods can effectively control for
population admixture and substructure which is more
prominent for rare variants and thus avoid spurious

associations due to population admixture or substructure
[3, 4]. Moreover, family-based design can be used to study
complex mechanisms, such as parent-of-origin effects and
maternally mediated genetic effects, which are difficult to
detect with unrelated individuals in population-based
design [5]. Case-parents study, as a typical strategy in
family-based design, is widely used in rare variant-disease
association analysis. For example, combined multivariate
and collapsing (CMC) [6], weighted sum statistic (WSS)
[7, 8], variable threshold (VT) [9], and the burden of rare
variants (BRV) have all been extended into the transmis-
sion/disequilibrium test (TDT) [10] framework [11].
Another commonly used method in case-parents study is
to treat nontransmitted genotypes of parents to affected
offspring as control (also called pseudocontrols or
complements) of affected offspring [5, 12, 13]. For
example, investigators can construct a difference vector by
comparing the genotypes of affected offspring with their
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corresponding “complements” and use the collapsing
method [6, 7] to detect rare causal variants.
A problem with the use of case-parents study is that

not all of the parental genotypes (one or both) are avail-
able in practice. For example, parents may have died,
especially for older patients with Late-Onset diseases
such as Alzheimer disease and hypertension, or parents
may decline to participate in clinical research. It is often
difficult to recruit large enough samples for case-parents
study, especially for rare disease, and thus the sample
size is generally small. Discarding those families with
missing one or both parental genotypes can lead to stat-
istical power loss. Statistical methods in case-parents
study allowing for missing parental genotypes have been
widely developed for common variant-disease associ-
ation analysis [14, 15]. However, few works discuss rare
variant-disease association in case-parents study when
parental genotypes are missing. Because missing both
parental genotypes implies case only (or unrelated
affected individuals), allowing for missing one parental
genotypes or case only will increase sample size in case-
parents study and thus may enhance statistical power for
rare variant association analysis. Therefore, it is useful to
develop statistical approaches in case-parents study by
allowing for missing parental genotypes to test rare
variant-disease association.
In this report, we will extend the collapsing method

for rare variant association analysis to case-parents study
by using the genotype difference of affected offspring
with their corresponding “complements” in case-parents
trios and TDT framework. Our strategy allows for miss-
ing one or both parental genotypes (or case only). We
develop our strategy in homogenous populations.
Through simulation studies, we investigate the per-
formance of the proposed method in a homogenous
population as well as in populations with population
stratification under three scenarios: complete case-
parents data mixed with one parental genotypes missing,
complete case-parents data mixed with both parental ge-
notypes missing, and complete case-parents data mixed
with one and both parental genotypes missing.

Methods
In this study, all datasets were publically available and
no research requiring ethics approval was conducted.

Notation
Consider a data set in a homogenous population
Ω = {Ω0,ΩΙ,ΩΙΙ} consists of three types of case-parents
trios with the genotype of affected offspring known in
each family. Ω0, ΩΙ, and ΩΙΙ denote three types of case-
parents trios when there are 0, 1, and 2 missing parental
genotypes, respectively. We consider three combinations
of Ω0, ΩΙ, and ΩΙΙ: Ω0 + Ι = {Ω0,ΩΙ}, Ω0 + ΙΙ = {Ω0,ΩΙΙ},

and Ω0+Ι+ΙΙ = {Ω0,ΩΙ,ΩΙΙ}. Ω0 + Ι is the samples data set
consisting of complete case-parents trio with the known
genotypes for each member in the trio (Ω0) and case-
parents trio with missing one parental genotype (type ΩΙ).
Ω0 + ΙΙ is the samples data set consisting of type Ω0 and
type ΩΙΙ with missing genotypes of both parents. Ω0+Ι+ΙΙ

includes sample data of all types of Ω0, ΩΙ, and ΩΙΙ. We
assume N case-parents trios with N0, NI, NII trios for Ω0,
ΩΙ, and ΩΙΙ, respectively, are sampled (N =N0+ NI + NII).
Let GO be the minor allele count carried by the affected
offspring. Let {GF, GM} be the minor allele count carried
by parents in a case-parents trio. The curly braces indicate
set notation rather than ordered pairs. For example,
{GF, GM} = {1, 2} means GF = 1, GM = 2 or GF = 2, GM= 1.
Let a triplet ({GF,GM},GO) be a case-parents trio.

Rare variants association analysis
Let x = 2GO −GF −GM be the paired difference in geno-
types between the affected offspring and the comple-
ment (pseudo-control). We consider k variants with q
causal variants in an interesting region, e.g., a gene re-
gion. The variants and case-parents trios are indexed by
i and j (i = 1, ⋯, k; j = 1, 2, ⋯, N), respectively. We re-
define a paired difference ~xij for jth trio at ith variant
as flowing,

~xij ¼
xij; GFij;GMij

� �
;GOij

� �
∈Ω0

EðxijjGOij;GFijÞ or EðxijjGOij;GMijÞ; GFij;GMij
� �

;GOij
� �

∈ΩΙ

EðxijjGOijÞ; GFij;GMij
� �

;GOij
� �

∈ΩΙΙ

8>><
>>:

ð1Þ

We can calculate E(x|⋅) under the assumption of random
mating (thus Hardy-Weinberg equilibrium) and with the
rule of genetic inheritance if ({GF ,GM},GO) ∈ΩΙ or ΩΙΙ. For
example, when ({GF ,GM},GO) ∈ΩΙΙ, P{{GF ,GM} = {1,
1}|GO = 2} = (1 −MAF)2, P{{GF ,GM} = {1, 2}|GO = 2} =
2MAF ⋅ (1 −MAF), and P{{GF ,GM} = {2, 2}|GO = 2} =
MAF2, then P{x = 0|GO = 2} = P{{GF ,GM} = {2, 2}|GO =
2} =MAF2, P{x = 1|GO = 2} = P{{GF ,GM} = {1, 2}|GO =
2} = 2MAF ⋅ (1 −MAF), and P{x = 2|GO = 2} = P{{GF ,
GM} = {1, 1}|GO = 2} = (1 −MAF)2. Thus

E xjGO ¼ 2ð Þ ¼ Σ
2

i¼0
P x ¼ ijGO ¼ 2f g � i

¼ 2 1−MAFð Þ ð2Þ

We use the known parental genotypes or the
background-population of samples to estimate MAF.
Other E(x| ⋅) can be calculated similar to Eq. (2).
The collapsing method for rare variants can be directly

extended to family-based study with the difference
vectors in case-parents data. We denote this method as
Zc which can be defined as
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ZC ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Uð Þp ð3Þ

where U ¼ 1TX , 1 is a k-dimensional vector 1 = (1,⋯,

1)T, X ¼ 1
N Σ

N

j¼1
x1j;Σ

N

j¼1
x2j;⋯;Σ

N

j¼1
xkj

� �T

, σ ij ¼ 1
N−1ð ÞΣ

N

r;s¼1

xir− 1
N Σ

N

r¼1
xir

	 

xjs− 1

N Σ
N

s¼1
xjs

	 

; and Var Uð Þ ¼ 1

N Σ
k

i;j¼1
σ ij.

When consider missing parental genotypes, we substitute
~xij for xij and denote the test statistic by ~ZC ,

~ZC ¼
~Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ~U
� �q ð4Þ

In the TDT framework, we let bij be the number of the
minor allele transmitted from heterozygous parent to the
affected offspring at variant i in jth trio and cij be the
number of the major allele transmitted from heterozygous
parent to the affected offspring at variant i in jth trio. Let
bi ¼ Σ

j
bijbe the total number of minor-allele-transmitted

from heterozygous parents to the affected offspring at ith
variant and ci ¼ Σ

j
cij is the total number of major-allele-

transmitted from heterozygous parents to the affected
offspring at variant i. The collapsing method for rare
variants in TDT framework (corresponding to TDTBRV

in He et al. 2014) is

TDTBRV ¼ Σk
i bi−Σ

k
i ci

� �2
Σk
i bi þ Σk

i ci
ð5Þ

When consider missing parental genotypes, we define

~cij and ~bij as following,

~bij ¼
bij; GFij;GMij

� �
;GOij

� �
∈Ω0

EðbijjGOij;GFijÞ; GFij;GMij
� �

;GOij
� �

∈ΩΙ

EðbijjGOijÞ; GFij;GMij
� �

;GOij
� �

∈ΩΙΙ

;

8>><
>>:

~cij ¼
cij; GFij;GMij

� �
;GOij

� �
∈Ω0

EðcijjGOij;GFijÞ; GFij;GMij
� �

;GOij
� �

∈ΩΙ

EðcijjGOijÞ; GFij;GMij
� �

;GOij
� �

∈ΩΙΙ

8>><
>>:

In Additional file 1: Table S1 and Additional file 2:
Table S2 present all the expectations ofE(x| ⋅), E(b| ⋅), and
E(c| ⋅) when ({GF,GM},GO) ∈ΩΙ and ({GF,GM},GO) ∈ΩΙΙ,

respectively. We substitute ~bij and ~cijfor bij and cij, and de-
note the test statistic of the TDTBRV method by TDTBRV:

TDTBRV ¼ Σk
i ~ci−Σ

k
i
~bi

� �2
Σk
i ~ci þ Σk

i
~bi

ð6Þ

Results
Simulation setting
To assess the performance of our method, we perform a
series of simulation studies under a wide range of param-
eter values. The simulation parameter includes the total
number of variants (k), the MAF of each variant, the num-
ber (q) and effect size (measured by the odds ratio (OR)) of
causal variants, and the sample size (N) for case-parents
trios with the number of case-parents trios for Ω0(N0),
ΩΙ(NI), and ΩΙΙ(NII). We simulate two populations.
In the first population, 1000 case-parents families are

generated and the parameters are chosen as follows:
k = 20; q = 0.2 k, 0.4 k, 0.6 k, 0.8 k; MAF ∈ (0.001, 0.01)
with uniform distribution for each variant. Under the null
hypothesis of no association, we set OR = 1 for all the vari-
ants. Under the alternative hypothesis of association, we
set OR = 1 for non-causal variants. Under the alternative
hypothesis, two scenarios are considered for the effects of
causal variants. First, the causal variants have the same
positive direction but different effects. Here we set
OR∈[1.2, 3] in arithmetic progression. Second, the causal
variants have opposite effects. Here we set OR∈ [0.2, 0.9]
∪[1.2, 3] with half of causal variants belonging to [0.2, 0.9]
and the other causal variants belonging to [1.2, 3] in arith-
metic progression.
In the second population, 500 case-parents families

and a number of unaffected individuals are generated
(here, 500 unaffected individuals are generated and
they are used to estimate MAF when samples come
from the second population). The parameter settings
are similar to those in the first population except
that the OR of causal variants under the alternative
hypothesis. We let the OR of each causal variant in
the second population be 0.1 less than that in the
first population.
Once the parameter values are chosen, we first

generate parental haplotypes based on a latent variable
Z = (Z1,⋯, Zk) from a multivariate normal distribution
with marginal standard normal and covariance structure
as described below [16, 17]: if variants i and j are both
causal or both non-causal, then the correlation is set to
be Corr (Zi, Zj) =0.4∣i − j∣; otherwise the correlation is
zero. We transform Zi to 0 (major allele) or 1 (minor
allele) according to the MAF of the ith variant and com-
bine two haplotypes to obtain the parental haplotypes
[16, 17]. Offspring haplotypes are generated from the
parental haplotype assuming no recombination between
the variants. The disease status for an offspring’s pheno-
type is determined by the following logistic model [18]:
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P AffectedjGOij; i ¼ 1;⋯; k
� � ¼ 1

1þ exp −γð Þ ;

γ ¼ ln
c

1−c

	 

þ Σ

k

i¼1
ln ORið Þ � GOij

where ORi is the odds ratio of ith variant, GOij is the
minor allele count carried by the affected offspring in
the jth trio at the ith variant, and c is the background
prevalence of being affected for a subject with no minor
alleles. Here, we let c = 0.01 in the first population
and c = 0.008 in the second population.
The 1000 case-parents trios in the first population are

composed of three types of trios: 500 (N0) forΩ0, 250 for
ΩΙ by randomly discarding one set of parental
genotypes, and 250 for ΩΙΙ by discarding both parental
genotypes. There are two types of trios in the 500 case-
parents trios in the second population: 250 for ΩΙ and
250 for ΩΙΙ. In our analysis, we fix N0 (=500) and change
NI and NII. We let NI and NII take the value of 1

10N0, 1
5

N0, and 1
2N0. We calculate Zc and TDTBRV in Ω0 and ~ZC

and TDTBRV in Ω0 + Ι,Ω0 + ΙΙ, and Ω0+Ι+ΙΙ. The p-value of
statistical tests is estimated by a permutation procedure
as follows: First calculate the data-based statistic, then
recalculate permutation-based statistic by randomly
changing signs (positive or negative) of xij for ~ZC and
permuting the “transmitted” and “not transmitted” labels
randomly for TDTBRV with equal probability. We repeat
this process 1000 times and p-value is estimated as the
proportion of permutation-based statistics that are larger
than the data-based statistic. For a given significance level
α, the power/type I error rate is estimated as the propor-
tion of rejecting the null hypothesis when p-value ≤α with
1000 replicates.

Type I error rates and power
We investigate the performance of our method in a
homogeneous population and in populations with

population stratification. For the homogeneous population,
all samples come from the first population. For the popula-
tion stratification, case-parents trios with missing parental
genotypes come from the second population. We present
in Table 1 the type I error rates when α = 0.05, 0.001. As
shown in Table 1, for three situations of Ω0 + Ι, Ω0 + ΙΙ, and
Ω0+Ι+ΙΙ, the type I error rates are well-controlled around the
nominal levels. This indicates the validity of the method
when considering missing one parental genotypes or case
only even in population stratification.
We present in Tables 2, 3 and 4 the power of ~ZC and

TDTBRV in the homogeneous population for three situa-
tions of Ω0 + Ι, Ω0 + ΙΙ, and Ω0+Ι+ΙΙ, respectively, when
causal variants have the same positive direction but dif-
ferent effects or causal variants have opposite effects.
We can see from Table 1 that, when causal variants have
different effects with the same direction and the propor-
tion of non-causal variants is 80% or 60%, adding case-
parents trios of ΩΙ to complete case-parents data set can
increase the power of ~ZC and TDTBRV for rare variants
association analysis. For example, when there are 80%
non-causal variants, adding 1

10N0 (50), 1
5N0 (100), and 1

2

N0(250) case-parents trios of ΩΙ to 500 complete case-

parents trios improves the powers of ~ZC andTDTBRV from
0.408 and 0.602 to 0.566 and 0.712, to 0.674 and 0.748, and
to 0.752 and 0.784, respectively. We observed that, al-

though the power of ~ZC is lower than that of TDTBRVwith
the use of complete case-parents data, adding 1

2N0 case-

parents trios of ΩΙ to complete case-parents trios helps ~ZC

achieve similar power as that of TDTBRV . We also noted
that, when the number of non-causal variants is small (40%
or 20%), since the two statistics have high power just by
using 500 complete case-parents trios, adding case-parents
trios of ΩΙ does not help to improve power. As we decrease
the sample size to 200, adding case-parents trios of ΩΙ can

Table 1 Type I error rate of ~ZC and TDTBRV
~ZC TDTBRV

α = 0.05 α = 0.001 α = 0.05 α = 0.001
Sample size (N) Sample size (N) Sample size (N) Sample size (N)

Homogeneous population N0 + 1
10 N0 N0 + 1

5 N0 N0 + 1
2 N0 N0 + 1

10 N0 N0 + 1
5 N0 N0 + 1

2 N0 N0 + 1
10 N0 N0 + 1

5 N0 N0 + 1
2N0 N0 + 1

10 N0 N0 + 1
5 N0 N0 + 1

2 N0

Ω0 + Ι 0.057 0.045 0.052 0.0012 0.0014 0.0009 0.053 0.046 0.051 0.0011 0.0012 0.0010

Ω0 + ΙΙ 0.055 0.055 0.050 0.0011 0.0008 0.0014 0.054 0.055 0.052 0.0012 0.0009 0.0014

Ω0 + Ι + ΙΙ 0.048 0.049 0.046 0.0009 0.0013 0.0012 0.048 0.049 0.049 0.0009 0.0013 0.0013

Population stratification

Ω0 + Ι 0.055 0.051 0.050 0.0013 0.0012 0.0010 0.055 0.047 0.054 0.0013 0.0012 0.0012

Ω0 + ΙΙ 0.053 0.056 0.053 0.0014 0.0009 0.0014 0.056 0.054 0.051 0.0012 0.0009 0.0011

Ω0 + Ι + ΙΙ 0.049 0.049 0.051 0.0009 0.0013 0.0014 0.048 0.050 0.047 0.0009 0.0010 0.0014

Note: The sample size N = N0 + NI, N = N0 + NII, N = N0 + NI + NII for Ω0 + Ι, Ω0 + ΙΙ, and Ω0+Ι+ΙΙ, respectively, with N0 (=500) complete case-parents trios (Ω0).
There are NI case-parents trios of ΩI forΩ0 + Ιand NII case-parents trios of ΩII for Ω0 + ΙΙ with NI, NII= 1

10N0, 15N0, and 1
2N0, respectively. For Ω0+Ι+ΙΙ, NI = NII,

and NI + NII = 1
10N0, 15N0, and 1

2N0, respectively
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Table 2 Empirical power at the 0.05 significance level for Ω0 + I in the homogenous population

Causal variants have different effects with the same direction Causal variants have opposite effects

Non-causal variants Sample size (N)a TDTBRV ~ZC TDTBRV ~ZC

80% N0 0.602 0.408 0.226 0.140

+ 1
10 N0 0.712(18.3%) 0.566(38.7%) 0.272(20.4%) 0.228(62.9%)

+ 1
5 N0 0.748(24.3%) 0.674(65.2%) 0.290(28.3%) 0.257(83.6%)

+ 1
2 N0 0.784(30.2%) 0.752(84.3%) 0.312(38.1%) 0.304(117%)

60% N0 0.828 0.776 0.364 0.164

+ 1
10 N0 0.938(13.3%) 0.922(18.8%) 0.458(25.8%) 0.310(89.0%)

+ 1
5 N0 0.956(15.5%) 0.946(21.9%) 0.506(39.0%) 0.414(152%)

+ 1
2 N0 0.980(18.4%) 0.982(26.5%) 0.587(61.3%) 0.556(239%)

40% N0 1.00 0.980 0.264 0.178

+ 1
10 N0 1.00 1.00 0.284(7.58%) 0.242(34.0%)

+ 1
5 N0 1.00 1.00 0.308(16.7%) 0.296(66.3%)

+ 1
2 N0 1.00 1.00 0.360(36.4%) 0.350(96.6%)

20% N0 1.00 1.00 0.278 0.166

+ 1
10 N0 1.00 1.00 0.294(5.76%) 0.218(31.3%)

+ 1
5 N0 1.00 1.00 0.315(13.3%) 0.275(65.7%)

+ 1
2 N0 1.00 1.00 0.376(35.2%) 0.330(98.7%)

Note: a The sample size N = N0 + NI, denoted by + 1
10 N0, + 1

5 N0, and + 1
2 N0, where there are N0 (=500) complete case-parents trios (Ω0) and NI case-parents trios of

ΩI with NI = 1
10 N0, 15 N0, and 1

2 N0, respectively. Shown in parentheses is the proportion of power improvement

Table 3 Empirical power at the 0.05 significance level for Ω0 + II in the homogenous population

Causal variants have different effects with the same direction Causal variants have opposite effects

Non-causal variants Sample size (N)a TDTBRV ~ZC TDTBRV ~ZC

80% N0 0.602 0.408 0.226 0.140

+ 1
10 N0 0.702(16.6%) 0.551(35.1%) 0.269(19.0%) 0.218(55.7%)

+ 1
5 N0 0.732(21.6%) 0.660(61.8%) 0.278(23.0%) 0.241(72.1%)

+ 1
2 N0 0.770(27.9%) 0.745(82.6%) 0.309(36.7%) 0.300(114%)

60% N0 0.828 0.776 0.364 0.164

+ 1
10 N0 0.920(9.20%) 0.911(17.4%) 0.454(24.7%) 0.310(89.0%)

+ 1
5 N0 0.941(13.6%) 0.936(20.6%) 0.482(32.4%) 0.406(147%)

+ 1
2 N0 0.963(16.3%) 0.960(23.7%) 0.575(58.0%) 0.542(230%)

40% N0 1.00 0.980 0.264 0.178

+ 1
10 N0 1.00 1.00 0.277(4.92%) 0.231(29.8%)

+ 1
5 N0 1.00 1.00 0.300(13.6%) 0.286(60.7%)

+ 1
2 N0 1.00 1.00 0.348(31.8%) 0.339(90.4%)

20% N0 1.00 1.00 0.278 0.166

+ 1
10 N0 1.00 1.00 0.289(3.96%) 0.204(22.9%)

+ 1
5 N0 1.00 1.00 0.310(11.5%) 0.262(57.8%)

+ 1
2 N0 1.00 1.00 0.368(32.4%) 0.320(92.8%)

Note: aThe sample size N = N0 + NII, denoted by + 1
10 N0, + 1

5 N0, and + 1
2 N0, where there are N0 (=500) complete case-parents trios (Ω0) and NII case-parents trios of

ΩII with NII = 1
10 N0, 15 N0, and 1

2 N0, respectively. Shown in parentheses is the proportion of power improvement
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still improve power of ~ZC and TDTBRV (data not shown).
When causal variants have opposite effects, we also ob-
served that adding case-parents trios of ΩΙ can improve
the statistical power.
In order to further show the magnitude of power im-

provement of ~ZC and TDTBRV , we present in paren-
theses in Tables 2, 3 and 4 the proportion of power
improved by adding case-parents trios of ΩΙ, ΩΙΙ, and
ΩΙ+ΙΙto complete case-parents data set Ω0. It can be
found from Table 2 that the proportion of power
improvement drops with a decrease in the number of
non-causal variants, and the proportion of power
improvement for ~ZC is higher than that for TDTBRV .
When causal variants have opposite effects, we observed
that the proportion of power improvement is larger than
that when causal variants have the same direction. As
the proportion of non-causal variants decreases from
80% to 60%, the proportion of power improvement in-
creases. For example, while the powers of TDTBRV and
~ZC for 80% non-causal variants have improved by 20.4%
to 38.1% and 62.9% to 117% with the number of case-
parents trios of ΩΙ increasing from 1

10N0 to 1
2N0, respect-

ively, the powers of TDTBRV and ~ZC for 60% non-causal
variants have improved by 25.8 to 61.3% and 89.0 to
239%, respectively. However, the proportion of power
improvement drops with a further decrease in the
number of non-causal variants. For example, with the
number of case-parents trios of ΩΙ increasing from 1

10

N0to 1
2 N0, the proportions of power improvement of

TDTBRV change from7.58 to 36.4% for 40% non-causal vari-
ants and from 5.76 to 35.2% for 20% non-causal variants, re-
spectively, and the proportions of power improvement of
~ZC change from 34.0 to 96.6% for 40% non-causal variants
and from 31.3 to 98.7% for 20% non-causal variants, respect-
ively. This result indicates that, when causal variants have
opposite effects, the proportion of power improvement in-
creases early then decreases later with the increase in the
number of non-causal variants. Adding case-parents trios of
ΩΙ with the medium number of non-causal variants is best
for power improvement. For Ω0+ ΙΙand Ω0+Ι+ΙΙ, Tables 3 and
4 show similar results as those for Ω0+ Ι. In addition, we ob-
served that the proportion of power improvement for Ω0+ Ι

is the largest among three situations of Ω0+ Ι,Ω0+ ΙΙ, and Ω0

+Ι+ΙΙ.
When there is population stratification, Additional file 3:

Figure S1-S4 shows the power of ~ZC and TDTBRVagainst
the sample size for various proportions of non-causal
variants under three situations of Ω0 + Ι,Ω0 + ΙΙ, and
Ω0+Ι+ΙΙ, respectively. The results are similar to those in
the homogeneous population. We also consider a general
situation for population stratification: Samples from two
populations both consist of case-parents trios of three
types, Ω0, ΩΙ, and ΩΙΙ. The simulation results are similar
to those in Additional file 3: Figures S1-S4 (data not
shown). These results indicate that, when adding case-

Table 4 Empirical power at the 0.05 significance level for Ω0 + I + II in the homogenous population

Causal variants have different effects with the same direction Causal variants have opposite effects

Non-causal variants Sample size (N)a TDTBRV ~ZC TDTBRV ~ZC

80% N0 0.602 0.408 0.226 0.140

+ 1
10 N0 0.709(17.8%) 0.560(37.3%) 0.271(19.9%) 0.224(60.0%)

+ 1
5 N0 0.740(22.9%) 0.668(63.7%) 0.282(24.8%) 0.250(78.6%)

+ 1
2 N0 0.778(29.2%) 0.749(83.6%) 0.311(37.6%) 0.304(117%)

60% N0 0.828 0.776 0.364 0.164

+ 1
10 N0 0.930(12.3%) 0.918(18.3%) 0.456(25.3%) 0.302(84.1%)

+ 1
5 N0 0.949(14.6%) 0.941(21.3%) 0.490(34.6%) 0.410(150%)

+ 1
2 N0 0.971(17.3%) 0.972(25.3%) 0.581(59.6%) 0.551(236%)

40% N0 1.00 0.982 0.264 0.178

+ 1
10 N0 1.00 1.00 0.279(5.7%) 0.230(29.2%)

+ 1
5 N0 1.00 1.00 0.308(16.7%) 0.290(62.9%)

+ 1
2 N0 1.00 1.00 0.345(30.7%) 0.340(91.0%)

20% N0 1.00 1.00 0.278 0.166

+ 1
10 N0 1.00 1.00 0.292(5.04%) 0.210(26.5%)

+ 1
5 N0 1.00 1.00 0.315(13.3%) 0.260(56.6%)

+ 1
2 N0 1.00 1.00 0.370(33.1%) 0.321(93.3%)

Note: aThe sample size N = N0++NI + NII, denoted by + 1
10 N0, + 1

5 N0, and + 1
2 N0, where there are N0 (=500) complete case-parents trios (Ω0) and NI case-parents trios

of ΩI and NII case-parents trios of ΩII with NI = NII = 1
20 N0, 1

10 N0, and 1
4 N0, respectively. Shown in parentheses is the proportion of power improvement
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parents trios with missing parental genotypes or even case
only to complete a case-parents data set, population strati-
fication does not affect the power of these two statistics
for rare variant association analysis.

Discussion
In this report, we considered case-parents data with
missing parental genotypes for rare variant association
analysis in case-parents studies. Based on the collapsing
method with the difference vector and TDT framework,
we presented two statistics, ~ZC and TDTBRV , allowing
for missing parental genotypes. The key in the proposed
approach is to estimate the MAF. Actually, in clinical
research, experimental design is usually done for a
homogenous population or several specific populations.
One can use the known parental genotypes or the
background-population of samples to estimate MAF.
We investigated the performance of these two statistics
in three different situations: complete case-parents data
mixed with one parental genotype missing, complete
case-parents data mixed with both parental genotypes
missing, and complete case-parents data mixed with one
and both parental genotypes missing. Through simula-
tion studies, we found that adding case-parents data
with missing parental genotypes to complete case-
parents data set can greatly improve the power of these
two statistics, though the proportion of power improve-
ment varied. Additionally, our strategy is not affected by
population stratification.
In most studies of disease associations with rare vari-

ants, family- and population-based samples were used
separately [6, 7, 11, 19, 20]. Although family-based
studies have several advantages over population-based
studies in rare variant association analysis, it is often dif-
ficult to recruit sufficiently large family-based samples,
especially for rare diseases. More often, information
about parents is incomplete, and this poses some chal-
lenges in analysis. Discarding those families with missing
parental genotypes will further reduce the sample size
and result in a loss of statistical power. In our strategy,
case-parents trios missing one or both parental geno-
types are kept in analysis and thus can help to greatly
improve statistical power. Furthermore, we can see that
missing both parental genotypes corresponds to case
only. This means we can use unrelated affected individ-
uals in case-parents studies, which is useful for case-
parents studies with small sample size. Although popula-
tion stratification might exist in these unrelated affected
individuals recruited from population-based samples,
our strategy is not affected by population stratification.
Our simulation results showed that combining unrelated
affected individuals with complete case-parents data could
increase power by 5 ~ 60% for TDTBRVand 20 ~ 200% for

~ZC in both homogenous populations and populations
with population stratification.
In addition to allowing for missing parental genotypes,

our method can be used to address another problem
when there are missing genotypes for individual variants
in parental data. In fact, when individual variants are
analyzed and there are missing genotypes for some vari-
ants, removing those samples for variants with missing
genotypes will result in inconsistency of the sample size.
With the strategy described above, our method can over-
come this problem. However, our strategy is not suitable
for case-parents trios with missing offspring genotypes,
so further study is needed to address such scenarios.

Conclusions
The proposed strategy allowing for missing parental geno-
types, or even adding unrelated affected individuals, can
greatly improve the statistical power for rare variant-
disease association and meanwhile is not affected by
population stratification.
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Additional file 1: Table S1. All the expectations of E(x),E(b),and E(c)
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Additional file 2: Table S2. All the expectations of E(x),E(b),and E(c)
when (GF, GM ,GO)∈ΩII. (PDF 88 kb)

Additional file 3: Figure S1. Empirical power against the sample size at
the 0.05 significance level in population stratification when there are 20%
non-causal variants. Note: A and B are for~ZC , and C and D are for TDTBRV
when causal variants have different effects with the same direction and
causal variants have opposite effects, respectively. The sample size N=N0,
N0 + 1/10 N0, N0 + 1/5 N0, N0 + 1/2 N0 with N0 = 500 denoted by 0, 1/10,
1/5, and 1/2 respectively. Ω0 + I (○), Ω0 + II (*), Ω0 + I + II (+). Figure S2.
Empirical power against the sample size at the 0.05 significance level in
population stratification when there are 40% non-causal variants. Note: A
and B are for~ZC , and C and D are for TDTBRV when causal variants have
different effects with the same direction and causal variants have
opposite effects, respectively. The sample size N=N0, N0 + 1/10 N0, N0 + 1/5 N0,
N0 + 1/2 N0 with N0 = 500 denoted by 0, 1/10, 1/5, and 1/2 respectively.
Ω0 + I (○), Ω0+ II (*), Ω0 + I + II (+). Figure S3. Empirical power against the sample
size at the 0.05 significance level in population stratification when there are
60% non-causal variants. Note: A and B are for ~ZC , and C and D are for TDTBRV
when causal variants have different effects with the same direction and causal
variants have opposite effects, respectively. The sample size N=N0, N0 + 1/
10 N0, N0 + 1/5 N0, N0 + 1/2 N0 with N0 = 500 denoted by 0, 1/10, 1/5, and 1/2
respectively. Ω0 + I (○), Ω0 + II (*), Ω0 + I + II (+). Figure S4. Empirical power against
the sample size at the 0.05 significance level in population stratification when
there are 80% non-causal variants. Note: A and B are for ~ZC , and C and D are
for TDTBRV when causal variants have different effects with the same direction
and causal variants have opposite effects, respectively. The sample size N=N0,
N0 + 1/10 N0, N0 + 1/5 N0, N0 + 1/2 N0 with N0 = 500 denoted by 0, 1/10, 1/5,
and 1/2 respectively. Ω0+ I (○), Ω0 + II (*), Ω0 + I + II (+). (PDF 89 kb)
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