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Abstract

Background: The availability of high-density (HD) marker panels, genome wide variants and sequence data creates
an unprecedented opportunity to dissect the genetic basis of complex traits, enhance genomic selection (GS) and
identify causal variants of disease. The disproportional increase in the number of parameters in the genetic
association model compared to the number of phenotypes has led to further deterioration in statistical power and
an increase in co-linearity and false positive rates. At best, HD panels do not significantly improve GS accuracy and,
at worst, reduce accuracy. This is true for both regression and variance component approaches. To remedy this
situation, some form of single nucleotide polymorphisms (SNP) filtering or external information is needed. Current
methods for prioritizing SNP markers (i.e. BayesB, BayesCrm) are sensitive to the increased co-linearity in HD panels

which could limit their performance.

Results: In this study, the usefulness of Fs, a measure of allele frequency variation among populations, as an
external source of information in GS was evaluated. A simulation was carried out for a trait with heritability of 0.4.
Data was divided into three subpopulations based on phenotype distribution (bottom 5%, middle 90%, top 5%).
Marker data were simulated to mimic a 770 K-and 1.5 million SNP marker panel. A ten-chromosome genome with
200 K and 400 K SNPs was simulated. Several scenarios with varying distributions for the quantitative trait loci (QTL)
effects were simulated. Using all 200 K markers and no filtering, the accuracy of genomic prediction was 0.77. When
marker effects were simulated from a gamma distribution, SNPs pre-selected based on the 99.5, 99.0 and 97.5%
quantile of the Fst score distribution resulted in an accuracy of 0.725, 0.797, and 0.853, respectively. Similar results
were observed under other simulation scenarios. Clearly, the accuracy obtained using all SNPs can be easily

achieved using only 0.5 to 1% of all markers.

Conclusions: These results indicate that SNP filtering using already available external information could increase
the accuracy of GS. This is especially important as next-generation sequencing technology becomes more
affordable and accessible to human, animal and plant applications.
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Background

Large-scale genotyping for single-nucleotide polymor-
phisms (SNPs) has provided an unprecedented resource
to study associations between traits and genomic vari-
ation and to compute genomic enhanced breeding
values (GEBVs). Although a detailed dissection at the
genetic level of these complex traits is still largely
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elusive, continuous improvements in the quality and di-
versity of high-throughput data, as well as the develop-
ment of more sophisticated statistical and computational
tools, are quickly moving us towards a better under-
standing of the genetic basis of these traits. Genomic
selection (GS) is rapidly becoming the tool of choice for
genetic evaluation of several livestock species due to an
increase in accuracy and substantial reduction of the
generation interval [1-5]. Genomic selection is currently
being implemented either through a multiple regression
(RM) or variance component (VC) based models. The
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RM approach consists of a multiple step procedure
where SNP effects are first estimated in a training
population and then validated in a separate data set.
Several methods have been developed and used to
implement this approach [6-15]. Although these
methods have different statistical and biological as-
sumptions regarding the data generating process, they
tend to yield similar results in most cases, at least
when low- to moderate-density panels are used; dif-
ferences are largely due to the genetic architecture of
the trait, the genetic relationships between individuals
in the data, and the chosen prior information.

Next generation sequencing (NGS) has dramatically
changed the speed, coverage and costs of sequencing
whole genomes. Several sequencing efforts, including
the 1000 Bull Genomes Project [16], are underway,
while several thousand humans and animals have
already been fully sequenced (The [17]). These
projects are crucial for characterizing the source of
genetic variation. In fact, 84 and 31.8 million
common and rare variants have been already identified in
human and dairy cattle, respectively (The [17, 18]).
Although a majority of these variants are rare (MAF <1%),
over 8 million common SNPs (MAF >5%) have already
been identified in humans. Thus, it is already a reality that
genome-wide association study (GWAS) and ultimately
GS will be implemented using several millions of directly-
or indirectly-imputed sequence variant genotypes. GWAS
using 17 and 19 million SNPs were carried out in human
(The [17]) and dairy cattle [16] applications, respectively.
Although theoretically there are no doubts about the
potential usefulness of the sequence data in GWAS and
GS, major challenges are limiting the harnessing of these
benefits.

The major problem of the analysis of high dimensional
SNP data and sequence variant genotypes stems mainly
from the high dimensionality of the parameter space.
When all variants are considered (i.e., BayesA), the
highly informative prior will lead to excessive shrinkage
that together with the high linkage disequilibrium (LD)
precludes the identification of causative mutations or
even of significant tag variants. As the effect of a QTL
(often small for complex traits) is distributed in a non-
trivial manner between all markers that are in LD with
the causal mutation, there is little statistical power to
accurately estimate its effect. Given these limitations,
filtering (prioritization) of variants to be included in the
association models has become a necessity. Traditionally,
SNP filtering is conducted based on certain statistical cri-
teria such as p-values for single-marker analyses [19, 20]
or quality of fit and model determination for Bayesian
procedures such as BayesB [6] and BayesR [21]. The latter
showed some superiority for certain traits in the presence
of low- and moderate-density marker panels compared to
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models that including all markers. However, they still suf-
fer, although to a lesser degree, from high false positives,
multiple testing problems, high LD and small SNP effects
which have hampered at different degrees the efficiency of
these methods. Consequently, with the current density of
sequence variants, it is clear that statistical discriminatory
criteria alone will not be enough to prioritize influential
variants, and enlistment of additional external sources of
information seems to be an attractive alternative. BayesRC
[22] which is an extension of BayesR through the inclu-
sion of biological prior information (variant type, location
in differentially expressed genes), has only led to slight in-
crease in accuracy compared to BayesR [18].

The limited success so far of these SNP/variant-priori-
tizing methods is due to several reasons: 1) the “artifi-
cial” reduction in the number of parameters in the
model. Although marker prioritization methods based
on statistical criteria (BayesB, and BayesR) reduce the
number of parameters (variants) fitted in the association
model in every round of the iterative process, the total
number of unknowns to be inferred in each round is at
least equal to the number of parameters in a fully pa-
rameterized model (i.e., BayesA). This is due to the need
to identify those markers with zero effects which is often
accomplished either through a Metropolis-Hastings step
or through the estimation of indicator variables in a data
augmentation approach; 2) currently available biological
information is often limited (tissue specific, time specific,
etc.) and with a high noise-to-signal ratio (gene expres-
sion, methylation profiles, etc.); and 3) small QTL effects
in LD with a large number of variants.

Consequently, other sources of prior information need
to be investigated. Livestock species are under heavy
artificial selection. The signature of such selection pres-
sure can be traced through changes in allele frequencies
of markers in LD with QTL. Fgr, a measure of allele fre-
quency variation among sub-populations, provides a tool
to reveal selection sweeps [23] and can be used to
identify SNPs under selection pressure. In this study, a
simulation was carried out under different marker
densities and complexity of the genetic model to evalu-
ate the usefulness of Fgy scores as an external source of
information to prioritize SNP markers in the association
models and to compare its performance with currently
used approaches.

Methods

Simulated SNP genotypes and phenotypes

Simulation was carried out using QMSim software [24].
A historical population was generated based on random
mating of 8000 animals for 300 generations followed by
an additional 15 generations of random mating with
population size ranging between 12,000 and 17,000
animals. This random mating was carried out to
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initialize LD and to establish mutation-drift equilibrium
in the historical population. The founder population or
generation zero (GO) was created from the last historical
generation based on 1500 males and 15,000 females.
The mating of these individuals was random and no se-
lection was considered at this step. After GO, four gener-
ations were simulated. The third generation (G3) was
used to detect selection signatures and the last one (G4)
was used to evaluate the proposed approach.

In the last four generations (G1 to G4), animals were
selected base on their estimated breeding values (EBVs).
Replacement rate for males and females were set to 50
and 20%, respectively. In all generations, one progeny
per dam and a sex ratio of 50% were assumed. Only ani-
mals in generation three and four were assumed to be
genotyped. In order to mimic high-density marker
panels, a 10-chromosome genome was simulated with
uniformly-distributed 200 K and 400 K SNP markers,
resulting in a density similar to a bovine chip of 600 K
and 1 million SNPs, respectively. The additive effects of
one hundred QTL were sampled either from a Gamma
distribution with shape parameter equal to 0.4 or prede-
fined as a fraction of the total genetic variance. In the
predefined scenario, QTL effects were set to explain at
least 0.5% of the genetic variance. Both SNP markers
and QTL in all simulated scenarios were assumed to be
bi-allelic, and no marker loci overlapped with the QTL.
A detailed description of the simulated genome structure
of the different scenarios is presented in Table 1.

Table 1 Descriptive statistics of simulation schemes

Historical Population (HP)

Number of generation 315

Mutation rate for markers 0

Mutation rate for QTL 107
Founder Population (G0)

Number of generation 3

Number of male 1500

Number of female 15,000
Selection Population (G3)

Number of chromosomes 10

Length per chromosome (cM) 100

Number of markers per generation 200,000/400,000

Marker distribution Evenly spaced

Number of QTL per generation 100

QTL distribution Randomly distributed

QTL effect Sampled from gamma
with shape 0.4

Heritability 04

Genetic variance 04

Residual variance 06
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The phenotype consisted of one trait with 40% her-
itability. Phenotypic variance was set equal to one
and the residual variance was adjusted in each sce-
nario to maintain the heritability constant at 0.4. The
true breeding value of an individual was equal to the
sum of the QTL additive effects. Phenotypes were
generated by adding random errors, sampled from a
normal distribution with zero mean and dispersion
equal to the residual variance.

Measure of selection pressure as source of external
information

Wright’s F statistics [25] are fixation indexes that meas-
ure the rate of fixation through the increase in homozy-
gosity. In particular, Fs, a measure of population
structure, is one of the most frequently used scores in
the field of genetics. It measures the rate of genetic dif-
ferentiation between subpopulations through the assess-
ment of the changes in allele frequencies. The larger the
Fsr values, the higher the genetic differentiation [26—29].
Among its multiple uses, Fst can be used to assess sig-
natures of natural and artificial selection.

Although there are several methods to estimate Fsr
[30-33], the global estimator proposed by Nei [30] was
used in this study. Animals in generation G3 were di-
vided into three sub-populations based on their simu-
lated phenotype (below the 5 quantile [S1], between 5
and 95 quantiles [SO], and above the 95 quantile [S2])
and Fgt score for a given locus was calculated as:

Hrp-Hg
Fop —
ST HT

Hgy * ng1 + Hgo * ngy

with Hy =2 pxq,Hs = ,and Hg; = 2 % pg; * q;

ns1 + nsy

where, ps; and gg; are the allele frequencies in subpopu-
lation i, ng; and n,, are the number of individuals of the
subpopulations, Hy is the average of sub-population het-
erozygosities and Hy is the heterozygosity based on the
total population.

Animals in subpopulations S1 (below 5 quantile) and
S2 (above 95 quantile) of the third generation of simula-
tion data (G3) were used to calculate the Fgr scores. A
total of 1500 genotyped animals equally divided between
both groups were used. Three heuristically defined
threshold values of Fgt scores (Table 2) were used to se-
lect SNPs that are potentially under genetic differenti-
ation. For 200 K SNP panels, the number of selected
SNPs was 935, 1956, and 4932 for the three threshold
values in the gamma distribution scenario, respectively.
The number of selected SNPs was 1076, 2171, and 5620
in the predefined distribution scenario, respectively.
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Table 2 Preselected SNPs based on different cutoff values for
the FST scores and different simulation scenarios

Panel density ~ QTL effects'  Quantile  Fgr Score®  Selected SNPs*
99.5 0.02 935
Gamma® 99.0 001 1956
97.5 0.004 4932
200 K
99.5 0.009 1076
Predefined®  99.0 0.007 2171
975 0.005 5620
99.5 0.015 2078
Gamma 99.0 0.009 3586
975 0.004 10,178
400 K
99.5 0.009 2036
Predefined 99.0 0.007 4646
975 0.004 10,651

'Distribution used for the simulation of the QTL effects, 2quantiles of the Fsr
score distribution, 3cutoff point for the fixation index (Fsy), “number of
selected SNPs based on the Fsr score cutoff, >\Gamma distribution with shape
parameter equal 0.4, and °QTL effects pre-defined to explain at least 0.5% of
genetic variance each

Data analysis
Each simulated data set was analyzed using BayesB,
BayesC, and the proposed method where SNPs selected
based on their Fgr scores are used as explanatory
variables in a regression model similar to BayesA.
Implementation of BayesB and BayesC was carried out
using GenSel software [34] with (1-m) values set equal to
0.9, 0.95, 0.98, or 0.99. Scaled inverted Chi square prior
distributions were assumed for the genetic and residual
variances with scaling factors equal to the true values
used in the simulation and degrees of freedom of 1 and
4, respectively.

The general statistical model used for analysis in
BayesB, BayesC and the proposed method can be pre-
sented as:

p
yi=ut ZXiiﬁij +e
=1

where y; is the phenotype for individual i g is an overall
mean; X;; is the genotype of individual i for SNP j taking
the value of 0, 1, or 2; 5; is the effect of the SNP j; and y;
is an indicator factor that takes the value of 1 if SNP j is
included in the model and 0 otherwise. For the proposed
method, y; was equal to 1 for all preselected SNPs. e; is
the error term and p was equal to the preselected SNPs
for the proposed method or the total number of SNPs
times (1- ) for BayesB and BayesC.
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Point estimates of the SNPs effects were used to com-
pute the estimated genomic breeding values as:

p
GEBV; =Y zjd;

j=1

where a; is the estimated effect of SNP ;.

Genomic and phenotype accuracies were calculated
based on the correlation between the true breeding
values and the GEBVs and between the GEBVs and the
observed phenotypes adjusted for the systematic effects.

For each simulated data set, randomly 10,000 geno-
typed animals in the third generation (G3) were assigned
to the training population and randomly 5000 genotyped
animals in the last generation (G4) were used for valid-
ation. Each simulation scenario was replicated 5 times.
For BayesB and BayesC, four (1 - ) values (0.99, 0.98,
0.95, and 0.9) were evaluated.

Results and discussion

Distribution of QTL and estimated Fsy scores

Figure 1 presents the distribution and effects of the 100
QTL simulated from a gamma distribution with a shape
parameter of 0.4 (Fig la) and the Fgr scores for the
200 K SNPs (Fig. 1b). The largest QTL explained about
13.2% of the total genetic variance (GV). The top 15
QTL explained over 70% of the GV while the bottom
50% of QTL explained less than 0.05% of the GV each.
The distribution of estimated Fst scores (Fig. 1b) showed
a striking similarity to the true QTL distribution (Fig. 1a),
especially for large effect QTL. For QTL with effect
greater than 0.2 (Fig. 1a) there were three distinguished
peaks that are easily captured by the Fsr scores under the
three threshold cutoff values (Fig. 1b). This result was not
unexpected given the large simulated effects for the top
QTL. Due to selection, SNPs in LD with these QTL will
experience quick and substantial change in their minor
allele frequencies that will be easily captured by the Fst
scores. When the QTL effects were pre-defined (each
QTL explains at least 0.5% of GV), the QTL with the
largest effect explained 1.5% of GV and the bottom
50% of QTL explained between 0.5 and 1% of the GV
each (Fig. 1c and d). Even under this complex genetic
model and absence of large effect QTL, SNPs selected
based on Fgr scores were able to track the majority
of QTL with as little as 3% of all SNP in the panel
(Fig. 1d). Similar results were observed when a 400 K SNP
panel was considered (Additional file 1: Figure S1).

Accuracy of genomic selection: Population genetics
approach

Table 3 presents the accuracy of prediction of both of
the true breeding values and the simulated phenotypes
in the case where the SNPs were preselected based on



Chang et al. BMC Genetics (2018) 19:4

Page 5 of 10

97.5Quantile

99.0Quantile
99.5Quantile

a b
g e
k5 Z o
2 2 =N
(e
S l “ | l “hh lh 1 I ’ ‘ Ll ‘ | 8__. "
QTL position
c d
gs. _ g/
5 - i
=
(e) - =
° QTL position e
lines indicate the 99.5 (red), 99.0 (blue), and 97.5 (green) quantiles of the Fsy distribution

Marker position

Marker position

Fig. 1 Distribution of the simulated quantitative trait loci (QTL) along the ten chromosomes when their effects were simulated from a gamma
distribution (a) or predefined (c) and their associated Fst scores distribution (b) and (d) for the 200 K marker panel scenario. Horizontal dashed

-—-= 97.5Quantile
-=-= 99.0Quantile
99.5Quantile

Table 3 Number of selected SNPs, number of tagged QTLs, percentage of genetic variance explained, and accuracies of genomic
and phenotype prediction under different quantile of the distribution of FST scores, sampling distribution for the QTL effects and
density of the marker panel using the proposed method. Standard errors of accuracies are listed between parentheses

All SNPs 97.5 quantile’ 99.0 quantile 99.5 quantile
Gamma® Predefined® Gamma Predefined Gamma Predefined Gamma Predefined
200 K SNP marker panel
Selected SNP 200 K 200 K 4932 5620 1956 2171 935 1076
Tagged QTL* 95 97 33 69 18 47 13 31
% GV° 91.29 98.60 83.70 7127 7357 49.69 64.08 35.10
Acc_P° 0462 0445 0.503 0490 0472 0415 0434 0.359
(0.018) (0012 (0.017) (0.014) (0.015) (0.018) (0.028) (0.032)
Acc_G’ 0.777 0.741 0.853 0.830 0.797 0.704 0.725 0617
(0.017) 0.012) (0.019) (0.023) (0.017) (0.031) (0.037) (0.026)
400 K SNP marker panel
Selected SNP 400 K 400 K 10,173 10,651 3586 4646 2078 2037
Tagged QTL 95 99 38 74 20 53 13 34
% GV 96.73 99.01 84.03 75.09 73.83 56.66 66.12 43.79
Acc_P 0456 0438 0.506 0485 0473 0433 0448 0.350
(0.015) (0.017) (0.014) (0.017) (0.029) (0.021) (0.039) (0.028)
Acc_G 0.775 0.735 0.860 0813 0.807 0.722 0.765 0.685
(0.020) (0.012) (0.015) (0.012) (0.041) (0.025) (0.059) (0.052)

'quantile of the distribution of the Fs; scores, 2QTL effects sampled from a Gamma distribution, >QTL effects pre-defined to explain at least 0.5% of genetic
variance (GV), *QTL with r* > 0.7 with at least one selected SNP, °GV = Genetic Variance, ®accuracy of phenotype prediction, accuracy of genomic prediction
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Fst scores. Accuracy was calculated based on the correl-
ation between the true parameters (breeding values or
phenotypes) and their associated prediction on the valid-
ation data set (G4). All results are based on the average
of 5 replicates for each simulated data set. Using all
SNPs in the 200 K and 400 K panels resulted in genomic
accuracy of 0.777 and 0.775, respectively when the QTL
effects were generated from a gamma distribution.
When the QTL effects were predefined, the correspond-
ing accuracies were 0.741 and 0.735. This drop in accur-
acy is due in part to the increased complexity of the
genetic model in the case of predefined QTL effects
which resulted in a reduction in the portion of GV
explained compared to the scenario when QTL were
simulated from a gamma distribution. When SNPs were
preselected based on their Fst scores under the 200 K
marker panel and gamma distribution for the simulation
of the QTL effects scenario, genomic accuracy increased
from 0.725 to 0.853 when the preselected SNPs were
based either on the 99.5 (1076 SNPs) or 97.5 quantile
(4932 SNPs) of the distribution of the Fgp scores.
Similarly, the number of tagged QTL (r*>0.7 with at
least one selected SNP) and the portion of GV explained
increased from 13 to 33 and 64.08 to 83.70%, respect-
ively. When the QTL effects were pre-defined to explain
at least 0.5% of the GV, the same trend was observed as
when the QTL were simulated from a gamma distribu-
tion, except that the accuracies and portion of genetic
variance explained were smaller and the number of
tagged QTL was larger for the same quantile. At the
97.5 quantile, 69% of the QTL were tagged for the pre-
defined scenario versus 33% in the gamma distribution
scenario. However, the predefined scenario explained
only 71.27% of the GV compared to 83.70% in the
gamma distribution scenario. This is obviously due to
the change in the complexity of the genetic model.
Using the 400 K marker panel, accuracies, number of
tagged QTL and portion of GV explained increased
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compared to the 200 K SNP scenario (Table 3). This is
likely due to an increase in LD between preselected
SNPs and QTL. However, the difference between the
two marker density scenarios is small for the 97.5 quan-
tile case. This indicates that in this case, around 5000
SNPs are needed to track the majority of the QTL and
any additional markers will increase accuracy marginally.
Across all simulation scenarios, phenotype prediction ac-
curacy has the same trend as the accuracy of genomic
enhanced breeding values (GEBV) although with a much
lower magnitude, as expected (Table 3). It is worth men-
tioning that although the optimum number of prese-
lected SNPs was not determined in this study, a
continuous increase in the number of markers in the as-
sociation model will at some point lead to a decrease in
accuracy. This is well supported by the lower accuracy
when all SNPs were included in the model (Table 3).
Figure 2 presents the distribution of simulated QTL
across the 10 chromosomes and the preselected SNPs
based on 99.5 (Fig. 2a) and 97.5 quantile (Fig. 2b) of the
Fst score distribution for the 200 K marker panel and
predefined QTL effect scenario (Additional file 2:
Figure S2.1, Additional file 3: Figure S2.2, Additional file 4:
Figure S2.3 present the results for the remaining scenar-
ios). It is clear that when only SNPs with a large Fst score
were preselected (Fig. 2a), only large QTL were tagged. As
more SNPs are preselected (Fig. 2b), most of the QTL
(70%) were tagged and a large proportion of the GV was
explained. When the QTL were simulated from a gamma
distribution, although only the most influential QTL were
effectively tagged, the majority of the GV was explained
even when SNPs were preselected based on their Fgy score
exceeding the 99.5 quantile of the distribution (Table 3).
In order to further evaluate the performance of the
SNP prioritization approach based on Fgy scores, a com-
parison with well-established and extensively used
methods was carried out. The same simulated data sets
were analyzed using BayesB, and BayesC implemented
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by GenSel software [34]. For BayesB and BayesC, four n
values (0.01, 0.02, 0.05 and 0.10) were evaluated. Table 4
presents the accuracies using BayesB. For both marker
densities, the accuracies increased with the decrease of nt
with the maximum at 1w = 0.01. For the 200 K SNP sce-
nario, accuracy of predicted GEBV ranged from 0.797 to
0.845 and from 0.770 to 0.833 when QTL effects were
simulated from a gamma distribution or predefined, re-
spectively. A similar trend was observed for the 400 K
SNP scenario, although the magnitude of the accuracies
was slightly smaller. Using BayesC, the results were very
similar to those obtained using BayesB, although they
tended to be slightly higher for the latter (Table 5).
When compared with the proposed method, BayesB and
BayesC have slightly lower accuracies of genomic predic-
tion in all simulation scenarios, except the 200 K SNP
marker density and predefined QTL effect scenario
using BayesB (Table 6). In fact, the superiority in the
remaining scenarios ranged from 0.74 to 3.60% and 1.08
to 4.19% compared to BayesB and BayesC, respectively.
Similar trend was observed for the phenotype prediction
accuracy. Phenotypic accuracy was lower using the pro-
posed method only for the 200 K SNP marker panel and
predefined QTL effect scenario (Table 6).

In the 200 K SNP marker panel simulation scenario
we tried to mimic the LD observed in the Bovine 770 K
chip. Thus, simulations were carried out with LD be-
tween adjacent SNPs ranging between 0.65-0.70. In
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order to test the performance of the proposed method
when LD is lower, the 200 K SNP marker density and
gamma QTL effect scenario was re-simulated with LD
between adjacent markers of around 0.3. The results
showed that across all three methods (BayesB, BayesC
and our proposed method), accuracy decreased by 18 to
20% compared with the scenario with higher LD.
Furthermore, the three methods have similar results
with a slight superiority (0.53%) for BayesB.

Bayesian methods for prioritizing SNPs rely on sound
statistical foundation. However, their performance is ex-
pected to decay with the increase in the density of the
marker panel at least for two reasons: 1) an increase in
the number of unknowns in the association model lead-
ing to an increase in the statistical cost of finding the
relevant SNPs (non-zero effect SNPs) and 2) an increase
in the number of markers in the panel increasing the
number of SNPs that are in high LD with the QTL.
Consequently, the effect of each QTL will be partitioned
across an increasing number of markers leading to
smaller effects of associated SNPs. Because these
methods rely on the magnitude of the estimated marker
effects to determine the relevant SNPs, their perform-
ance will undoubtedly decay due to a lack of statistical
power. However, the proposed method pre-selects
markers based on the change of their minor allele fre-
quencies rather than the magnitude of their effects.
Thus, it does not suffer from the problem indicated

Table 4 Number of selected SNPs, number of tagged QTL, percentage of genetic variance explained, and accuracies of genomic
and phenotype prediction under different 1 values, sampling distribution for the QTL effects and density of the marker panel using
BayesB method. Standard errors of accuracies are listed between parentheses

(1-m) =0.90 (1-m) =095 (1-m) =0.98 (1-m) =0.99
Gamma' Predefined” Gamma Predefined Gamma Predefined Gamma Predefined
200 K marker density
# SNP 20 K 20 K 10K 10K 4K 4K 2K 2K
Tagged QTL® 78 % 63 97 54 9% 48 91
% GV* 89.31 98.16 86.43 97.88 84.30 95.76 83.88 93.20
Acc_P’ 0473 0463 0478 0471 0489 0487 0499 0.500
(0.018) (0.009) (0.018) (0.009) (0.018) (0.008) (0.018) (0.007)
Acc_G° 0.797 0.770 0.807 0.785 0.827 0810 0.845 0.833
(0.017) (0.008) (0.017) (0.007) (0.018) (0.007) (0.018) (0.005)
400 K marker density
# SNP 40K 40K 20K 20K 8K 8K 4K 4K
Tagged QTL 86 99 75 98 59 97 53 96
% GV 92.36 9846 91.88 98.16 91.20 97.78 91.03 96.69
Acc_P 0465 0450 0470 0457 0478 0469 0488 0481
(0.015) (0.018) (0.015) (0.018) (0.014) (0.018) (0.013) (0.019)
Acc_G 0.790 0.756 0.799 0.767 0813 0.787 0.829 0.807
(0.019) (0.013) (0.017) (0.013) (0.016) (0.014) (0.015) (0.014)

! QTL effects sampled from a Gamma distribution, 2QTL effects pre-defined to explain at least 0.5% of genetic variance (GV), 3QTL with r? > 0.7 with at least one
selected SNP, * GV = Genetic Variance, ® accuracy of phenotype prediction, ®accuracy of genomic prediction
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Table 5 Number of selected SNPs, number of tagged QTL, percentage of genetic variance explained, and accuracies of genomic
and phenotype prediction under different 1 values, sampling distribution for the QTL effects and density of the marker panel using

BayesC method. Standard errors of accuracies are listed between parentheses

(1-m) =0.90 (1-m) =0.95 (1-m) =0.98 (1-m) =0.99
Gamma Predefined Gamma Predefined Gamma Predefined Gamma Predefined
200 K marker density
# SNP 20 K 20K 10K 10K 4K 4K 2K 2K
Tagged QTL® 76 97 61 % 53 94 46 91
% GV* 88.84 97.66 86.56 97.53 86.30 95.74 85.76 93.32
Acc_P’ 0453 0451 0467 0459 0484 0477 0496 0493
(0.019) (0.009) (0.019) (0.009) (0.018) (0.008) (0.018) (0.008)
Acc_G° 0.769 0.751 0.791 0.766 0.821 0.794 0.842 0.821
(0.017) (0.009) (0.018) (0.008) (0.018) (0.009) (0.018) (0.006)
400 K marker density
# SNP 40K 40K 20 K 20 K 8 K 8 K 4K 4K
Tagged QTL 85 99 68 98 53 97 48 95
% GV 92.05 98.97 91.59 9837 90.98 96.95 90.16 95.81
Acc_P 0444 0441 0456 0447 0472 0459 0485 0472
(0.013) (0.017) (0.013) (0.017) (0.014) (0.017) (0.014) (0.018)
Acc_G 0.754 0.740 0.773 0.749 0.802 0.769 0.824 0.791
(0.017) (0.011) (0.017) (0.011) (0.017) (0.012) (0.016) (0.012)

'QTL effects sampled from a Gamma distribution, 2QTL effects pre-defined to explain at least 0.5% of genetic variance (GV), 3QTL with r? > 0.7 with at least one

selected SNP, “GV = Genetic Variance, *accuracy of phenotype prediction, ®accuracy of genomic prediction

before, but it is prone to some redundancy in the se-
lected SNPs because markers with very high LD will
have similar Fgr score.

In this study, a homogeneous population was as-
sumed. The proposed method could be modified in
presence of admixed populations. Specifically, in the
presence of an admixed population the change in the
minor allele frequency (MAF) of SNPs and
consequently of Fst scores could be the result of
selection pressure on linked QTLs or simply due to
difference in MAF between components (breeds) of
the population. The latter will not be useful to

Table 6 Comparison of best accuracies between BayesB,
BayesC, and the proposed method under different sampling
distribution for the QTL effects and density of the marker panel

200 K marker panel 400 K marker panel

Gamma' Predefined? Gamma Predefined
Diff acc_ G®
BayesB -0.94 0.36 -3.60 -0.74
BayesC -1.29 -1.08 —4.19 —2.71
Diff_acc_P*
BayesB -0.80 2.04 -3.56 -0.82
BayesC -1.39 061 —4.15 —2.68

'QTL effects sampled from a Gamma distribution, 2QTL effects pre-defined to
explain at least 0.5% of genetic variance, 3percentage difference in genomic
accuracy compared to the proposed method, “percentage difference in
phenotype prediction genomic accuracy compared to the proposed method

prioritize SNPs. However, in presence of admixed
population we suggest performing within breed SNP
prioritization which will take care largely of the dif-
ference in MAF. SNPs prioritized in more than one
breed (at least those with the largest Fst scores)
should be tested for LD phase consistency. This could
be a manageable task given the limited number of
prioritized SNPs. Furthermore, selected SNPs will
have effect only in the subpopulations (breeds) where
they were prioritized increasing potentially the power
of the association model. However, within subpopula-
tion SNP prioritization could be problematic for
breeds with small number of genotyped individuals.
In such case grouping for genetically closer breeds
could be used for SNP prioritization.

Across all simulation scenarios, we tried to mimic
high density SNP panels used in livestock applications
where causal variants were assumed not to be geno-
typed. However, with the recent availability of
sequence data large portion of causative variants will
be genotyped. Furthermore, these variants could have
rare frequencies (MAF <1%). These two issues could
have impact on the performance of our method as
well as other approaches. However, it is intuitive to
think that the Fst method will perform even better
because causative variants or those in very high or
complete LD with them will, in general, see their
minor allele frequencies change more significantly
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than other variants resulting in higher Fst score and
easy prioritization. This might not be the case for
competing methods (BayesB and BayesC) were
prioritization is based on the effect of variants.

Conclusion

A continuous increase in the density of SNP marker
panels and the availability of whole genome sequence
data provide an unprecedented opportunity to dissect
the genetic basis of complex traits and to enhance
the estimation of genetic merit in animal and plant
applications. Unfortunately, this dramatic increase in
the available genomic data has created some imple-
mentation problems and most importantly did not
lead to any significant increase of accuracy of gen-
omic selection using single- and multiple-step ap-
proaches. For the latter, the massive increase in the
number of explanatory variables has led to an over-
parametrization of the association model which re-
sulted in increased co-linearity and loss of statistical
power. Together these factors led to no increase in
accuracy of genomic selection. Limitations of current
models stem from the lack of information on the ge-
notyped individual to prioritize SNPs marker to be
considered in the association model. Furthermore,
methods based on statistical criteria to filter SNPs
will see their performance decay as the marker dens-
ity increases due to the reduction in the effects of
SNPs associated with QTL. Using external informa-
tion (i.e. gene expression data) is attractive and could
compensate for the limited information in the data.
Unfortunately, such external information is not always
available, often is tissue or time specific, and could
have high noise-to-signal ratio. In this study, we pro-
posed using Fst score as an alternative to existing
method to prioritize SNPs in high-density marker
panels. Although this information is internal to the
data, the results of this study suggest that it could
provide a reliable tool for prioritization of SNPs.
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Additional file 1: Figure S1. Distribution of the simulated quantitative
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Blue) and the preselected SNPs (in Red) across the 10 chromosomes
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Blue) and the preselected SNPs (in Red) across the 10 chromosomes
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using the 99.5 (a) and 97.5 (b) quantiles of the Fst scores under the QTL

effect sampled a Gamma distribution with shape parameter equal to 04.
and the 400 K marker panel simulation scenario. (* indicates the top 10%
QTL) (PDF 201 kb)

Additional file 4: Figure S2. 3 Distribution of the simulated QTL (in
Blue) and the preselected SNPs (in Red) across the 10 chromosomes
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