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Abstract

The goal of this study is to evaluate, compare, and contrast several standard and new linkage
analysis methods. First, we compare a recently proposed confidence set approach with
MAPMAKER/SIBS. Then, we evaluate a new Bayesian approach that accounts for heterogeneity.
Finally, the newly developed software SIMPLE is compared with GENEHUNTER. We apply these
methods to several replicates of the Genetic Analysis Workshop |3 simulated data to assess their
ability to detect the high blood pressure genes on chromosome 21, whose positions were known
to us prior to the analyses. In contrast to the standard methods, most of the new approaches are
able to identify at least one of the disease genes in all the replicates considered.

Background

We consider various standard as well as new linkage anal-
ysis tools and methods. The Genetic Analysis Workshop
13 simulated complete data set gives an excellent oppor-
tunity to evaluate and compare these methods. First, we
compare the standard nonparametric approach for sib-
pair analysis as implemented in MAPMAKER/SIBS [1]
with an extension of a recent confidence set approach [2].
We expect the latter to perform better because it does not
require multiplicity adjustment for the number of tests
executed. Next, we assess the performance of a new Baye-
sian parametric approach for detecting linkage that takes
into account possible locus heterogeneity. Another issue
of interest is how much linkage information can be gained
if the large pedigrees can be analyzed as a whole com-
pared with analyzing reduced ones, a practice adopted by
GENEHUNTER [3]. To this end, we compare the GENE-
HUNTER results with a new software package, SIMPLE
[4], that can handle both large pedigrees and a moderate
number of loci.

Methods

Phenotype definition, choice of genomic regions, and
selection of replicates

We focus on a qualitative trait, high blood pressure. In
addition to making use of the binary variable in the data,
we also take into consideration several other factors. First,
there is a related variable, hypertensive treatment, which
is confounded with the presence or absence of high blood
pressure. So, we combine observations on these two vari-
ables. Second, we have observations on each person over
a range of time; this longitudinal feature of the data needs
to be considered. Further, we note that by a certain (old)
age, most people develop high blood pressure. This is
most likely not attributable to a genetic effect. Also, a per-
son may have one or more isolated observation(s) of high
blood pressure or hypertensive treatment just by chance,
e.g., if it happens to be a very stressful period for that per-
son. That person should not be considered as (genetically)
affected. Taking into account of all these factors, we label
the following people as affected: a Cohort 1 person if he/
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she has three consecutive events, or a Cohort 2 person if
he/she has two consecutive events, where event is defined
as "high blood pressure or hypertensive treatment at or
before the age of 55". Note that the difference in criteria
for the two cohorts is due to the fact that the period
between three consecutive events in Cohort 1 is roughly
the same as two consecutive events in Cohort 2.

Instead of performing a whole-genome scan, we focus on
chromosome 21, which has three genes, b37, s10, and
s12, that directly affect high blood pressure. We note that
the two high blood pressure genes, b37, and s12, are very
close to each other. So we treat them as one gene and refer
to itas s12. We compare and contrast methods in terms of
their power and precision for finding these genes. We also
study chromosome 20 to assess false-positive rates
because it does not have any disease genes.

For the confidence set approach, we randomly select five
replicates from the first batch of 25 replicates of the simu-
lated data, which yield estimated risk characteristics com-
patible with a single-locus model. For the Bayesian
approach we analyze four randomly chosen replicates,
one from each of the four batches provided. Because SIM-
PLE is computationally intensive, we analyze only one
replicate for the comparison between GENEHUNTER and
SIMPLE. To further save time, this replicate is randomly
chosen from the four replicates used in the Bayesian
approach because this method utilizes GENEHUNTER to
compute LOD scores. We do not intend to make compar-
isons among the three new methods, as they are based on
different types of data, and/or different model assump-
tions. Thus, we do not necessarily analyze the same repli-
cates for all new methods.

MAPMAKERISIBS [1] and GENEHUNTER [3]

We use these popular standard packages for exact LOD
score and IBD calculations. Both are based on the hidden
Markov model approach.

Confidence set approach [2]

This approach gives a confidence set of markers (leading
to confidence intervals) for the locations of disease genes.
We consider this method here in a nonparametric setting.
The essence of this method lies in a new (non-traditional)
formulation of linkage hypotheses. For each marker m,
the hypotheses are H,,: 0,,< 6, versus H,,: 0,,> 6,, where
0,, is the recombination fraction between the disease and
marker loci. We set 6, to be the recombination fraction
corresponding to a genetic distance of 10 cM, which is
roughly half of the largest distance between any two adja-
cent markers in the simulated data. Note that this is a two-
point approach. But the above formulation of hypotheses
renders multiplicity adjustment unnecessary, no matter
how many tests are performed. This approach needs pop-

http://www.biomedcentral.com/1471-2156/4/s1/S70

ulation risk characteristics (population prevalence, risks
of various types of relatives), which we estimate from the
sample itself. We apply this approach to affected sib-pair
(ASP) data, both with and without parental data. These
results are compared with those from MAPMAKER/SIBS.

Bayesian approach accounting for heterogeneity

We describe this approach for the situation in which we
assume there is only one disease gene on the chromosome
of interest. Suppose there are k families in the sample. Let
o,; = P(disease causing gene of the it family is linked to the
marker map), i =1,..., k, and let d be the position of disease
gene on the chromosome. We formulate the mixture like-
lihood of the sample following Ott [5], but with each fam-
ily having its own heterogeneity parameter, ;. We assume
that the prior distributions of o values are independent
U(0,1). GENEHUNTER is used for the calculation of usual
LOD scores at several distances, labelled 1 through N, on
the chromosome. The prior distribution of d is defined
over {1,..., N, o} with probabilities 1/(22N) for the first
N points and 21/22 for . This approach accounts for het-
erogeneity (if any) but is applicable to homogeneous
samples as well.

We use Markov chain Monte Carlo (MCMC) methods to
sample from the posterior distributions of o, values and d.
The chain is run for a burn-in period of 10,000 iterations,
followed by an additional 90,000 iterations. The posterior
distributions are estimated based on these 90,000 itera-

tions. The proportion of the non-infinity distances, p, can
be interpreted as an estimate of the posterior probability

for linkage, p. Hence, a value of p greater than 0.5 can be
taken as an initial signal of linkage at that chromosome.

In that case, the mean of the non-infinity distances, d,
gives an estimate of the position of disease gene. This
approach has also been extended to the situation of two
disease genes on a chromosome. With this extension, we
want to see if we could detect the two genes on chromo-
some 21 simultaneously. We also evaluate our approach
under various models to examine the effect of model
specification.

SIMPLE [4]
SIMPLE is a Monte Carlo method based on sequential
imputation and makes use of all available information on
all pedigree members. We compare the S_,; , scores from
SIMPLE with those from GENEHUNTER.

pairs

Results

Before presenting the results, we note the following for
ease in making comparisons. On chromosome 21, there
are six markers. We use the sex-averaged distances in our
analysis. The disease gene s12 lies between markers 3
(26.56 cM) and 4 (40.02 cM) at position 29.46 cM. The
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Table I: Results using confidence set approach (CS) and MAPMAKER/SIBS (MM).

Replicate
Method 6 9 13 18 25
Cs (16.6,36.6) U (16.6,50) (30,50.2) (30,73.4) (0,36.5)
(53.4,734)
MM|a 63.4 None None 439 & 63.4 63.4
MM2b None None None None 13.8
aMM|: Positions with scores > 2.33 but < 3.09. P™MM2: Positions with score > 3.09.
Table 2: Bayesian approach result for Replicate 54
Model Marginal© Joint
No. Freq.2 PenetrancesP A — ~ = A =
p d p d p d

1 | 2 2
| 0.2 0.05 0.50 0.70 1.00 422 0.92 385 0.92 46.3
2 0.1 0.10 0.50 0.70 1.00 423 0.85 37.8 0.90 46.4
3 0.2 0.00 0.20 0.50 1.00 42.4 0.89 39.2 0.92 48.3
4 0.2 0.00 0.50 0.60 1.00 41.7 0.85 36.9 0.92 454
5 0.2 0.00 0.35 0.55 1.00 41.8 0.8l 38.2 0.92 46.3
6 0.3 0.00 0.60 1.00 1.00 429 0.51 30.7 0.98 45.6
7 0.3 0.00 0.20 0.60 1.00 42.6 0.96 39.7 0.93 48.6
8 0.3 0.00 0.40 0.80 1.00 424 0.95 39.2 0.95 48.2

aFreq., P(D), where D is disease allele. PPenetrances are for genotypes dd, Dd, DD, in that order-. ¢ f) and c_i represent the estimated posterior

probability of linkage and the corresponding position of the disease gene for the marginal analysis. Similar notations for joint analysis are used.

other gene, s10, is located at 53.59 cM between markers 5
(43.89 cM) and 6 (63.35 cM).

MAPMAKERISIBS versus confidence set approach

This analysis is performed on five replicates. Table 1 sum-
marizes the results for chromosome 21 when no parental
information is used. We report 95% confidence intervals
for the locations of disease genes. For MAPMAKER/SIBS,
we present the positions of the modes of the curve (if any)
that exceed at least one of the two cutoffs, 2.33 and 3.09,
corresponding to the nominal levels of 0.01 (suggestive
evidence) and 0.001 (significant evidence), respectively

[1].

From Table 1, we see that for the confidence set method,
the gene s12 is included in the 95% confidence intervals
for three replicates while the gene s10 is included for two
replicates. The confidence intervals for Replicate 6 include
both s10 and s12. Also, Replicates 9, 13, and 18 miss
either one or two disease genes by at most a few centimor-
gans. In contrast, MAPMAKER/SIBS does not detect any
disease genes in two replicates with the cut-off 2.33. With

the more stringent criterion (cut-off 3.09), only one out of
the five replicates detects a signal for linkage.

For chromosome 20, the confidence set approach gives
one false positive for Replicate 9. There are no other false
positives by either method.

Bayesian approach accounting for heterogeneity

This method is applied to Replicates 1, 32, 54, and 85. The
chromosome 21 results for Replicate 54 are shown in
Table 2. The table shows the marginal analysis (single dis-
ease gene on a chromosome) as well as the joint analysis
(two disease genes on a chromosome) for eight models.
The first two models are the kind of incomplete pene-
trance models one might use as an approximation to the
true but unknown complex model. The other six models
correspond to the models of s12 and s10 genes. For each
of these two genes we use the three models corresponding
to the systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), and their average.

Table 2 shows that there is a strong signal of linkage for all
models except for the joint analysis under Model 6, which

Page 3 of 5

(page number not for citation purposes)



BMC Genetics 2003, 4

Chromosome 21

o
o A
e T—‘ =
=
Q.
w
© 1 SIMPLE
GH1
| GH2
10 20 30 40 50 60
Distance (in cM)
Figure |
spairs

http://www.biomedcentral.com/1471-2156/4/s1/S70

Chromosome 20

cf) .
N .
w
=
T v
o 3 ~
N
= SIMPLE :
-------- GH1
--= GH2
.

T T T T T T

0 20 40 60 80

Distance (in cM)

scores using GENEHUNTER (GH) and SIMPLE for chromosome 21 and chromosome 20 GHI: GH scores

with skipped pedigrees; GH2: GH scores without skipped pedigrees.

gives a weak signal at the first location. All the means from
marginal analysis place the single disease gene between
loci 4 and 5. The two means in the joint analysis place the
two disease genes between loci 3 and 4 and loci 5 and 6,
the actual locations of s12 and s10, respectively. It seems
that in the marginal analysis, because of the combined
effect of two genes, the single gene location is indicated at
a position that is in between the two actual positions. In
the other three replicates, there is a strong signal of linkage
between loci 5 and 6, i.e., for gene s10, but none of them
showed signal for s12. This is seen for both the marginal
and the joint analysis.

Marginal analysis on chromosome 20 shows only one
false positive (out of a total of 32 analyses) for the second
model in Replicate 1. Since overall there is no signal of
linkage found in the marginal analysis, it is doubtful that
any joint analysis would yield positive result and hence
no further analysis is carried out.

GENEHUNTER versus SIMPLE

We consider Replicate 85 for this comparison. For this
replicate, GENEHUNTER drops individuals in 23 pedi-
grees. It also skips 27 pedigrees (15 of these pedigrees are
informative for linkage) because these pedigrees become
disconnected after GENEHUNTER drops individuals. In
contrast, SIMPLE can analyze all pedigrees in their
entirety. We use SIMPLE to calculate the S_; . statistics of

pairs

the pedigrees that GENEHUNTER skips or reduces, and
add them to the S,;, scores of the pedigrees that GENE-
HUNTER analyzes without reduction. These are the total
scores that SIMPLE would provide estimates for, if we ana-
lyze all pedigrees using it. We plot these scores in Figure 1
(solid curve). In the same figure, the dash curve corre-
sponds to the scores given by GENEHUNTER automati-
cally, i.e., they do not include the scores of the pedigrees
that GENEHUNTER skips. Further, we manually drop
individuals in the 15 informative pedigrees skipped by
GENEHUNTER and recalculate the scores given by GENE-
HUNTER after including them. The dotted curve in the fig-
ure is of those scores. Although the process of manually
dropping individuals from each pedigree such that it
remains connected is extremely labor intensive, we did it
to make the comparison between GENEHUNTER and
SIMPLE more fair. We see that, for chromosome 21, SIM-
PLE gives an S,,,;,, score of 2.42, which exceeds the custom-
ary threshold of 2.33 for suggestive linkage [1]. On the
other hand, S, scores for GENEHUNTER, even after
including the skipped pedigrees, do not exceed the same
threshold. For chromosome 20, all the three curves indi-
cate a false positive.

Discussion

The confidence set approach based on ASP data is more
successful in identifying the disease genes in the replicates
considered compared with the standard method. An
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attractive feature of this approach is that no multiplicity
adjustment is needed. Also, unlike the traditional
method, a confidence interval with known properties can
be deduced. The reported confidence intervals are wide,
though, due to the nature of single marker analyses. The
results obtained by including parental information are
similar.

The Bayesian approach incorporating heterogeneity is
able to identify s10 in all replicates and s12 in one out of
four replicates. We note that we could have gained more
linkage information by using SIMPLE to calculate LOD
scores without dropping individuals. If the marginal anal-
ysis shows a signal for linkage, it seems worthwhile to
explore the joint analysis. We note that the method used
to simulate the data does not lead to a genetically hetero-
geneous sample. This is reflected in the a; values that are
all close to 0.5 in the marginal analysis. It shows that none
of the families are clearly linked or unlinked. It is encour-
aging to see that our approach yields positive results in
this situation. Further we see that this method is reasona-
bly robust to model specification as all the models we
considered give similar results. Nevertheless, this proce-
dure needs further evaluation and refinement.

Comparison of SIMPLE with GENEHUNTER shows that
by being able to handle large pedigrees as a whole, SIM-
PLE gives higher scores at positions in the vicinity of the
disease locus. Since these results are based on a single rep-
licate only that does not warrant general conclusions, we
refer interested readers to the extensive simulation study
that shows considerable power gains by using SIMPLE [4].

In our search for disease genes, we identify s10 in a greater
number of replicates than s12. This indicates that the
effect of s10 is much greater than s12, consistent with the
simulation model. We note that only the new methods are
able to identify the gene s12. So, overall, our methods
seem to be promising in the sense that there is an evidence
of power gain without increasing false-positive rates con-
siderably. However, we caution any generalization of
these results, as the number of replicates studied is rela-
tively small.
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