
BioMed CentralBMC Genetics

ss
Open AcceProceedings
Linkage analysis of longitudinal data
Young Ju Suh*1,2, Taesung Park1,3 and Soo Yeon Cheong1

Address: 1Department of Statistics, Seoul National University, Seoul, South Korea, 2Clinical Research Institute, Seoul National University Hospital, 
Seoul, South Korea and 3Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Email: Young Ju Suh* - ysprite@hotmail.com; Taesung Park - tspark@stats.snu.ac.kr; Soo Yeon Cheong - may125@empal.com

* Corresponding author    

Abstract
Background: We propose a statistical model for linkage analysis of the longitudinal data. The
proposed model is a mixed model based on the new Haseman and Elston model and allows several
random effects. Specifically, the proposed model includes a random effect for correlation among
sib pairs having one sibling in common, and one for the correlation among siblings from the same
parents.

Results: The proposed model was applied to the analysis of the Genetic Analysis Workshop 13
simulated data set for a quantitative trait of the systolic blood pressure. A simple independence
model and two kinds of random effects models yielded good power for detecting linkage for these
data sets, while the random effects models performed slightly better than the independence model.
Both random effects models showed similar performance.

Conclusions: The proposed models seem not only quite useful in detecting linkage with the
longitudinal data for the trait but also quite flexible. They can handle a wide class of correlation
structures. Models with a more general class of covariance structure are desirable.

Background
We explore the Genetic Analysis Workshop (GAW13)
simulated data set, which contains longitudinal data for
two cohorts drawn from 330 pedigrees containing 4692
individuals, with data collection on each cohort starting
about 30 years apart. The first cohort was examined 21
times at two-year intervals. The second cohort was exam-
ined five times at four-year intervals with eight years
between the first two examinations. With knowledge of
the answers, we test linkage to identify those markers
linked to genes for the quantitative trait of the blood pres-
sure (BP). We found that the trait systolic blood pressure
(SBP) is affected by several quantitative trait loci and non-
genetic factors such as gender, age, total cholesterol,
smoking, fasting glucose, hypertension treatment, and
weight.

For detecting linkage, Haseman and Elston [1] proposed
the nonparametric linkage method for a quantitative trait.
This procedure involves simple regression of the squared
difference of sib pair trait identity on the proportion of
alleles shared IBD (identical by descent) at genetic mark-
ers. In a method developed later by Elston et al. [2], the
mean-corrected cross-product of the trait replaces the
measure's squared difference. This implementation is pro-
posed as a method to get rid of possible correlation
between observations when a family in the sample con-
sists of more than two offspring. For better understanding
and better power, we require a statistical analysis that
allows us to examine multiple genes at the same time. In
this regard, the method extends to multiple regressions for
detecting linkage at several loci that determine the traits.
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Longitudinal data arise when an outcome variable of
interest is measured repeatedly over time from the same
subject. Repeated observations from the same individual
are usually correlated. To account for correlation in the
analysis, mixed models are commonly used to analyze
longitudinal data. Linear mixed models with random sub-
ject effects were proposed by Laird and Ware [3]. Jennrich
and Schluchter proposed a more general class of models
with structured covariances [4]. Liang and Zeger proposed
a model based on the generalized estimating equation
(GEE) that can handle both normally and non-normally
distributed outcomes [5]. Though the GEE approach can
be used for normally distributed outcomes, it is shown to
be less efficient than the maximum likelihood approach
[6]. Mixed models usually assume a special form of covar-
iance structure and use maximum likelihood or restricted
maximum likelihood estimation to obtain the estimators
of model parameters. Iterative algorithms for parameter
estimation are generally required.

In this study, we propose a mixed model for linkage anal-
ysis of the longitudinal data. Our model basically has the
same form of the new Haseman and Elston model [2]. To
incorporate the interrelation among correlated observa-
tions, it uses the same correlation structures of ordinary
mixed models. In the model, we specifically consider a
random effect for correlation among sib pairs having one
sib in common, and one for the correlation among sib-
lings from the same parents. We believe that the proposed
model is easy to apply and can handle a wide class of cor-
relation structures. To identify linkage by using the pro-
posed model, we consider the genes closest to b34, b35,
b36, s10, s11, and s12 as candidate marker loci, since we
know that SBP is affected by genes of b34, b35, b36, s10,
s11, and s12. Also we select five markers of b5, b14, b16,
b18, and b21, which are taken from different
chromosomes.

Results
We performed linkage analysis on the quantitative trait
SBP* (SBP adjusted for gender, age, total cholesterol,
smoking, fasting glucose, hypertension treatment, weight,
and high blood pressure) from Cohorts 1 and 2. SBP* was
determined in part by b34, b35, b36, s10, s11, and s12.
We found the results for the mean-corrected cross-product
of SBP*, henceforth refer to as C(SBP*) (see equation (2)
in Methods) by using three different mixed models. We
tested H0: βk (or γl) ≤ 0 vs. HA: βk (or γl) > 0 for the linkage
data set. If T ≥ 2.14 (i.e., lod score ≥ 1.0), the βk (or γl) was
considered as in the model, where k = 1, ..., 6 and l = 1, ...,
5.

First, we selected at random one replicate (replicate 43,
consisting of the 99,714 observations from n = 2772 sib
pairs) out of 100 replicates and examined linkage. To

obtain better outcomes, we also analyzed a larger sample
created by combining two replicates (replicate 43 and 47,
randomly selected) including the 199,536 observations
from n = 5512 sib pairs. In Table 1, we report the results
of independence model (Model 1) and random effects
models (Model 2 and 3). We found that three different
approaches on a single sample were basically similar to
detecting linkage. Most of the variables Ik (k = 1, ..., 6),
which denotes the number of alleles IBD at marker locus
closest to genes determining SBP, were significantly
detected by an independence model (Model 1) using two
replicates combined. For Ul (l = 1, ..., 5) which is the
number of alleles IBD at genes closest to five unlinked
markers, all variables were not significant using random
effects models (Model 2 and 3) with two replicates
combined.

We then performed linkage in each of all 100 replicates,
respectively. Each sample was derived from around n =
99,300 observations from about n = 2747 sib pairs. As
shown in Table 2, we analyzed power for C(SBP*) in each
of three different models. As can be seen in the table, the
power was generally high for most of the variables Ik (k =
1, ..., 6) and tended to increase as random effects were
added in the model. Under Model 3, the corresponding
power was the highest in 50% of the variables Ik (k = 1, ...,
6) among three models.

For the GAW13 simulated data on SBP*, we conclude that
the random effects models (Model 2 and 3) seems to work
slightly better than the independence model (Model 1) to
identify linkage while considering all candidate markers
at the same time. Both random effects models showed
similar performance in detecting linkage for these data.

Discussion
The models for longitudinal data mainly focus on how to
handle the correlations among the repeated measure-
ments. Appropriate random effects can summarize corre-
lations effectively. The time effects can be easily treated as
one covariate of interest in the model. The main focus of
the proposed model is allowing for appropriate random
effects for the correlated sib pairs in the Haseman-Elston
model [2]. The correlation may be caused by a common
sibling or by a common parent. Also, it can be caused by
the repeated observation for the same sib pair at different
observation times. The proposed model can include cor-
responding random effects easily. It can handle a wide
class of correlation structures.

If we were interested in the inference for the time effect,
then the first-stage model need not include the time effect
but the second-stage model should. Since we worked with
a simulated data set, we mainly focused on comparing the
independence model with random-effects models.
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In our analysis, we used SAS to analyze the mixed model
for longitudinal data. For a sib pair linkage analysis, a C
program was implemented. We have not applied any
standard quantitative trait loci (QTL) software yet because
we are not sure whether it can handle the proposed

model. Certainly, it might be interesting to investigate
further.

We are planning to do linkage analysis by combining
more replicates. We expect that the proposed models per-

Table 1: Results of the three different models for  C(SBPj*)A

Model 1B Model 2B Model 3B

Gene Variable Rep. 43C Rep. 43+47D Rep. 43C Rep. 43+47D Rep. 43C Rep. 43+47D

b34 I1 
E 6.08F 5.05 7.26 7.39 7.34 7.62

(5.29) (4.82) (5.78) (5.83) (5.81) (5.92)
b35 I2 0.18 3.50 0.00 1.25 0.00 1.22

(0.90) (4.01) (-3.50) (2.40) (-3.47) (2.37)
b36 I3 0.00 0.00 0.00 0.00 0.00 0.00

(-10.49) (-5.95) (-0.53) (-0.07) (-0.55) (-0.03)
s10 I4 28.90 77.16 5.05 37.08 5.01 36.97

(11.53) (18.84) (4.82) (13.06) (4.80) (13.04)
s11 I5 28.15 68.26 27.66 34.02 27.86 34.35

(11.38) (17.72) (11.28) (12.51) (11.32) (12.57)
s12 I6 9.99 2.68 0.00 0.00 0.00 0.00

(6.78) (3.51) (-4.06) (-7.69) (-3.99) (-7.59)

b5 U1 6.67 6.48 1.78 0.04 1.73 0.04
(5.54) (5.46) (2.86) (0.43) (2.82) (0.42)

b14 U2 0.31 0.00 0.00 0.00 0.00 0.00
(1.19) (-0.67) (-6.62) (-6.05) (-6.63) (-5.98)

b16 U3 0.00 0.00 0.00 0.00 0.00 0.00
(-2.26) (-3.60) (-4.65) (-2.71) (-4.65) (-2.67)

b18 U4 0.00 0.00 0.00 0.00 0.00 0.02
(-3.08) (-2.65) (0.10) (0.15) (0.14) (0.27)

b21 U5 0.00 0.00 0.00 0.00 0.00 0.00
(-3.47) (-6.72) (-1.33) (-2.01) (-1.27) (-1.93)

A The mean-corrected cross-product for SBP*, which is residual of the observed SBP adjusted for effective nongenetic factors. B Model 1: 
independence model; Model 2: random effects model with two random effects; Model 3: random effects model with three random effects. C 

Simulations of one replicate (replicate 43 randomly chosen) consisting of the 99,714 observations from n = 2772 sib pairs. D Simulations of two 
replicates combined (replicate 43 and 47) for 199,536 observations from n = 5512 sib pairs. E Ik (k = 1, ..., 6) is the number of alleles IBD at marker 
locus closest to a gene that determines SBP; Ul (l = 1, ..., 5) denotes the number of alleles IBD at genes closest to five unlinked markers. F LOD 
scores (T-values). Values in bold type indicate significant variables: consider βk (or γl) > 0 if the LOD score ≥ 1.0 (i.e., T ≥ 2.14). The LOD score 
would be 0 when T < 0.

Table 2: Comparison of the powerA of 100 samplesB for three models

Gene Variable Model 1C Model 2C Model 3C

b34 I1 
D 0.73 0.79 0.80

b35 I2 0.55 0.65 0.65
b36 I3 0.59 0.55 0.56
s10 I4 0.98 1.00 1.00
s11 I5 0.92 0.90 0.90
s12 I6 0.62 0.60 0.60

A LOD score ≥ 1.0 (i.e., T ≥ 2.14) is the critical value for the test. B Each sample was derived from around n = 99,300 observations from about n = 
2747 sib pairs. C Model 1: independence model; Model 2: random effects model with two random effects; Model 3: random effects model with three 
random effects. DIk (k = 1, ..., 6) is the number of alleles IBD at marker locus closest to a gene that determines SBP.
Page 3 of 4
(page number not for citation purposes)



BMC Genetics 2003, 4 http://www.biomedcentral.com/1471-2156/4/s1/S27
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

form much better in detecting linkage for larger samples
with more replicates.

Methods
Preliminary study
At the first stage of model fitting, we adjusted SBP by
known effective nongenetic factors of gender, age, total
cholesterol, smoking, fasting glucose, hypertension treat-
ment, and weight, and high blood pressure from Cohort
1 and 2. We regressed SBP on all these covariates men-
tioned above and obtained the residual of SBP referred to
as SBP*. Our adjustment was initially done on each of all
100 replicates, respectively, consisting of around n =
99,300 observations from about n = 2747 sib pairs in each
sample. Additionally, we adjusted on a larger sample by
pooling two replicates randomly selected (replicate 43
and 47) that included the 199,536 observations from n =
5512 sib pairs.

Sib pair linkage analysis
In linkage analysis, we investigated the revised Haseman
and Elston linkage statistic [2]. For the second stage of
model, the mean-corrected cross-product of SBP* was
used as a dependent variable, defined by

C(SBPj*) = (SBPj1* - m) (SBPj2* - m),  (1)

where SBPj1* and SBPj2* are the residual of the observed
SBPs for the first and second sibs, respectively, in the jth

pair, and m is the mean of SBPji* for all i and j. We consid-
ered as independent variables the number of alleles IBD at
the locus in the sib pair. As similarly described in Suh et
al. [7], we denote Ik for k = 1, 2, ..., 6 as the number of alle-
les IBD at six markers closest to b34, b35, b36, s10, s11,
and s12, which determine SBP. We also denote Ul for l =
1, 2, ..., 5 as the number of alleles IBD at five genes closest
to b5, b14, b16, b18, and b21, which are unrelated to any
of these loci.

The mixed model
We considered three different models to analyze longitu-
dinal data. First, we fitted an independence model (Model
1) which is defined as

C(SBPj*) = α + ΣβkIjk + ΣγlUjl + εj,

where βk for k = 1, 2, ..., 6 and γl for l = 1, 2, ..., 5 are param-
eters to be estimated.

Our second approach of the mixed model was a random
effects model (Model 2). We considered the correlation
between sib pairs in the model, assuming random effects
to account for correlation between two sib pairs that share
a common sibling.

C(SBPj*) = α + ΣβkIjk + ΣγlUjl + ΣδmRjm + εj,  (2)

where E(δm) = 0 and Var(δm) = σ2
δm for which the mth (m

= 1, 2) sibling is in common. If the mth sibling is in com-
mon, then Rjm = 1, otherwise Rjm = 0 for each of m = 1, 2.

Third, we considered one more random effect when dif-
ferent sib pairs are obtained from the same parents
(Model 3). We added to the model equation (2) m = 0
when sib pairs have the same parents.
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