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Abstract

We present a method for using slopes and intercepts from a linear regression of a quantitative trait
as outcomes in segregation and linkage analyses. We apply the method to the analysis of
longitudinal systolic blood pressure (SBP) data from the Framingham Heart Study. A first-stage
linear model was fit to each subject's SBP measurements to estimate both their slope over time
and an intercept, the latter scaled to represent the mean SBP at the average observed age (53.7
years). The subject-specific intercepts and slopes were then analyzed using segregation and linkage
analysis. We describe a method for using the standard errors of the first-stage intercepts and slopes
as weights in the genetic analyses. For the intercepts, we found significant evidence of a Mendelian
gene in segregation analysis and suggestive linkage results (with LOD scores > |.5) for specific
markers on chromosomes 1, 3, 5,9, 10, and 17. For the slopes, however, the data did not support
a Mendelian model, and thus no formal linkage analyses were conducted.

Introduction

In the conventional epidemiology literature, much has
been written about utilizing data in which measurement
of quantitative traits are periodically taken from each sub-
ject over time [1-3]. However, relatively little has been
written regarding the use of longitudinal data in genetic
epidemiological studies. One method proposed by Levy et
al. [4] utilized the within-subject mean SBP to summarize
the longitudinal measurements for each subject. In Levy's
analysis of data from the Framingham Heart Study, a sam-
ple-wide regression was used to model SBP over time as a
linear function of age and body mass index after adjusting
for sex, cohort group, and hypertension treatment in a
first-stage analysis. Residuals for each subject from the
regression analysis, averaged over time, were then used as

continuous phenotype data in a linkage analysis in the
second stage of the analysis.

In this paper, we also adopt a two-stage modeling
approach. In our first stage, we fit a linear regression of
SBP on age to obtain subject-specific intercepts and
slopes. This first-stage model includes adjustment for any
time-varying covariates of interest, such as calendar year,
body mass index, and hypertension treatment. Also esti-
mated in this first stage are the subject-specific standard
errors of the corresponding intercepts and slopes. The sec-
ond stage analysis consists of a segregation analysis of the
subject-specific intercepts from the first stage model, and
a separate segregation analysis of the slopes. We claim that
the standard errors from the first stage should be used in
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weighting the contribution of each subject in the segrega-
tion analysis, and we describe how this can be accom-
plished. Based on the results of the segregation analyses,
we conducted a genome screen using parametric linkage
analysis applied to all pedigrees in the Framingham Heart
Study. We demonstrate increased LOD scores using the
weighed analysis, compared with the analogous approach
that does not use weights.

Methods

General approach

Let Y;; denote the SBP of the ith subject at the jt study visit,
T;; be the corresponding age of the subject at the visit, and
let X;; denote a matrix of time-dependent covariates. We
propose using a first-stage model of the form

Yij=’1i+bi (Tij‘ T) +Y'Xij+eijr (1)

where T is the overall mean age in the sample and e; are
residuals, assumed to be independent and normally dis-
tributed with mean 0 and variance ®2. The goal of this
first-stage model is to estimate the subject-specific inter-
cepts (4;) and slopes on age (b;), and their corresponding
standard errors. We denote these standard errors by s; for
intercepts and s, for slopes. Note that the intercepts have

the interpretation as the predicted mean Y at age T when
all X values are zero. We center any continuous X variables
on their corresponding sample means to increase inter-
pretability of the intercepts.

The second-stage model utilizes the first-stage intercepts g;
and slopes b; as continuous phenotype data in a genetic
analysis. We first perform segregation analysis to deter-
mine the evidence for a Mendelian gene and to estimate
the associated model parameters. For analysis of the inter-
cepts, the penetrance model used in the segregation anal-
ysis has the form

a=o0+pG+n'X;+e, (2)

where G; is a covariate based on an unobserved major
gene g;, and X; is a matrix of time-independent covariates.

An analogous model was used for the slopes. The residual
e; is assumed to be normally distributed with mean 0 and

variance (62 +s,2), where s,2 is the square of the first-stage

standard error of the intercept, and 2 is the between-sub-
ject residual variance to be estimated. Note that this vari-
ance expression has the effect of weighting each subject's
contribution to the genetic analysis based on the precision
(standard error) of their intercept estimate. We thus
denote the use of this variance for ¢; as a 'weighted' analy-
sis. Generally speaking, these first-stage standard errors
will be smallest for those with many measurements, and
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with measurements at ages that span the overall average

age T . One could also perform an 'unweighted' analysis
by assuming that the variance of ¢; was simply o2, which
would treat the intercepts for all subjects as equally
informative.

To estimate the parameters of the above model, we maxi-
mized the likelihood

L(Q4x,7) =12 f(Ye|8r Xp, Q)Pr(8r|da . T),
F gp

where the F indexes family, g is a vector of unobserved
major genotypes, and Y and X are the trait and covariate
data for family F. The parameters Q = {a, 3, n, o } are the
parameters of the penetrance model, g, is the population
frequency of the variant allele 'A', and t = {t,,, Tp, Taa) are
the probabilities that a parent with the subscripted geno-
type transmits an 'A' to their offspring. Computation of
the above likelihood requires use of the peeling algorithm
[5,6]. We considered six models in the segregation analy-
sis: four Mendelian models (dominant, recessive, addi-
tive, and codominant), a no-major-gene model that
included only measured covariates, and a general trans-
mission model. In the general transmission model, t,,,
Tpa and 1,, were treated as free parameters to be estimated.
This general model was compared to the Mendelian mod-
els, in which t,,, 7, and t,, were constrained to their the-
oretical values of 1.0, 0.5, and 0.0, respectively.
Likelihood ratio tests (LRTs) were used to compare the
general model to the Mendelian models, and also to the
no-major-gene model. We also computed Akaike's Infor-
mation Criteria (AIC) for each model as -2 (log-likelihood
at the maximum likelihood estimator (MLE)) + 2(number
of model parameters estimated). A lower AIC indicates a
more parsimonious model.

Application to the Genetic Analysis Workshop 13 (GAW13)
Framingham Heart Study data set

The GAW13 data set of the Framingham Heart Study
included a total of 4692 subjects, of which 1213 subjects
provided longitudinal observation data from the first
cohort, and 1672 subjects from the offspring cohort. The
outcome variable of interest in this paper was systolic
blood pressure (SBP). A natural log transform was used to
linearize the SBP relationship with age; thus Y} in equa-
tion (1) is In(SBP;). Only observations with age in the
range 30 to 80 were utilized, to further linearize the rela-

tionship between In(SBP) and age. The average age was T
= 53.7. Time-dependent covariates defining X in equa-
tion (1) included body mass index (BMI), calendar year
(CY), CY2, hypertension treatment (HRX), CY x HRX, CY
x male, CY x cohort, CY x BMI, CY x age, male x age, and
BMI x HRX. The continuous variables BMI and CY were
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centered on their respective sample means, while HRX
and male were indicators of treatment status and male sex,
respectively. The CY2 term was included to account for
observed nonlinearity between SBP and CY. The inter-
cepts from the first-stage model have interpretation as the
subject-specific mean In(SBP) adjusted to a female,
untreated person of average age (53.7 years) and BMI
(26.3 kg/m?) in calendar year 1969.5. PROC MIXED in
SAS, Release 8.2 (SAS Institute, Cary NC), was used to fit
the first-stage model and obtain person-specific intercepts
and slopes, and their respective standard errors.

A total of 2883 person-specific intercepts (g; values) and
2787 person-specific slopes (b; values) were obtained
from the first-stage analysis. These estimates were used as
trait data in the second-stage segregation and linkage anal-
yses. Covariates X; in equation (2) included male sex and
cohort, the latter an indicator of membership in Cohort 2.
We fit the segregation and linkage models using a version
of the Genetic Analysis Package (GAP, Epicenter Software,
Pasadena, CA), modified by one of the authors (WJG) to
utilize s ;2 (and s;,;2) in a weighted analysis. As will be dem-
onstrated below, a Mendelian model was supported for
the intercepts, but not for the slopes. We therefore focused
our linkage analysis only on the intercepts. We fixed the
segregation-model parameters to their MLEs from the
weighted analysis, and performed two-point LOD-score
linkage analysis to estimate the recombination fraction
(8) between g and each of 399 markers. Allele frequencies
at each marker locus were fixed to the values provided

Table I: Weighted segregation analysis of intercepts*
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with the data. For comparison, we also performed an
unweighted linkage analysis, in which a segregation anal-
ysis was re-run without standard error weights, and these
MLEs then used in linkage analysis.

Results

Segregation analysis

Segregation analysis of the intercepts supported a Mende-
lian codominant model, with strong evidence of a genetic
effect (Table 1). Specifically, compared to the general
model, the Mendelian codominant model did not fit sig-
nificantly worse (x2= 1.7, p = 0.43, conservatively assum-
ing two degrees of freedom). On the other hand, the
remaining Mendelian models and the no-major-gene
model could be rejected (p < 0.001 for each). The codom-
inant model also provided the lowest AIC, again indicat-
ing that this model provided the best fit to the data. The
estimated allele frequency from this model was g, = 0.31,
translating into 48% of subjects with g = aa, 42% with g =
Aa, and 10% with g = AA. Compared with subjects with g
= aa, SBP was estimated to be 12% higher (exp(0.115)) for
subjects with g = Aa, and 33% higher (exp (0.283)) for
subjects with g = AA. Segregation analysis of the slopes, on
the other hand, did not support evidence of Mendelian
transmission (Table 2). Specifically, the general model fit
significantly better than any of the Mendelian models (p <
0.001), and provided the lowest AIC. The estimate of the
transmission parameter t,, was 0.0, far from its Mende-
lian expectation of 1.0.

Hypothesis
Mendelian
Segregation General Codominant Dominant Recessive Additive No Major Gene
Parameter
Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE
Intercept 4.769 0.0078 4.771 0.0072 4.802 0.0052 4.801 0.0051 4.776 0.0065 4.846 0.0041
Beohort -0.088 0.0077 -0.092 0.0043 -0.092 0.0046 -0.091 0.0047 -0.092 0.0043 -0.085 0.0049
Sex 0.011 0.0046 0.011 0.0046 0.012 0.0046 0.010 0.0047 0.012 0.0046 0.005 0.0049
Baa 0.288 0.0143 0.283 0.0142 0.165 0.0066 0.167 0.0072 0.269 0.0107 — —
Baa 0.118 0.0076 0.115 0.0078 0.165~ — 0.0008 — 0.135¢ — — —
da 0.323 0.0539 0.305 0.0373 0.139 0.0180 0.511 0.0304 0.257 0.0285 — —
c? 0.004 0.0004 0.004 0.0004 0.006 0.0004 0.006 0.0004 0.004 0.0004 0.011 0.0004
Taa 0.000 0.0000  0.000° — 0.000P — 0.000P — 0.000P — — —
Taq 0.476 0.0610  0.500P — 0.5000 — 0.500P — 0.500P — — —
Tap 0.935 0.0611 1.000D — 1.0000 — 1.000P — 1.000P — — —
-2(log- -3482.64 -3480.94 -3400.16 -3376.52 -3463.32 -3155.59
likelihood)
p-valuet — 0.43 <0.001 < 0.001 < 0.001 <0.001
AICF -3462.64 -3466.94 -3388.16 -3364.52 -3451.32 -3147.59

*The outcome being modeled in equation (2) is a;from equation (1). AConstrained to equal B,,. BConstrained to equal 0. € Constrained to equal 1/
2 Bya- D Parameter value is fixed. Ep-value based on a likelihood ratio test with the general model as the base model.FAIC = -2(log-likelihood) +

2(number of free parameters).
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Table 2: Weighted segregation analysis of slopes*
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Hypothesis
Mendelian
Segregation General Codominant Dominant Recessive Additive No Major Gene
Parameter
Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE
Intercept 3.205 0.1814 3.500 0.1932 3.790 0.2246 4.139 0.1489 3.744 0.2081 4.265 0.1485
Beohort -3.541 0.2393 -3.819 0.2094 -3.785 0.2092 -3.788 0.2143 -3.793 0.2090 -3.726 02113
Sex -1.621 0.1981 -1.623 0.1965 -1.584 0.2001 -1.682 0.1907 -1.580 0.1897 -1.620 0.1936
Baa 16.614 1.7795 16.625 2.4421 6.742 1.2112 14.296 2.1622 12.821 2.1109 — —
Baa 4.443 0.5003 3.525 0.8312 6.742A — 0.0008 — 6.41|¢ — — —
qa 0.199 0.0584 0.110 0.0265 0.042 0.0195 0.130 0.0269 0.047 0.0188 — —
G2 0.485 0.1782 1.849 0.5964 2.384 0.7088 3.384 0.5886 2.206 0.5857 4.949 0.6492
Taa 0.000 0.0000 0.000P — 0.000P — 0.000P — 0.000P — — —
Taq 0.390 0.0694 0.500P — 0.500P — 0.500P — 0.500P — — —
Taa 0.000 0.0000 1.000D — 1.000D — 1.000D — 1.000D — — —
-2(log- 17811.58 17824.66 17839.45 17828.49 17837.35 17867.83
likelihood)
p-valuet — <0.001 <0.001 <0.001 <0.001 <0.001
AICF 17831.58 17838.66 17851.45 17840.49 17849.35 17875.83

*The outcome being modeled in equation (2) is 1000 X b, the subject-specific slope from equation (I). AConstrained to equal f,,. BConstrained to
equal 0. CConstrained to equal 1/2 B,,. PParameter value is fixed. Ep-value based on a likelihood ratio test with the general model as the base

model.FAIC = -2(log-likelihood) + 2(number of free parameters).

Table 3: Markers with LOD score > 1.5 based on two-point linkage

analysis* of subject-specific SBP intercepts

Weighted Unweighted
Chromosome Location (cM) Marker LOD p-value LOD p-value
| 202 GATA7COI 231 0.0005 227 0.0006
| 212 GATA48BO| 2.93 0.0001 2.84 0.0002
3 153 GATA4AI10 0.83 0.026 2.00 0.0012
5 40 GATAI45D09 1.66 0.0028 0.17 0.19
9 32 GATA27A11 230 0.0006 1.27 0.0078
10 125 GATA64A09 2.10 0.0009 0.80 0.028
17 100 GATA28DI | 1.50 0.0042 0.64 0.0428

* Assuming the Mendelian codominant model (see Table I)

Linkage analysis

Given the findings in segregation analysis, linkage analy-
sis was conducted only on the intercepts. The parameters
of the segregation model were fixed to the values shown
for the Mendelian codominant model in Table 1. Two-
point linkage analysis was conducted, i.e., markers were
considered one at a time in separate analyses. Each analy-
sis utilized standard-error based weights as in the segrega-
tion analyses. For comparison, we also repeated the
segregation and linkage analyses using unweighted

analysis, i.e, not using first-stage standard errors as
weights. Table 3 shows the markers that yielded a LOD
score of at least 1.5 using either the weighted or
unweighted approach. The strongest evidence of linkage
was found at marker positions 202 (LOD = 2.3) and 212
(LOD = 2.9) on chromosome 1, position 32 (LOD = 2.3)
on chromosome 9, and position 125 (LOD = 2.1) on
chromosome 10 in the weighted analysis, and at position
153 (LOD = 2.0) on chromosome 3 in the unweighted
analysis. Weaker evidence for linkage was observed on
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LOD Scors
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chromosomes 5 and 17 in the weighted analysis. The
weighted analysis generally led to larger LOD scores than
the unweighted analysis. To further compare the weighted
and unweighted approaches, Figure 1 shows plots of the
LOD scores at all markers on chromosomes 1, 5, 9, 10,
and 17. While the LOD scores for the two approaches
have similar trends across markers, the weighted analysis
provides more striking peaks, particularly on chromo-
somes 9, 10, and 17.

Discussion

Our segregation analysis indicates that SBP, specifically
average SBP at age 53, has a significant genetic basis. We
estimated that approximately half of the population car-
ries a genotype (g = Aa or AA) that leads to some elevation
in average SBP relative to genetically normal (g = aa) indi-
viduals. Subsequent analysis revealed modest evidence of
linkage on chromosomes 1 (202 and 212 cM), 5 (40 cM),
9 (32 cM), 10 (125 cM), and 17 (100 cM). Levy et al. [4]
also found evidence of linkage at the same position on
chromosome 10 (125 cM), but at different positions on
chromosomes 5 (59 ctM) and 10 (125 cM). Rao et al. [7]
also reported linkage to position 125 cM on chromosome
10, while Briollais et al. [8] reported evidence of linkage at
position 212 cM on chromosome 1.

The appropriate use of standard errors from the first stage
model in the second stage model generally resulted in
larger LOD scores than were obtained in an unweighted
analysis. However, since our application was to a real data
set for which we do not know the truth, we cannot con-
clude with certainty that the use of weights will generally
lead to more significant linkage peaks. Our proposed two-
stage approach should be evaluated further using simu-
lated data.

We did not find support for an effect of a Mendelian gene
on SBP slope in our segregation analysis. This may be a
consequence of the model form we applied in our analy-
sis, for example in our assumption that any genetic effect
was mediated through a single major gene. If multiple
genes affect SBP change over time, our model may have
had low power to detect a genetic signal. As a 'fishing
expedition', we ignored our lack of support for a Mende-
lian model and performed a genome screen for linkage to
SBP slopes. The segregation model parameters were fixed
to the values for the Mendelian codominant model
shown in Table 2. This analysis revealed no LOD scores
that exceeded 1.5 at any marker. This failure to find any
linkage signals may again be a consequence of poor
power, or it may reflect our segregation-analysis finding
that slopes are not determined by a Mendelian gene.

Although we developed a two-stage modeling approach in
this paper, we believe that it would be preferable to com-
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bine the first and second stage models into a single analy-
sis. This would consist of performing a joint segregation
and linkage analysis of the original, repeated SBP meas-
urements on each subject. Some advantages of this
approach are that parameter estimates in each model
would be mutually adjusted for one another, and subjects
with more observations would naturally contribute more
information to parameter estimation and testing. To
achieve this latter quality in a two-stage analysis required
the incorporation of standard-error derived weights from
the first-stage model into the second-stage model, as
described in this paper. The primary deterrent to imple-
menting a joint approach lies in the computational
difficulty of simultaneously fitting a longitudinal model
and summing over a large space of unobserved genotypes.
One could consider using Markov chain Monte Carlo
methods to solve this computational difficulty (see
Palmer et al. [9] and Scurrah et al. [10]), and we would
encourage formal comparison of these approaches to a
two-stage approach to assess their relative merits.

There are some difficult issues in this particular data set
that we have not addressed. First is the issue of how to best
handle hypertension treatment (HRX). We chose to
include HRX as a time-dependent covariate in our first-
stage model. However, since the decision to treat is based
on SBP, this approach may lead to invalid estimates of the
HRX effect, and may ultimately affect our genetic infer-
ences as well. Levy et al. [4] propose a different approach
for dealing with HRX in the analysis of longitudinal SBP.
Clearly, more work is required to better understand how
to best adjust for covariates that are themselves deter-
mined by the outcome variable. Another important issue
is the problem of missing data. In our analysis, we used
only observations at each time point that had complete
outcome and covariate data. The elimination of missing
observations may introduce bias if the missingness is
related to the condition of the subject at that time (see
Kang et al. [11], for a longer discussion). Furthermore, if
missingness patterns are correlated within families, results
from segregation and linkage analyses may be further
misrepresented.

We adopted a parametric modelling approach in our
genetic analysis. An advantage of this approach is that it
utilizes all available data in each pedigree. A disadvantage,
however, is that the model form was likely misspecified,
particularly if SBP is determined by several genes with dif-
fering allele frequencies and effects on the trait. As an
alternative, one could replace our second-stage parametric
model with a weighted nonparametric linkage approach,
for example using a variance components (VC) [12] or
Haseman-Elston (HE) [13,14] model. In a VC analysis of
intercepts (or slopes), one could add a subject-specific
component to the variance based on the first-stage stand-
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ard-error. In the HE approach, one could regress some
function of the first stage intercepts for a pair of relatives
(e.g., the squared difference in intercepts between sib
pairs) on the proportion of alleles shared identical by
descent at a marker locus. The delta method can be uti-
lized to calculate the variance of the squared sib-pair dif-
ference as a function of the first-stage, subject-specific
standard errors. The inverse of the variances for each sib
pair could then be used as weights in the HE regression.
The performance of weighted VC and HE linkage analysis,
relative to each other and to unweighted analysis, is a
topic for future research.

In conclusion, we have proposed a two-stage modelling
approach to the genetic analysis of longitudinal data for a
quantitative trait. Additional work is necessary to evaluate
the method, including simulation studies and compari-
sons to other two-stage and joint-analysis approaches.
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