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Abstract

Background: Several methods have been proposed to account for multiple comparisons in genetic association
studies. However, investigators typically test each of the SNPs using multiple genetic models. Association testing
using the Cochran-Armitage test for trend assuming an additive, dominant, or recessive genetic model, is commonly
performed. Thus, each SNP is tested three times. Some investigators report the smallest p-value obtained from the
three tests corresponding to the three genetic models, but such an approach inherently leads to inflated type 1 errors.
Because of the small number of tests (three) and high correlation (functional dependence) among these tests, the
procedures available for accounting for multiple tests are either too conservative or fail to meet the underlying
assumptions (e.g., asymptotic multivariate normality or independence among the tests).

Results: We propose a method to calculate the exact p-value for each SNP using different genetic models. We
performed simulations, which demonstrated the control of type 1 error and power gains using the proposed approach.
We applied the proposed method to compute p-value for a polymorphism eNOS -786T>C which was shown to be
associated with breast cancer risk.

Conclusions: Our findings indicate that the proposed method should be used to maximize power and control
type 1 errors when analyzing genetic data using additive, dominant, and recessive models.
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Background
Genome-wide association studies (GWAS) and candi-
date gene association studies are commonly performed
to test the association of genetic variants with a particular
phenotype. Typically, hundreds of thousands of single-
nucleotide polymorphisms (SNPs) are tested for associ-
ation in these studies. Associations between the SNPs and
the phenotypes are determined on the basis of differences
in allele frequencies between cases and controls [1]. Sev-
eral statistical methods have been proposed to control the
family-wise error rate (FWER) for multiple comparison
testing.
A simple approximation can be used to obtain a FWER

of α by utilizing the Bonferroni adjustment [2] of α� ¼ α
n

and using α* as the threshold for significance for each test.
Bonferroni adjustment tends to be conservative when the
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tests are correlated. In genetic association studies, the
SNPs being tested are typically in linkage disequilibrium
(LD), which leads to correlation among the tests. An alter-
native approximation to the Bonferroni adjustment is

Sidak’s correction [3,4], α� ¼ 1− 1−αð Þ1n which assumes in-
dependence among tests. Conneely and Boehnke [5] pro-
posed a correction that does not assume independence
among tests but assumes joint multivariate normality of
all test statistics. Other methods to control the FWER in-
clude using the false discovery rate (FDR) [6,7].
In genetic association studies, three genetic models–

additive, dominant, and recessive–are generally used to
test each SNP using the Cochran-Armitage (CA) trend
test [8-12]. In association studies the true underlying
genetic model is unknown. Some investigators report
the smallest p-value obtained from the three tests corre-
sponding to the three genetic models. However, such a
procedure inherently leads to an inflated type 1 error
rate. Also, FDR-based methods to control FWER are not
applicable in this situation because the hypotheses are
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Table 1 Genotypic counts, parameterizations, and
notations for various parameters used in the model
formulation

Genotype

AA Aa aa Sum

Cases (X) X1 X2 X3 RX

Controls (Y) Y1 Y2 Y3 RY

Sum C1 C2 C3 N
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highly correlated, as the same SNP is tested using differ-
ent genetic models.
Thus, there is a need to correct for multiple compari-

sons corresponding to the three genetic tests performed
for testing the association of a single SNP. These three
tests are not only correlated but also functionally dependent.
The standard methods for correcting for multiple testing
referred to above are either too conservative or fail to meet
the assumptions underlying these methods (e.g., asymptotic
multivariate normality, independence among tests). Several
approaches have been proposed to account specifically for
the multiple comparisons of these three genetic models
[13-15]. However, these approaches assume asymptotic tri-
variate normality for the additive, dominant and recessive
test statistics. While this is a reasonable approximation to
correct for multiple comparisons, preliminary investigations
regarding the joint distribution of the three test statistics re-
vealed the following insights: 1) the joint distribution of the
test statistics is discrete and the grids at which the probabil-
ity mass function is positive is few and far between; 2) The
distribution is highly multimodal in most of the situations,
particularly, when the number of cases and controls are
different and unimodal only in a handful of situations
(e.g. when the number of cases and controls are equal).
Therefore, we propose a method to compute the exact
joint distribution of the three CA trend tests corre-
sponding to the additive, dominant, and recessive gen-
etic models. We used this joint distribution to compute
the exact p-value for testing each SNP using the different
genetic models. We performed simulations to demon-
strate control of type 1 errors and power gains using the
proposed approach. Finally, we applied the proposed ap-
proach to assess the significance of the association be-
tween a promoter polymorphism, eNOS-786T>C and
breast cancer risk.
Methods
Consider a di-allelic SNP locus. The minor (deleterious)
allele is labeled as a, and the major (normal) allele is la-
beled as A. The deleterious allele a is assumed to affect a
phenotype Z, which takes the values of 0 or 1: Z = 1 indi-
cates cases (affected) and Z = 0 indicates controls (un-
affected). The observed genotype data for the SNP is one
of three genotypes (A, A), (A, a), or (a, a). Let RX denote
the number of cases and RY denote the number of con-
trols, with RX + RY =N. Let X1, X2, X3 and Y1,Y2,Y3 be the
number of individuals with genotypes AA, Aa, and aa in
cases and controls, respectively. The data can be formu-
lated in a 2 × 3 contingency table, as shown in Table 1. Let
p1, p2, p3 be the frequencies of genotypes, AA, Aa and aa
in cases and q1, q2, q3 be the frequencies of these three ge-
notypes in controls. The values of pi, qi, i=1,2,3 can be es-
timated from the data as pi ¼ Xi

RX
and qi ¼ Y i

RY
.

There have been many approaches in the literature for
testing the association between a SNP and disease status.
The CA test for trend [8] is generally the most popular
and is available in most genetic analysis software pack-
ages, such as PLINK [16]. The test statistic for the CA
test is as follows:

W ¼
X3
i¼1

ti RYXi−RXY ið Þ;

where the weight, ti, is chosen on the basis of the genetic
model considered: additive, dominant, or recessive. The
additive model assumes the deleterious effect is linearly
related to the number of deleterious alleles. The domin-
ant model assumes the deleterious effect is related to the
presence of the deleterious allele. And the recessive model
assumes the deleterious effect is related to the presence of
both the deleterious alleles. The weights t = [t1, t2, t3] cor-
responding to each of the models are as follows: additive
model: t = [0, 1, 2], dominant model: t = [0, 1, 1], and reces-
sive model: t = [0, 0, 1] for genotypes AA, Aa, and aa, re-
spectively. Let the three test statistics corresponding to
the additive, dominant, and recessive models be T1,T2,
and T3, respectively.

The joint distribution
Each test statistic, T1,T2 and T3, has an asymptotically
normal univariate distribution. Therefore, the p-values
for each of these tests can be obtained from their
asymptotic distributions. However, reporting the smal-
lest p-value obtained from testing T1,T2 and T3, indi-
vidually leads to an inflated type 1 error rate. If the
exact joint distribution of the three tests is known, one
can compute the exact p-value for the SNP that will
account for the multiple correlated tests. We proceed
to derive the joint distribution of the three test sta-
tistics, T1 = (RYX2−RXY2) + 2(RYX3 − RXY3), and T2 =
(RYX2 − RXY2) + (RYX3 − RXY3), and T3 = (RYX3 − RXY3).
As T3 = T1 − T2, we only need to derive the joint distri-
bution of T1 and T2. It is reasonable to assume that
the three genotype counts in cases (X1, X2, X3) and the
three genotype counts in controls (Y1,Y2,Y3) follow a
multinomial distribution, with probabilities (p1, p2, p3)
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and (q1, q2, q3) respectively. Let T ¼ T 1

T 2

� �
, X ¼ X2

X3

� �

and Y ¼ Y 2

Y 3

� �
. The test statistics can be written as

T=AX+BY, where A ¼ RY 2RY

RY RY

� �
and B ¼ −RX −2RX

−RX −RX

� �
.

Then the joint probability mass function (pmf) of T1,T2 is
given by

f T T1;T2ð Þ ¼
XRX

X2¼0

XRX−X2

X3¼0

f X X2;X3ð Þf Y h X2;X3;T1;T2ð Þð Þ

where fx, fy are trinomial probability mass functions and
h(X,T) = B−1T − B−1AX. The derivation of the joint pmf
of T1,T2 is detailed in the Appendix. The p-value corre-
sponding to the test statistic (t1, t2) can be computed by
summing up the probabilities of the test statistics that
are equally or less probable than the observed test statis-
tic, which can be written as

pvalue t1; t2ð Þ ¼

X
T1

X
T 2

f T T1;T2ð Þ

T1;T2 : f T T1;T2ð Þ≤f T t1; t2ð Þh i
The computation of the p-value using the above for-

mula is nontrivial; however, there are a variety of com-
putational optimizations and parallels to Fisher’s exact
test that can be used to drastically reduce the computa-
tional complexity (see details in the Appendix). Briefly,
the CA trend test statistics form a system of constrained
linear Diophantine equations. The computational opti-
mizations presented in the Appendix are based on
Figure 1 This figure depicts the probability mass function of the scen
be visualized.
exploiting the properties of the linear Diophantine
equations with trinomial constraints. The solution space
of these equations corresponds to the discrete space of
nonzero probabilities for the joint pmf. This discrete space
has a pattern of overlapping triangles that can be enumer-
ated based on RX and RY counts (See Figures 1, 2, 3 and 4).
To reduce the number of computations in the discrete
space we first transformed the test statistics to be symmet-
ric. The pattern of overlapping triangles depends on three
different scenarios based on the greatest common divisor
(GCD) of RX and RY: 1. GCD(RX, RY) = 1, 2. GCD(RX, RY) =
RX = RY and 3. 1 <GCD(RX, RY) <min(RX, RY). In scenario 1
the triangles do not overlap, therefore the p-value can be
evaluated most efficiently (Figures 1 and 2). In scenario 2
most of the triangles overlap and the discrete space of non-
zero probabilities is sparse (Figure 4). In this scenario, we
proposed an algorithm to exploit this aspect to calculate
the exact p-value more efficiently. Scenario 3 is the most
general case which uses the general optimizations of sym-
metricity and the triangle pattern (Figure 3). The algo-
rithms to compute the exact p-values for each of the
scenarios are detailed in the Appendix.

Simulations
We performed simulations to evaluate the performance of
the proposed method and compared our approach with
standard approaches used in the literature. All the simula-
tion results were based on 1000 replicate data sets. Each
replicate dataset comprised 1000 cases and 1000 controls.
The disease status for each data set was obtained using
the logistic regression model logit(P(Z = 1)) = β0 + β1X,
ario with RX = 19 and RY = 2. A pattern of six triangles can



Figure 2 This figure depicts the probability mass function of the scenario with RX = 20 and RY = 3. A pattern of ten triangles can
be visualized.
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where X is the indicator for genotype, Z is the disease
status, β0 is the intercept, and β1 is the log odds ratio
for the SNP. The genotype data for a SNP were simu-
lated using a minor allele frequency (MAF) of 40% for
the null hypothesis and two MAFs of 40% and 20% for
the power comparisons. For the type 1 error compari-
sons, we simulated 1000 replicate datasets from the
null hypothesis (i.e., the SNP was not associated with
Figure 3 This figure depicts the probability mass function of the scen
triangles can be visualized.
disease status), with β0 = − 2.5 and β1 = log (1). For the
power comparisons, we simulated 1000 replicate data-
sets for 40% and 20% MAFs from the alternate hypoth-
esis (i.e., the SNP was associated with disease status)
for each of the three scenarios: (1) additive model with
odds ratio of 1.2, (2) dominant model with odds ratio of
1.3, and (3) recessive model with odds ratio of 1.3. The
methods we compared were as follows: performing only
ario with RX = 10 and RY = 2 and a pattern of six overlapping



Figure 4 This figure depicts the probability mass function of the scenario with RX = 5 and RY = 5. A pattern of 21 triangles can be
visualized from the figure, where most of the triangles are overlapping completely or partially with one another.
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additive analyses (additive-only), performing only domin-
ant analyses (dominant-only), performing only recessive
analyses (recessive-only), using the p-value based on report-
ing the smallest p-value of the three genetic models (min-
p), using the Bonferroni correction approach, and using the
proposed exact p-value method.

Results
The type 1 errors based on 1000 replicates from the null
hypothesis are shown in Table 2. Analyses based on
additive-only, dominant-only, and recessive-only models
gave empirical type 1 errors of 0.044, 0.045, and 0.056,
respectively, at the 0.05 level of significance. As expected,
these models provided good control of type 1 errors be-
cause only one genetic model was tested in these analyses.
The Bonferroni approach also had a well-controlled, but
Table 2 Type 1 error comparisons for different
approaches at the 0.05 level of significance for 1000
replicates, each replicate representing a data set
containing 1000 cases and 1000 controls

Method α =0.05

Additive Only 0.044

Dominant Only 0.045

Recessive Only 0.056

Min-p 0.105

Bonferroni 0.030

Exact p-value 0.047

Min-p: p-value based on reporting the smallest p-value of the three
genetic models.
conservative, type 1 error (0.030 at the 0.05 level of signifi-
cance). The min-p had a type 1 error of 0.105 at the 0.05
level of significance, which was very liberal and confirmed
that the minimum p-value of the three genetic models is
not a valid test. Finally, our proposed approach provided
good control of the type 1 error (0.047 at the 0.05 level of
significance).
The power comparisons based on 1000 replicates for

the SNP data simulated using 40% and 20% MAFs for
the three scenarios when the data were simulated using
the additive, dominant, and recessive models, respect-
ively, are shown in Table 3. The top and bottom panels
of Table 3 depict the results for 40% and 20% MAFs, re-
spectively. The min-p model was excluded from the com-
parison because of its inflated type 1 error. When the data
were simulated using the additive genetic model (column 3,
Table 3), and were analyzed using only the additive model,
it had the highest powers (0.816 and 0.656 for 40% and
20% MAFs, respectively). However, when the data were an-
alyzed using only the dominant model, the powers were
0.676 and 0.603 for 40% and 20% MAFs, respectively. Also,
when the data were analyzed using only the recessive
model the powers were 0.588 and 0.306 for 40% and 20%
MAFs, respectively. The powers for the additive only ana-
lysis were the highest as expected because the true simula-
tion model in this scenario was additive. However, the true
model of disease inheritance is generally unknown and one
performs analyses using all three genetic models. In this
scenario, the proposed exact p-value method had powers of
0.743 and 0.584 for 40% and 20% MAFs, respectively, at
the 0.05 level of significance, which were higher than the



Table 3 Power comparisons for different approaches at the 0.05 level of significance for 3 different simulation
scenarios using genotypes coded as additive, dominant, and recessive, respectively, for 40% and 20% MAFs

Genotype model

MAF Method
Additive model Dominant model Recessive model

Odds ratio = 1.2 Odds ratio = 1.3 Odds ratio = 1.3

Additive Only 0.816 0.660 0.410

Dominant Only 0.676 0.803 0.116

40% Recessive Only 0.588 0.158 0.589

Bonferroni 0.721 0.671 0.452

Exact p-value 0.743 0.726 0.517

Additive Only 0.656 0.774 0.116

Dominant Only 0.603 0.823 0.061

20% Recessive Only 0.306 0.102 0.249

Bonferroni 0.556 0.715 0.168

Exact p-value 0.584 0.782 0.197

The results for each panel are based on 1000 replicates, with each replicate representing a data set containing 1000 cases and 1000 controls. MAF: Minor
allele frequency.

Table 4 P-values computed using various approaches for
association of eNOS -786T> C with breast cancer

Genotype Data for eNOS -786T> C Method p-value

Controls Cases Additive Only 0.0045

Total 423 421 Dominant Only 0.0148

TT 203 167 Recessive Only 0.0313

CT 185 200 Bonferroni 0.0135

CC 35 54 Exact p-value 0.0021
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Bonferroni method which had powers of 0.721 and 0.556
for 40% and 20% MAFs, respectively. Overall, powers of
the proposed method were lower than additive model (true
simulation model) but higher than those of the dominant-
only, recessive-only, and Bonferroni correction approach.
When the data were simulated using the dominant

model (column 4, Table 3), the additive-only, dominant-
only and recessive-only analyses had powers of 0.660,
0.803, and 0.158, respectively, for 40% MAF and 0.774,
0.823, and 0.102, respectively for 20% MAF, at the 0.05
level of significance. Once again, as expected, the powers
of the dominant-only analysis were the highest because
the data were generated using the dominant model. The
proposed exact p-value method had powers of 0.726 and
0.782 for the 40% and 20% MAFs, respectively, which
were higher than the Bonferroni method which had
powers of 0.671 and 0.715 for the 40% and 20% MAFs,
respectively. When the data were simulated using the re-
cessive model (column 5, Table 3), the additive-only,
dominant-only and recessive-only analyses had powers
of 0.410, 0.116, and 0.589, respectively, for 40% MAF
and 0.116, 0.061, and 0.249, respectively, for 20% MAF.
The proposed exact p-value method had powers of 0.517
and 0.197 for the 40% and 20% MAFs, respectively, which
were higher than the Bonferroni method (0.452 and 0.168
for 40% and 20% MAFs, respectively).
We applied the proposed approach to assess the sig-

nificance of the association between the promoter poly-
morphism eNOS -786T>C and sporadic breast cancer
risk in non-Hispanic white women younger than 55 years
from a breast cancer study performed by [17]. The study
discovered that eNOS -786T>C was statistically significant
for breast cancer (p=0.017) and included 421 breast can-
cer cases and 423 cancer free controls. The first panel in
Table 4 depicts the genotype counts for TT, CT and CC
genotypes in cases and controls for the eNOS -786T>C.
The second panel in Table 4 reports the p-values for the
eNOS -786T>C computed using the 5 different ap-
proaches: additive-only, dominant-only, recessive-only,
Bonferroni and the proposed exact p-value method.
The additive-only, dominant-only and recessive-only
approaches had p-values of 0.0045, 0.0148 and 0.0313,
respectively, and the Bonferroni adjusted p-value was
0.0135. For this SNP, the p-value computed using the
proposed exact p-value method was 0.0021, which was
more significant than the smallest of the three p-values
obtained using the additive-, dominant-, and recessive-
only analyses (Table 4).

Discussion
In this paper, we proposed a method to calculate the
exact p-value for testing a single SNP using multiple
genetic models. We recommend using the proposed
method to maximize power and control type 1 errors
when analyzing genetic data using additive, dominant,
and recessive models. The proposed method is robust to
model misspecifications and different SNP minor allele
frequencies. Furthermore, similar to the computation of
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Fisher’s exact p-value, the proposed approach does not
depend on asymptotic distributions.
In our simulation study, where replicate datasets were

simulated using the null hypothesis, we found that the
proposed method had well-controlled type 1 error prob-
abilities. In contrast, the method of reporting the smal-
lest p-value of the three genetic models tested had the
highest false-positive rate and was found to be invalid.
And, as expected, the type 1 error of the Bonferroni cor-
rection approach was well controlled but conservative,
which typically led to a loss in power for identifying gen-
etic variants.
We also simulated replicate datasets under an alterna-

tive hypothesis using the different genetic models: addi-
tive, dominant, and recessive. In these simulations, we
observed that no single method: additive-only, dominant-
only, or recessive-only, had higher power in all three sce-
narios. Each of these methods had higher power only
when the model used to analyze the data was the same as
the true model used to generate the data. However, be-
cause the true mode of disease inheritance is usually
unknown, analyses using all three genetic models are
necessary. In general, the Bonferroni correction ap-
proach led to higher power than using a model that
did not correspond to the true model. The proposed
exact p-value method was an improvement over the
Bonferroni method. The conservativeness of the Bonfer-
roni method may be due to its inability to account for the
functional dependence between the three test statistics. In
contrast, our proposed approach accounts for this func-
tional dependence by computing p-values from the joint
probability mass function. Finally, we analyzed breast can-
cer study data in which the polymorphism eNOS -786T>C,
was found to be significant [17].
The computation time needed to obtain the exact

p-value is substantial. The problem is very closely related
to Fisher’s exact test, and there are many patterns inher-
ent in the structure of the problem that could be exploited
to calculate the p-values more efficiently. In the Appendix,
we present several novel optimization techniques to effi-
ciently compute the test statistics in a reasonable time
(e.g., approximately 15 min for a 1000 cases and 1000
controls dataset). The software to compute exact p-values is
available at http://odin.mdacc.tmc.edu/~rtalluri/index.html.

Conclusions
In genetic association studies, three genetic models–additive,
dominant, and recessive–are generally used to test each SNP
using the Cochran-Armitage trend test. Reporting the mini-
mum p-value of the three genetic models leads to inflated
type 1 errors. We proposed an approach to compute the
exact p-value when genomic data is analyzed using the three
genetic models. The proposed approach leads to higher
power while controlling the type 1 error.
Appendix
Optimization techniques for computing the exact p-value
Recall that X1, X2, X3 and Y1,Y2,Y3 are the number of in-
dividuals with genotypes AA, Aa, and aa in cases and
controls, respectively, with X1 +X2 +X3 = RX and Y1 + Y2 +
Y3 = RY. The three genotype counts in cases (X1, X2,X3)
and the three genotype counts in controls (Y1,Y2,Y3) follow
a multinomial distribution with probabilities (p1, p2, p3)
and (q1, q2, q3), respectively. The probability mass function
(pmf) of (X1, X2, X3) is f X Xð Þ ¼ RX !

X2!X3! RX−X2−X3ð Þ! p
RX−X2−X3
1

pX2
2 pX3

3 and the pmf of (Y1,Y2,Y3) is f Y Yð Þ ¼ RY !
Y 2!Y 3! RY−Y 2−Y 3ð Þ!

qRY−Y 2−Y 3
1 qY 2

2 qY 3
3 . The three test statistics corresponding

to the additive, dominant, and recessive models are,
T1 = (RYX2 − RXY2) + 2(RYX3 − RXY3) , T2 = (RYX2 − RXY2) +
(RYX3 − RXY3), and T3 = (RYX3 − RXY3) respectively. As
T3 = T1 − T2, we only need to derive the joint distribution

of T1 and T2. Let T ¼ T1

T2

� �
, X ¼ X2

X3

� �
, and Y ¼ Y 2

Y 3

� �
.

The test statistics can be written as T = AX + BY, where

A ¼ RY 2RY

RY RY

� �
and B ¼ −RX −2RX

−RX −RX

� �
. We proceed to

derive the joint probability mass function of T ¼ T 1

T 2

� �
.

Consider an n-dimensional discrete random vector G
with pmf fG(). Suppose we have a transformation from
G→H. The pmf fH() of the transformed variables H can
be expressed as follows: [18]

f H Hð Þ ¼ f G ∅−1 Hð Þ� �
This can be extended to the case where the dimen-

sions of G and H are different, i.e., the transformation
from (X,Y)→ T is a linear transformation of the form
T = AX + BY. The pmf of T is given by

f T Tð Þ ¼
X
X

f X Xð Þf Y h X;Tð Þð Þ; h X;Tð Þ ¼ B−1T−B−1AX

This can be simplified as:

h X;Yð Þ ¼ Y 2

Y 3

� �
¼

T1

RX
−
2T2

RX
þ RYX2

RX

T2

RX
−
T1

RX
þ RYX3

RX

0
BB@

1
CCA;

f T T 1;T 2ð Þ ¼
XRX

X2¼0

XRX−X2

X3¼0

f X X2;X3ð Þf Y h X2;X3;T 1;T 2ð Þð Þ

Computing this pmf on all the possible values of (T1,T2)
is prohibitively time consuming. Computational optimiza-
tions can be used to speed up the computations of the
probability mass function. We list several optimization
techniques below. The first optimization is to transform
the pmf to be symmetric in (T1,T2), which reduces the
computational burden by half. The original test statis-
tics T1 and T2 are T1 = (RYX2 − RXY2) + 2(RYX3 − RXY3)

http://odin.mdacc.tmc.edu/~rtalluri/index.html
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and T2 = (RYX2 − RXY2) + (RYX3 − RXY3), respectively. The
joint pmf of (T1,T2) is a one-to-one function of the joint
distribution of any two orthogonal linear combinations of
T1 and T2. So if we transform the test statistics T1 and
T2 into

Z1 ¼ RYX3 − RXY 3ð Þ;

Z2 ¼ RYX2 − RXY 2ð Þ;

the resulting pmf of (Z1, Z2) is a one-to-one function of
the pmf of (T1,T2). Hence, the p-value obtained will be
the same when using (Z1, Z2) instead of (T1,T2). The
resulting pmf of (Z1, Z2) can be derived using the same
method as with (T1,T2).
The next computational optimization is to identify the

values that can be taken by (Z1, Z2). The number of
values (Z1, Z2) can take are finite and represented by the
solution space of the equations

Z1 ¼ RYX3 − RXY 3ð Þ;

Z2 ¼ RYX2 − RXY 2ð Þ;

which depends on the values of RX and RY. These equa-
tions are called linear Diophantine equations and have
an infinite number of solutions [19]. But in our case we
have multiple constraints on the equations, which re-
duce the solution space to a finite number of solutions.
The constraints are

1. X3, Y3, X2 and Y2 are integers
2. X3, Y3, X2 and Y2 ≥ 0
3. X3 + X2 ≤ RX

4. Y3 + Y2 ≤ RY

On the basis of these four constraints the solution
space can be calculated. While the exact solution space
could not be found, it follows a pattern that can be
enumerated.
Figure 1 depicts the pmf of the scenario with RX = 19

and RY = 2 where a pattern of six triangles can be visual-
ized from the figure. Similarly, Figure 2 depicts the pmf
of the scenario with RX = 20 and RY = 3, where a pattern
of ten triangles can be visualized from the picture. This
trend can be generalized for all values of RX and RY.

Generalizing the above scenario, there are 1þ 2þ ⋅⋅⋅½ þ
RY þ 1ð Þ ¼ RYþ1ð Þ RYþ2ð Þ

2 � triangles for the solution space.
In each triangle, there are 1þ 2þ ⋅⋅⋅þ RX þ 1ð Þ ¼½
RXþ1ð Þ RXþ2ð Þ

2 � elements that correspond to all possible
combinations of X3 + X2 ≤ RX. In each triangle, the

values of Y3 and Y2 are constant and the RYþ1ð Þ RYþ2ð Þ
2

triangles correspond to all possible combinations of
Y3 + Y2 ≤ RY, which make up the whole solution space.
Another important fact is that these triangles may
overlap, reducing the solution space, which is depicted
in Figures 3 and 4. Figure 3 depicts the pmf of the sce-
nario with RX = 10 and RY = 2 where a pattern of six tri-
angles can be visualized from the figure. The overlap of
the triangles can be observed when compared to Figure 1.
Figure 4 depicts the pmf of the scenario with RX = 5 and
RY = 5 where a pattern of 21 triangles can be visualized
from the figure, where most of the triangles are overlap-
ping one another. The additional computational burden is
to determine where the solution space triangles overlap
and how many triangles are overlapping at a particular lo-
cation. This is a function of the greatest common divisor
(GCD) of RX and RY. If RX and RY are co-prime (GCD=1),
only three triangles overlap at a single point (Z1 = 0,
Z2 = 0) which requires no additional computation.
When RX and RY are not co-prime, the triangles over-
lap at multiples of the GCD of RX and RY. In this sce-
nario, multiple values of X3, Y3, X2, and Y2 contribute
to the same (Z1, Z2).
In an ideal scenario, the total number of computations

required to compute the pmf of (Z1, Z2) is RYþ1ð Þ RYþ2ð Þ
2

RXþ1ð Þ RXþ2ð Þ
2 ≈ R2

XR
2
Y

4 , which can be computed in approxi-
mately 15 minutes for RX = 1000 and RY = 1000 using a
computer with a 3.4-GHz processor and 8 GB of
RAM. However, the amount of storage required for
the solution space far exceeds the hardware capabil-
ities available. In light of this limitation, computa-
tional optimizations should be employed to avoid
storing the whole solution space. This limitation leads
to three possible scenarios:

1. GCD(RX, RY) = 1
2. GCD(RX, RY) = RX = RY
3. GCD(RX, RY) < min(RX, RY)

Scenario 1
When RX and RY are co-prime, the triangles only overlap
at a single point (Z1 = 0, Z2 = 0); therefore, we can inde-
pendently evaluate each of the possible values of the solu-
tion space. The p-value is the probability of obtaining a
test statistic at least as extreme as the one observed, so we
evaluate the probabilities of each of the possible values of
the test statistics one at a time. Hence, the p-value is the
sum of all the probabilities of test statistics that are lower
than the probability of the observed test statistic. Using
this procedure there is no need to store any data, which
leads to faster computation of the p-value from the joint
distribution.

Scenario 2
When RX and RY are equal, most of the triangles overlap
with each other. But a pattern has been observed in this
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scenario, which is shown in Figure 5, where RX = 10 and
RY = 10. As seen in Figure 4, the solution space is very
sparse and only requires computation of the colored cells.
The possible solution space is spaced RX apart. So if we
condense the possible solution space, the solution space is
as shown in Figure 5. Figure 5 shows the number of trian-
gles overlapping at each point in the solution space. Only
half of the matrix needs to be computed, as the other half
is symmetric. The algorithm to compute the p-value is as
follows.

Algorithm:

1. Let RX = RY = R. The solution space can then be
constrained to a matrix with 2R + 1 rows and 2R + 1
columns. Let the center of the matrix correspond to
the test statistic (Z1 = 0, Z2 = 0).

2. Now, as we can see from Figure 5, we need to
compute the colored cells in quadrants 3 and 4. In
quadrant 3, the cells with the same number of
overlapping triangles are placed diagonally, and in
quadrant 4, they are placed horizontally and then
vertically. We exploit the pattern that follows from the
same number of triangles overlapping at a particular
cell.

3. For i = 1: R start at (Z1 = − (R − i),Z2 = − 1). Find the
possible combinations of X3, Y3, X2 and Y2 that
contribute to the cell corresponding to (Z1 = − (R − i),
Z2 = − 1). Compute the probabilities for the cells
along the diagonal path in quadrant 3, until Z1 = 0.
Figure 5 This figure shows the number of triangles overlapping at each
and RY = 10, where most of the triangles are overlapping completely or
Here X3 and X2 remain the same; hence, it is trivial to
compute the probabilities for each cell.

4. Then in quadrant 4, compute the probabilities for the
cells along the horizontal path until Z1 = R − (i − 1);
here X3 remains the same and X2new =X2 +Z2.

5. Then continue vertically until Z2 = 0; here X3 and
X2 remain the same.

This algorithm reduces the computational burden by
computing the possible combinations of X3, Y3, X2 and
Y2 that contribute to all the cells only R times, as op-
posed to computing once for each cell (approximately
4R2 times).
Scenario 3
This is the general scenario where GCD(RX, RY) < min
(RX, RY). Several patterns that can be used to reduce the
computational burden that could be applied for a par-
ticular GCD were found, but these could not be general-
ized to all the possible situations. We instead use a
straightforward approach to determine the p-value for
each of the possible solutions for (Z1, Z2). The algorithm
is as follows:

1. For each possible (Z1, Z2) compute the triangles
that contribute to this particular point.

2. Add up the probabilities of each of the elements of
these triangles to compute the p-value of that par-
ticular (Z1, Z2).
point in the condensed solution space in the scenario with RX = 10
partially with one another.
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