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Abstract

Background: The expense of human leukocyte antigen (HLA) allele genotyping has motivated the development of
imputation methods that use dense single nucleotide polymorphism (SNP) genotype data and the region’s
haplotype structure, but the performance of these methods in admixed populations (such as African Americans)
has not been adequately evaluated. We compared genotype-based—derived from both genome-wide genotyping
and targeted sequencing—imputation results to existing allele data for HLA-DRB1, —DQB]1, and -DPBI.

Results: In European Americans, the newly-developed HLA Genotype Imputation with Attribute Bagging (HIBAG)
method outperformed HLA*IMP:02. In African Americans, HLA*IMP:02 performed marginally better than HIBAG pre-built
models, but HIBAG models constructed using a portion of our African American sample with both SNP genotyping and
four-digit HLA class Il allele typing had consistently higher accuracy than HLA*IMP:02. However, HIBAG was significantly
less accurate in individuals heterozygous for local ancestry (p <0.04). Accuracy improved in models with equal numbers of
African and European chromosomes. Variants added by targeted sequencing and SNP imputation further improved both
imputation accuracy and the proportion of high quality calls.

HLA class Il allele imputation in African Americans.

Conclusion: Combining the HIBAG approach with local ancestry and dense variant data can produce highly-accurate
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Background

The human leukocyte antigen (HLA) region resides within
the major histocompatibility complex (MHC) on chromo-
some 6p21.31 and contains multiple genes encoding highly
variable antigen-presenting proteins that play a key role in
immunity [1]. Among these, the class I genes HLA-A, -B,
and —-C, and the class II genes HLA-DRBI1, -DQBI,
-DQAI, and —-DPBI are the most frequently studied,
Decades of HLA research have revealed that genetic
variation in these genes play important roles in disease sus-
ceptibility and pharmacogenetic interactions that influence
the efficacy of certain drugs.
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The nomenclature developed to catalogue the allelic vari-
ation in HLA genes has evolved over time to incorporate a
growing number alleles identified in each gene. In 1987, a
four-digit code (e.g HLA-DRBI*0401) was first employed
to catalogue alleles that differed in protein sequence [2].
The first two digits correspond to the protein serotypes
distinguishable by serological reagents used before
polymerase-chain reaction-based methods were available
[3]. Coupled with the first two digits, the second two spe-
cify a unique amino acid sequence or, equivalently, haplo-
types of non-synonymous (protein-altering) polymorphisms
within each gene. Subsequently, a colon was introduced
into the notation (eg HLA-DRBI1*04:01) to separate the
digits into fields (e.g first field corresponding to serotype
and the second to differences in haplotypes of non-
synonomous polymorphisms) to accommodate an ever-
increasing number of alleles [4]. While additional fields
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have been added to delineate alleles that differ in genetic
variation that does not alter the protein amino acid se-
quence, the functional two-field alleles remain the primary
focus in basic research and clinical applications.

In particular, prior to the advent of genome-wide
genotyping and sequencing technologies, typing of the
two-field alleles led to breakthroughs in our understand-
ing of the role of HLA genes in the genetic architecture
of multiple immune-mediated diseases [5], which have
been replicated by genome-wide association studies
(GWAS). However, few GWAS have been followed up
by direct HLA allele typing to dissect the potentially
multiple causal variants driving the observed associa-
tions at single nucleotide polymorphisms (SNPs), par-
tially due to the high cost of genotyping the HLA alleles
via sequence-specific oligonucleotide primers in GWAS
of thousands of individuals.

As a result, imputation of HLA alleles using large ref-
erence panels—such as those assembled by the Inter-
national HapMap consortium or the 1000 Genomes
(1KG) project—has grown more common. While initial
studies have shown that one or more SNPs may be used
to “tag” common HLA alleles (allele frequency >0.05)
within ancestral population groups [6], many of the HLA
alleles are rare (allele frequency <0.05) in a given popula-
tion and may not be reliably tagged by sets of two or
three SNPs. Methods that address this challenge using
dense SNP genotyping and known linkage disequilib-
rium and haplotype structure [7-13] have led to break-
throughs in identifying causal variants within HLA,
including recent successes in rheumatoid arthritis [14]
and multiple sclerosis [15]. While these studies demon-
strated the power and efficiency of HLA imputation, use
of these methods has generally been confined to samples
of primarily European ancestry.

The extension of imputation methods to admixed pop-
ulations is critical for mapping HLA-dependent diseases
that differ in incidence between ancestral populations.
The recently-developed HLA Genotype Imputation with
Attribute Bagging (HIBAG) [16] and HLA*IMP:02 [13]
methods are the first imputation methods to address
HLA allele imputation in admixed populations, but these
methods are new and include a limited number of
admixed individuals in the published models. These
methods also differ from one another, with HIBAG
employing multiple expectation-maximization-based
classifiers to estimate the likelihood of HLA alleles and
HLA*IMP:02 using a haplotype graph-based approach.
They are similar in that they allow researchers with
GWAS genotyping but without HLA allele data from ap-
propriate reference samples an option to impute the al-
leles in their own subjects. In the current study, we used
genome-wide genotyping [17] and HLA allele data [18]
from our previous studies of sarcoidosis to compare the
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imputation accuracy of these methods in both African
American and European American individuals. We also
investigated whether HIBAG models using these data
improved upon existing model predictions for African
Americans and evaluated the impact of local ancestry in-
formation on imputation accuracy in admixed subjects
[19,20]. Finally, we determined the influence of increas-
ing the SNP density through adding variation from SNP
imputation and targeted sequencing on the imputation
accuracy of HLA alleles.

Results

Our sample comprising 2,727 African Americans (1,271
cases, 1,456 controls) and 2,726 European Americans
(442 cases, 2,284 controls) has been described previously
[17,21]. The African American samples were assembled
from the following studies: 1) a case—control etiologic
study of sarcoidosis (ACCESS) [22]; 2) a multi-site
affected-sibling sarcoidosis linkage study [23]; 3) a nu-
clear family-based sample ascertained through a single
affected individual within the Henry Ford Health System
in Detroit, Michigan [24]; and 4) healthy controls from
the Oklahoma Medical Research Foundation’s Lupus
Family Registry and Repository [25]. European American
sarcoidosis cases were derived from both the ACCESS
and Henry Ford samples. Low- to intermediate-
resolution HLA genotype data were available for a
subset of subjects from the ACCESS study [22]: 325
African Americans (156 cases, 169 controls) and 480
European Americans (239 cases, 241 controls).

The published HIBAG models were applied to the
sample of ACCESS European Americans (n =480) with
available HLA-typing and genome-wide genotyping to
validate the one- and two-field allele classification accur-
acy. The overall imputation accuracy results for the
HLA-DRBI, -DQBI1, and —DPBI1 in European Americans
are presented in Table 1; the allele-specific model per-
formance measures (imputation accuracy, sensitivity, spe-
cificity, positive predictive value, and negative predictive
value) are presented in Additional file 1. Imputation ac-
curacy was high (>90%) at both the one- and two-field
resolution across all three genes. Removal of subjects with
posterior predicted genotype probabilities <0.5—a thresh-
old calibrated by the developers of HIBAG—reduced the
sample size (8.3% reduction for ~DRBI, 0.8% for —DQBI,
and 2.3% for —DPBI) but resulted in slightly improved
classification rates. Compared to HLA*IMP:02, HIBAG
had higher imputation accuracy at both one- and two-
field resolution (Table 1) for all three genes, with the ex-
ception HLA-DQBI at two-field resolution, where the two
methods produced comparable results. The largest differ-
ence was observed for HLA-DPBI, with 10.2% and 10.6%
higher accuracy rates at the one- and two-field resolu-
tions, respectively.
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Table 1 Comparison of HLA allele imputation accuracy in ACCESS European Americans for HLA class Il genes HLA-DRB1,

-DQB1, and —-DPB1 between HLA*IMP:02* and HIBAG'

HLA*IMP:02* HIBAGt
All All PP >0.5

Gene Allele field N Accuracy Accuracy N Call rate Accuracy
DRB1 One 480 98.5 989 440 91.7 99.8

Two 480 904 924 440 91.7 94.4
DQOB1 One 480 99.5 99.7 476 99.2 99.7

Two 480 97.1 97.0 476 99.2 97.2
DPBT# One 480 83.0 93.2 469 97.7 936

Two 480 82.1 92.7 469 97.7 93.2

Abbreviations: PP denotes, posterior prediction probability; N, count; Accuracy, imputation accuracy.

*HLA*IMP:02 is described in Dilthey et al. 2013.
THIBAG European ancestry model (published online 8/10/2012).

$One- and two-field estimates will be very similar for HLA-DPBT as the first field uniquely identifies the two-field alleles, with the exceptions of *02:01 and *0202,

and *04:01 and *04:02.

In comparison to European Americans, classification
accuracies were lower for African Americans (Table 2),
and HIBAG published models were overall less accurate
than HLA*IMP:02. Using the published HIBAG African
ancestry models, imputation accuracy rates ranged from
69%—-96% in the absence of a posterior predictive prob-
ability threshold (Table 2); the allele-specific perform-
ance measures are presented in Additional file 2. When
the 0.5 threshold was applied, two-field resolution accur-
acy increased 5.3—19.8%. Compared to European Ameri-
cans, the call rates for African American subjects that
exceeded this threshold was substantially lower (47.7—
65.8%). In contrast, HLA*IMP:02 African American call
rates at the same threshold were higher (minimum value
of 82.5%).

Next, we constructed HIBAG models using the
ACCESS African American sample as reference to
analyze the imputation accuracy and quality of gene-
specific prediction models (Table 2); the corresponding
allele-specific performance measures are presented in Add-
itional file 3. Samples not used for training were used to
estimate the imputation accuracy of models (i.e. the test
set). These models performed well (accuracy >86%) with
10.8%—21.8% higher imputation accuracy than published
HIBAG African ancestry and HLA*IMP:02 models at two-
field resolution; the ACCESS HIBAG models outper-
formed BEAGLE at HLA-DRBI and —-DPBI, with com-
parable accuracy achieved for HLA-DQBI. Figure 1
displays the plots of ACCESS HIBAG allele sensitivity (i.e.
proportion of a particular allele accurately predicted) by
allele frequency for each of the three genes. For alleles
with a frequency > 1%, the median (interquartile range) of
sensitivity were 98.1% (86.5%—100.0%), 98.3% (91.7%—
100.0%), and 96.8% (73.3%-99.1%) for HLA-DRBI,
-DQBI1, and —-DPBI, respectively. Also, A difference in
the quality of the predictions was found, with 68.9%
(-DRBI), 88.3% (-DQBI), and 58.8% (-DPBI) exceeding

the posterior probability threshold of 0.5. Above this
threshold, two-field resolution imputation accuracies
were > 96% across all genes.

To determine the relationship between posterior prob-
ability and imputation accuracy in the African American
sample, we analyzed two-field accuracy estimates by
HIBAG posterior probability thresholds (Table 3). For all
three genes, imputation accuracy estimates exceeded
90% at a posterior probability threshold >30%, suggest-
ing that this threshold is associated with high imputation
accuracy levels in African Americans.

The full sample of 325 African American subjects
from ACCESS with both HLA-typing and genome-wide
genotyping was also used for model training. Applying
these models to the remaining 2,402 African Americans
with genome-wide genotyping but without HLA typing,
the proportion of samples with posterior prediction
probabilities > 0.5 increased to 85.7% (-DRBI), 93.8%
(-DQBI), and 90.3% (-DPBI), approaching the results
seen in European Americans (Table 1).

Variable local ancestry may also impact HLA imputation
accuracy in African Americans. Table 4 displays the AC-
CESS HIBAG imputation accuracy estimates by local an-
cestry status at each gene. Fisher’s exact tests indicate that
differences in accuracy by local ancestry were evident at
each of the genes at two-field resolution (p-values < 0.04);
accuracy was consistently 5.2—14.2% lower for heterozygous
individuals (those with one African-derived DNA segment
and one European-derived segment) compared to those
homozygous for the West African ancestral haplotype. To
determine whether these differences could be reduced,
HIBAG models were trained on a mixed sample of 150
ACCESS European Americans (i.e. 300 European haplo-
types) and 150 ACCESS African American with two West
African alleles (i.e. 300 West African haplotypes) and tested
on the remaining 175 ACCESS African Americans not in-
cluded in the training sample (Table 5); the corresponding
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Table 2 HLA allele imputation accuracy in ACCESS African Americans for HLA class Il genes HLA-DRB1, —-DQBI1,

and -DPB1
Testing set
All PP >0.5
Method Gene Allele field N Accuracy N Call rate Accuracy
HLA*IMP.02* DRBI1 One 325 932 268 82.5 94.8
Two 325 838 268 825 873
DQB1 One 325 96.3 297 914 97.3
Two 325 93.2 297 914 94.6
DPBI1§ One — — — — —
Two — — — — —
HIBAGT DRB1 One 325 89.5 135 415 98.1
Two 325 788 135 415 944
DQB1 One 325 96.6 170 523 98.8
Two 325 87.1 170 523 924
DPBI§ One 325 69.5 m 34.2 89.2
Two 325 69.4 111 34.2 89.2
HIBAG ACCESSt DRBI1 One 164 954 113 689 99.1
Two 164 89.6 113 68.9 96.0
DQB1 One 188 954 166 88.3 99.7
Two 188 97.6 166 883 99.1
DPBIS One 250 874 147 588 983
Two 250 86.4 147 588 98.0
BEAGLE ACCESS# DRBI1 One 164 78.7 — — —
Two 164 723 — — —
DQB1 One 188 96.0 — — —
Two 188 97.9 — — —
DPBIS One 250 65.2 — — —
Two 250 64.4 — — —

Abbreviations: PP denotes, posterior prediction probability; N, count; Accuracy, imputation accuracy.
*HLA*IMP:02 is described in Dilthey et al. 2013. In this version of the software, reference data for HLA-DPB1 was not available for the African ancestry

reference panel.
THIBAG African ancestry model (published online 8/10/2012).

$The models trained on the subset of ACCESS African Americans with training samples selected at random (from a total of 325) to match the number of subjects
used to construct the published HIBAG African ancestry models: HLA-DRB1 (n = 161), HLA-DQBT (n = 137), and HLA-DPB1 (n =75).
§One- and two-field estimates will be very similar for HLA-DPB1 as the first field uniquely identifies the two-field alleles, with the exceptions of *02:01 and *0202,

and *04:01 and *04:02.

allele-specific performance measures for this test set are
presented in Additional file 4. Using these mixed-ethnicity
models, there were no longer statistically significant differ-
ences in two-field classification accuracy by local ancestry
status (p > 0.1) at any of the three genes.

Finally, to determine the benefit of adding more genetic
variants via imputation prior to model construction and
during HIBAG imputation, we compared ACCESS HIBAG
results (Table 2) against two different imputation strategies:
ACCESS observed plus 1KG-imputed data; and ACCESS
observed plus 1KG and targeted sequencing-imputed data
(Table 6). These models performed well (imputation accur-
acy >90%) at two-field resolution across all genes. When
the suggested posterior probability threshold of 0.5 was

applied, we observed better call rates while maintaining
high imputation accuracies when imputing more variants
for HLA-DRBI (6.1%-21.6% improved), —-DQBI (1.1%—
10.6% improved), and —DPB1 (1.8%—5.4% improved). These
results highlight the contribution of increased SNP density
to overall imputation quality and accuracy. Because the se-
quencing region captured only HLA-DRBI and —-DQBI,
we were not able to test the accuracy of a model using both
the 1KG and targeted sequencing reference panels for
HLA-DPBI.

Discussion
Data on HLA alleles are essential for understanding
causal variation that underlies SNP associations found in



Levin et al. BMC Genetics 2014, 15:72
http://www.biomedcentral.com/1471-2156/15/72

Page 5 of 11

HLA-DRB1 HLA-DQB1 HLA-DPB1
1.0 —.-no.zo * 1.0 —eee ot o et 1.0 | ot..o -
& 4

s, 08— ¢ 08 — * 08 — .
:.: L .
2 06 06 06 4 ¢
:.cr:) .o .
e 04 4 0.4 — 0.4 —
Q
D 02 4 02 02

0.0 — = 00 —» 00 —=

| | | | | | | | | | | | | | |
00 01 02 03 04 00 01 02 03 04 00 01 02 03 04
Allele Frequency Allele Frequency Allele Frequency

Figure 1 African American allele prediction sensitivity for two-field HLA class Il genes by allele frequency using the ACCESS HIBAG
models. Sensitivity is equal to the probability that the predicted allele matches the actual genotyped allele prediction (i.e. true positive/(true
positive + false negative)).

GWAS of diseases with a strong HLA component. Despite
reductions in the cost of genome-wide genotyping in
GWAS, genotyping HLA alleles remains expensive, al-
though less expensive next-generation sequencing methods
now exist [26,27]. The cost of HLA allele typing in large
samples has spurred the development of methods using
data on common variants from GWAS genotyping, as
many existing studies already possess this data. Such
methods can be a low or no-cost option for studies with
existing data.

Our results for European Americans validate the high
one- and two-field accuracy rates reported for the vali-
dated HLA*IMP:02 method [7,8]. In our sample, the
HIBAG results are similar or better. HIBAG also per-
formed well in an African American sample; reductions
in overall imputation accuracies compared to those
from European American samples are partially due to
sample sizes in the training set. When two-field allele

sensitivity estimates are compared by allele frequency,
our findings suggest that rare alleles are more suscep-
tible to poor imputation, even given large reference
panels. These findings agree with those of Leslie et al.
[7] that showed the sensitivity of two-field allele predic-
tion was related to occurrences of the allele in the
model training data. Further, in smaller reference panels
—such as those currently available for admixed popula-
tions—even relatively common alleles may be poorly
imputed. While these findings suggest that HLA allele
imputation accuracy in admixed populations could
benefit from increasing the number of reference haplo-
types, our results also suggest additional causes of low
imputation accuracy in African Americans.

When we used equivalent samples sizes and compared
models constructed on the sample of African Americans
from ACCESS to those from published HIBAG African
ancestry models, we found consistent increases in

Table 3 HIBAG model* two-field HLA allele imputation accuracy in the ACCESS African American gene-specific training
sets by posterior probability threshold of the most likely genotype call

DRB1 DQB1 DPB1
Posterior probability range N Accuracy N Accuracy N Accuracy
>0.10 163 89.8 188 97.6 249 86.3
>0.20 160 90.3 187 97.6 239 87.9
>0.30 149 92.2 184 97.8 213 90.6
>0.40 136 94.4 175 989 174 954
>0.50 13 95.8 166 99.1 147 98.0
>0.60 93 97.3 156 994 121 97.9
>0.70 70 98.6 142 99.3 87 97.1
>0.80 53 98.1 116 99.1 38 96.1
>0.90 28 96.4 74 99.3 13 96.2

Abbreviations: N denotes, count; Accuracy, imputation accuracy.

*The models trained on the subset of ACCESS African Americans with training samples selected at random (from a total of 325) to match the number of subjects
used to construct the published HIBAG African ancestry models: HLA-DRB1 (n = 161), HLA-DQBT1 (n = 137), and HLA-DPB1 (n =75).
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Table 4 HIBAG model* four-digit HLA allele prediction
accuracy in ACCESS African Americans differs by local
ancestry at HLA class Il genes

Gene West African ancestral allelest N Accuracy Pt
DRB1 2 240 929 0.005
1 78 80.8
0 10 80.0
DQB1 2 292 986 0.040
1 76 934
0 8 100.0
DPB1 2 376 896 8810
1 110 755
0 14 85.7

Abbreviations: N=count; ACC=classification accuracy; P=p-value from a Fishers
exact test.

*The models trained on the subset of ACCESS African Americans with training
samples selected at random (from a total of 325) to match the number of
subjects used to construct the published HIBAG African ancestry models: HLA-
DRB1 (n=161), HLA-DQB1 (n=137), and HLA-DPB1 (n=75).

tNumber of West African ancestral alleles at each gene estimated by the Local
Ancestry in Admixed Populations (LAMP) method.

$Test for difference in imputation accuracy proportions across individuals with
0, 1, or 2 West African Alleles at locus in question.

Table 5 Local ancestry differences in two-field HLA allele
imputation accuracy resolved by HIBAG models
containing equal numbers* of ancestral West African and
European chromosomes

Gene  West African ancestral allelest N Accuracy P
DRB1 2 91 885 0.12
1 75 813
0 9 944
Overall 175 85.7
DQB1 2 91 95.1 1.00
1 75 953
0 9 100.0
Overall 175 954
DPB1 2 91 89.0 0.92
1 75 89.6
0 9 944
Overall 175 90.6

Abbreviations: N denotes, count; Accuracy, imputation accuracy; P, p-value
from a Fishers exact test.

*150 individuals (300 chromosomes) from African American with two ancestral
West African alleles at each gene as estimated by LAMP and 150 individuals
from the ACCESS European American sample (i.e. 300 European
chromosomes). The test set for these models included the remaining 175
African Americans who were not a part of the 150 used to build the model.
TNumber of West African ancestral alleles at each gene estimated by the Local
Ancestry in Admixed Populations (LAMP) method.

$Test for difference in imputation accuracy proportions across individuals with
0, 1, or 2 West African alleles at each gene.
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imputation quality and accuracy from the ACCESS
models. One possible reason is SNP density in the
models. The HIBAG models were constructed using a
subset of SNPs overlapping across three different Illu-
mina GWAS platforms [16], whereas our models in-
cluded all the SNPs from only one platform. The
improvement in accuracy related to the density of SNPs
and completeness of genotyping (i.e. decreasing levels of
missing calls for genotyped SNPs following imputation)
is also supported by our results from different imput-
ation strategies.

Another source of improvement may be related to com-
plexity in the ancestral origins of individuals included in the
training samples. For example, the training samples in-
cluded in published HIBAG African ancestry models may
encompass sub-populations that differ from ACCESS
African Americans in their HLA allele frequency spectrum.
In addition to African Americans and Yoruba individuals
who were part of the International HapMap project and
originally genotyped for the HLA alleles by de Bakker et al.
[6], the HIBAG African ancestry sample included individ-
uals from South Africa. This population is not thought to
have contributed substantively to the genomes of present
day African Americans and may not be informative for
HLA imputation in this population. Further, our findings
suggest that consideration of local ancestry can aid in the
improvement of HLA allele imputation accuracy in
admixed populations, as training-set results for individuals
heterozygous for local West African ancestry were inferior
to those for homozygous individuals. An informed sam-
pling of ancestral haplotypes may be necessary to produce
high-quality predictions in the admixed population of
interest.

Based on our results that suggest denser SNP genotyping
may be related to improved imputation accuracy, these
findings suggest that accuracy could be improved in
admixed populations through direct HLA allele genotyping
in a large, geographically-diverse reference sample of indi-
viduals with complete sequencing of the broader MHC re-
gion, such as the 1KP [28]. Use of the near-complete
catalogue of SNPs in the model building process would
eliminate the need to account for genotyping platform.

Genetic association studies are one of the principal ap-
plications of GWAS SNP-based HLA imputation; in this
setting, accuracy and quality of imputation is directly re-
lated to power. When applying a posterior probability
threshold of 0.5, we found that imputing more variants
in the training set improved call rates (and thus the sam-
ple size) while maintaining high imputation accuracy.
The improvements in call rate were most dramatic for
the strategy that included targeted sequencing for HLA-
DRB1 and -DQBI, which is likely the result of direct
genotyping and subsequent imputation of the non-
synonymous polymorphisms that define the HLA alleles
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Table 6 The effect of adding imputed SNPs to the HIBAG HLA allele imputation accuracy in ACCESS African Americans

for HLA class Il genes

Gene Allele field Testing set
All PP >0.5
N Accuracy N Call rate  Accuracy
ACCESS Subset* - GWAS + 1000GP Imputed data® DRB1 One 164 954 149 909 97.0
Two 164 90.2 123 750 95.9
DQB1 One 188 99.2 185 984 99.5
Two 188 98.1 168 894 994
DPBI1t One 250 873 160 64.2 97.5
Two 250 91.8 151 60.6 97.0
ACCESS Subset* - GWAS + 1000GP + TargetSeq Imputed data® DRB1 One 164 94.8 147 89.6 97.0
Two 164 89.6 129 787 95.0
DQB1 One 188 99.2 186 98.9 99.2
Two 188 979 171 91.0 994

Abbreviations: PP denotes, posterior prediction probability; N, count; Accuracy, imputation accuracy.

*The models trained on the subset of ACCESS African Americans genotype data from ?GWAS + 1000 Genome project imputed data, GWAS + 1000 Genome
project + targeted sequencing imputed data (DRB7 and DQBT only) with training samples selected at random (from a total of 325) using to match the number of
subjects used to construct the published HIBAG African ancestry models: HLA-DRB1 (n=161), HLA-DQB1 (n=137), and HLA-DPB1 (n=75).

tOne- and two-field estimates will be very similar for HLA-DPBT as the first field uniquely identifies the two-field alleles, with the exceptions of *02:01 and *0202,

and *04:01 and *04:02.

at two-field resolutions. While the gains in call rate may
seem negligible, when prediction is used to test the asso-
ciation of these alleles with a trait of interest, even mod-
est increases in sample size may dramatically impact
statistical power.

For applications other than genetic association mapping,
additional metrics may be more appropriate. Clinical phar-
macogenetic applications, such as the identification of pa-
tients likely to experience HLA-associated adverse drug
reactions (e.g abacavir hypersensitivity in carriers of
HLA-B*57:01 [29]), may benefit from a metric that can ac-
count for uncertainty in predictions as well as differentiate
between correct and incorrect classification. In such cases,
the generalized Bayesian information reward applied to
machine learning classification methods [30] may be a so-
lution. This method compares the natural logarithm likeli-
hood of the model (based on posterior probability of the
observed genotypes estimated from HIBAG) to a null
model (expected genotype frequencies in the population,
assuming Hardy-Weinberg Equilibrium). For our pur-
poses, however, imputation accuracy is a valid method for
evaluating the relative strengths and weaknesses of differ-
ent imputation modeling strategies.

HLA allele prediction in non-European populations
has not been widely reported on in the literature, likely
due to lack of methods and references panels. Recently
published allele prediction results for HLA—-DRBI and
—-DQBI in the Wolita population of southern Ethiopia
[31] used a multi-allelic prediction model [11] that was
accurate at the one-field level (>85%) but less so at the
two-field level (<32%). These models were constructed

using just 10 and 19 SNPs for —DRBI and —-DQBI re-
spectively, which may explain the low two-field accuracy
[32]. Such results demonstrate the need for larger refer-
ence panels of HLA alleles and dense SNP genotyping in
the HLA region for non-European populations.

The HIBAG approach has several practical advantages
over other established HLA imputation methods. First,
researchers can build models for prediction using their
own samples, particularly in non-European populations
for whom a reference panel has not been established. In
African Americans, ancestral contributions are primarily
of West African and European origin; admixed popula-
tions with greater ancestral heterogeneity (e.g. Latinos
[33-38]) likely require additional population-specific ref-
erence panels to improve imputation accuracy. Further,
HIBAG uses the open-source R statistical programming
language. Models produced by researchers can be shared
without proprietary software or the transfer of protected
health information such as individual genotype data.
The African American HLA class II imputation models
produced for this study are available on request.

A limitation of this study is our use of HLA typing
data that is over a decade old as our gold standard to es-
timate imputation accuracy. We recognize these data are
incomplete in terms of the current compendium of HLA
class II alleles, but it should be noted that even today’s
high-resolution HLA typing results in ambiguous
allele and genotype calls (ie. multiple distinct alleles
consistent with the same raw sequence). While the un-
detected or misclassified alleles in our HLA typing are
not strictly quantifiable, our estimates of imputation
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accuracy should be conservative, since HLA typing mis-
classification will likely decrease our estimate of imput-
ation accuracy. Despite the limitations of our HLA
typing data, our findings are similar to the ethnicity-
specific accuracy estimates reported in the HIBAG [16]
and HLA*IMP:02 [13] manuscripts that both used allele
typing based on more recent versions if the IMGT/HLA
Database. Due to recent gains in knowledge regarding
the differences in HLA allele frequencies worldwide
[39-42], larger representative reference panels coupled
with current HLA allele typing should lead to improve-
ments in imputation of lower frequency alleles in
admixed populations such as African Americans.

Conclusions

In conclusion, our study suggests that the newly developed
HIBAG approach is appropriate for use of HLA class II im-
putation in both European and admixed non-European
populations. Imputation quality is closely associated with
HLA allele frequency, training sample size, SNP density,
and how well the training sample represents the test sample
in ancestral origin. The latter point is especially true for
admixed populations, where our findings suggest that ac-
counting for local ancestry in the selection of the training
samples will be beneficial. Additionally, applying next-
generation targeted sequencing data, when available, may
boost both HIBAG imputation accuracy and certainty in
modest samples sizes of admixed individuals. We expect
that these results are generalizable to other African
admixed populations and should be useful in any study
seeking to better characterize the role of HLA class II
alleles.

Methods

Consent and ethics statement

As stated above, data for this study was derived from
four prior studies [22-25]. For each of these studies, par-
ticipants gave written informed consent to allow their
research material to be used in future genetic studies.
Study protocols were approved by the institutional re-
view board of each study site (Beth Israel Deaconess
Medical Center, Boston, MA; Cleveland Clinic,
Cleveland, OH; Emory Healthcare, Atlanta, GA; Georgetown
University Medical System, Washington, DC; HFHS,
Detroit, ML Johns Hopkins Hospital, Baltimore, MD;
Medical University of South Carolina, Charleston, SC;
Mount Sinai Hospital, New York, NY; National Jewish
Hospital, Denver, CO; University of Cincinnati Hospital,
Cincinnati, OH; University of Iowa Health Care, Iowa
City, IA; University of North Carolina Medical Center,
Chapel Hill, NC; University of Pennsylvania Health System,
Philadelphia, PA).
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Genotyping

Details of the molecular allele typing are reported in
Rossman et al. [18]. Briefly, HLA typing was conducted
over exon 2 for the class II genes —DRBI, -DQBI, and
—DPBI1. Low (one-field) to intermediate (two-field) reso-
lution typing was performed with sequence-specific
oligonucleotide probes available through Orchid Diag-
nostics [18], in the context of the version 1.13 release of
the IMGT/HLA 2002 database. Genotyping was per-
formed using the Illumina HumanOmnil-Quad [17].
SNPs meeting the following quality control criteria were
included: well-defined cluster plots by visual inspection;
call rate greater than 90%; minor allele frequencies
greater than 0.001; and p-value greater than 0.001 for
Hardy-Weinberg proportion tests in controls.

Targeted resequencing, variant detection, and quality
control

Purified genomic DNA from 480 African American individ-
uals (187 sarcoidosis cases, 293 controls) was prepared for
sequencing using the Illumina Paired-End DNA Sample
Preparation Kit (San Diego, CA). The Illumina TruSeq
technology with a custom-designed bait pool was used to
enrich captured regions (including HLA-DRB1 and
—DQBI). Resequencing and generation of fastq sequencing
reads were performed on the Illumina HiSeq2000 platform
with Illumina Pipeline software (version 1.7). After remov-
ing duplicates, alignment to the Human Reference Genome
(build hg19) was performed with BWA alignment software
(version 0.5.9) [43]. Realignment around insertion/deletion
sites, base quality score recalibration, and variation detec-
tion were carried out using GATK software (version 1.0)
[44,45]. Variants displaying any of the following were re-
moved: quality score <30; by-depth score <5; strand bias
score > ~0.1; homopolymer runs >5 bases; or variants clus-
tering within 10 base pairs. Average sequence coverage was
75x. Three samples were removed because of low genotype
call rates (<95%). Variant phasing was performed using
BEAGLE (version 3.3) [12]; PLINK (version 1.07) [46]; and
IMPUTE2 [47]. File formatting was performed with
VCFtools (version 0.1.3) [48]. IMPUTE2 [47] was used to
impute variants spanning chromosome 6p21, with targeted
sequencing data and the 1KG Phase I integrated variant set
as reference panels. Variants with low imputation accuracy
(information measure <0.5; average maximum posterior
genotype call probability <0.9) or failing to meet quality-
control standards (described above) were excluded. Im-
putation was performed using the 1KG data over a region
on chromosome 6 starting at 31,842,535 bp and extending
to 33,720,220 bp, which included HLA-DRBI, -DQBI,
and —DPBI; targeted sequencing data was available for the
region starting at 31,842,535 bp and extending to
32,720,220 bp, which included HLA-DRBI and -DQBI
only.
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Statistical analysis

For European American subjects, HIBAG [16] was com-
pared to the HLA*IMP:02 [7,8,13], based on the latest
version of each method with a reference population ap-
propriate for African Americans. Predictions for African
Americans were also compared with those from BEA-
GLE [12], which allows for simultaneous haplotype
phasing and imputation of genetic markers with two or
more alleles.

As part of the initiall HIBAG method development,
ancestry-specific prediction models were evaluated in inde-
pendent discovery and validation samples from individuals
of primarily European, African, east Asian, and Latino an-
cestry for HLA-A, -B, -C , -DPB1, -DQA1, -DQBI, and
—DRBI genes. We used these existing models to evaluate
imputation accuracy in the subset of ACCESS African
Americans and European Americans with both GWAS and
HLA allele typing available for —DPBI, -DQBI, and
—DRBI. Imputation accuracy was based on the overall clas-
sification rate for each ethnicity/gene combination, as well
as for the individual alleles at both one- and two-field reso-
lution. It should be noted that the one- and two-field reso-
lution estimates will be very similar for HLA-DPBI as the
first field uniquely identifies the two-field alleles with the
exceptions of *02:01 and *02:02, and *04:01 and *04:02 [49].
These estimates were determined first on all HIBAG calls,
regardless of the posterior probability of the genotype pre-
diction, and then on the subset of predictions with >50%
posterior probability. Many additional alleles have been
added to the IMGT/HLA database in the years since the
HLA data was generated by Rossman et al. [18], and some
of these are identical over exon 2 with the alleles from the
original genotyping. These ambiguous alleles are catalogued
as part of the IMGT/HLA database; we used information
from the 2014 version (3.15.0) to resolve predicted allele
differences between the prebuilt HIBAG and HLA*IMP:02
models in comparison with our HLA genotype data.

Models were also constructed from random samples
of African American individuals from the ACCESS sam-
ple; sample sizes were selected to match each of the
gene-specific published HIBAG African ancestry models
(n =161 for HLA-DRBI; n =137 for HLA-DQBI; n =
75 for HLA-DPBI). Accuracy estimates from published
HIBAG models were compared to those from samples
not included in the model training process. These
ACCESS African American models were constructed
using genotype data from variants located 500 kb away
from the largest mRNA transcript for each gene in the
NCBI RefSeq database, resulting in 3,144 (HLA-DRBI),
3,417 (-DQBI), and 2,473 (-DPBI1) markers. For the
ACCESS HIBAG models, we report the SNPs used in
each HIBAG model in Additional file 5 and Additional
file 6, and as multiple classifiers are included in each
model, the count of the number of classifiers each SNP
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appeared in is also included. Imputation based on 1KG
and targeted sequencing data added an additional 10,935
variants for HLA-DRB1 (9,950 1KG; 985 targeted se-
quencing), 11,376 variants for HLA-DQB1 (10,475 1KG;
901 targeted sequencing), and 8,889 for HLA-DPBI
(8,889 1KG).

To evaluate the effect of local West African ancestry
on imputation accuracy, we estimated local ancestry (0,
1, or 2 alleles of West African origin) at each GWAS
marker across the MHC locus using the Local Ancestry
in adMixed Populations method [20,50]. Ancestral Euro-
pean and West African allele frequencies were obtained
from HapMap catalogs [51] made available through Illu-
mina iControl. For each class II gene, classification ac-
curacy was estimated for each local ancestry state, and a
Fisher’s exact test was used to test for differences in clas-
sification accuracy (assuming type-1 error of 0.05).

Additional files

Additional file 1: “HIBAG European Ancesty allele prediction
measures for ACCESS European Americans”.

Additional file 2: “HIBAG African Ancesty allele prediction
measures for ACCESS African Americans”.

Additional file 3: “ACCESS African American HIBAG model allele
prediction measures for ACCESS African Americans”.

Additional file 4: “Allele prediction measures from ACCESS HIBAG
models composed of equal numbers (n = 150) of ancestral West
African and European chromosomes”.

Additional file 5: “The SNPs HIBAG utilized in the ACCESS
gene-specific models with results displayed in Table 2”.
Additional file 6: “The SNPs HIBAG utilized in the gene-specific

ACCESS local ancestry-balanced models with results displayed in
Table 5”.
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