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Abstract

Background: The detection of epistasis among genetic markers is of great interest in genome-wide association
studies (GWAS). In recent years, much research has been devoted to find disease-associated epistasis in GWAS.
However, due to the high computational cost involved, most methods focus on specific epistasis models, making the
potential loss of power when the underlying epistasis models are not examined in these analyses.

Results: In this work, we propose a computational efficient approach based on complete enumeration of two-locus
epistasis models. This approach uses a two-stage (screening and testing) search strategy and guarantees the
enumeration of all epistasis patterns. The implementation is done on graphic processing units (GPU), which can finish
the analysis on a GWAS data (with around 5, 000 subjects and around 350, 000 markers) within two hours. Source code
is available at http://bioinformatics.ust.hk/BOOST.html#GBOOST.

Conclusions: This work demonstrates that the complete compositional epistasis detection is computationally
feasible in GWAS.
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Background
The concept of epistasis was first introduced in 1909 by
Bateson and Mendel [1] to describe the masking effect
of one locus over another locus. Today, it is broadly
referred to as joint effects across different genes on phe-
notypes. The identifications of epistasis between two loci
can offer insights on the complex biological pathways
underlying human diseases [2]. With genome-wide geno-
typing microarrays, it is possible to evaluate epistasis at
the genomic level through the analysis of genome-wide
association studies (GWAS) where hundreds or thou-
sands of subjects are genotyped at up to millions of
single nuclear polymorphisms (SNPs). Because epistasis
can involve markers with or without significant marginal
effects [3-5], a comprehensive investigation of epistasis is
a necessary step following the traditional single marker
analysis in finding susceptibility markers of complex dis-
eases. However, hundreds of billions of SNP pairs need to
be considered if an exhaustive search is conducted and the
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significant computational cost has restrained researchers
from conducting a full investigation of epistasis in GWAS.
Researchers generally distinguish three types of epis-

tasis: functional epistasis, statistical epistasis, and com-
positional epistasis [6,7]. Functional epistasis indicates
molecular interactions in the biological context. Statisti-
cal epistasis [8] defines the joint behavior of two loci as
the statistical deviation from their additive effects. Com-
positional epistasis maintains the original concepts given
by Bateson and Mendel [1], which can be interpreted as
two-locus epistasis models (see details in the Methods
Section).
Estimating statistical epistasis between two loci requires

the estimation of their additive main effects, which
involves iterations (see details in the Methods Section).
Because hundreds of billions of SNP pairs need to be mea-
sured for epistasis in a standard GWAS, any extra time
spent on analyzing each pair will significantly increase
the computational cost. To tackle this computational
problem, many earlier methods [9-12] used a heuristic
procedure that first removes all significant loci based on
single-locus tests and then computes the statistical epis-
tasis of two loci with the sum of individual effects and
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interaction effects. Recently, [3] developed a non-iterative
method to approximate the likelihood ratio statistic,
which make the detection of pure statistical epistasis (only
the interaction effect) computationally feasible in GWAS.
However, all the methods mentioned above may suffer
from the issue where the underlying degree of freedom is
lower than the one assumed in their statistical tests. This
issue is mainly caused by the low minor allele frequency
(MAF) of loci, which leads to the sparse contingency table
in the test. To solve this issue, one solution is to test the
compositional epistasis.
It has been argued that compositional epistasis is closer

to the biological understanding of gene-gene interactions
than statistical epistasis [6]. However, for each pair of loci,
there are 512 epistatic patterns defined by compositional
epistasis. There is a heavy computational burden in ana-
lyzing GWAS data if all these patterns are considered. To
our knowledge, there is no method to find compositional
epistasis in GWAS data.
In this article, we propose a fast approach to enable

exhaustive search of compositional epistasis in GWAS.
The proposed approach uses a two-stage (screening and
testing) search strategy. In the screening stage, only a
limited number of epistatic patterns are evaluated for
each pair of SNPs and those passing a specified thresh-
old are selected. All non-significant pairs are filtered out
and those pairs, which are significant in the test of com-
positional epistasis, will be kept in the remaining set.
In the testing stage, we evaluate all epistatic patterns
for each remaining pair. The implementation is done on
graphic processing units (GPU), where the analysis of
one GWAS data set (with around 5, 000 subjects and
around 350, 000 markers) can be finished within a few
hours.

Methods
SNPs are mostly bi-allelic genetic markers. In general, we
use capital letters (e.g., A, B, · · · ) to denote the major
alleles and lowercase letters (e.g., a, b, · · · ) to denote the
minor alleles. For each SNP, there are three genotypes: the
homozygous reference genotype (AA), the heterozygous
genotype (Aa), and the homozygous variant genotype (aa).
The popular way of coding the genotype is to use {1, 2, 3}
to represent {AA,Aa, aa}, respectively.

Epistasis tests
The statistical epistasis and the compositional epistasis
are two major types of epistasis that have been consid-
ered in the literature. The statistical epistasis is defined
as the statistical deviation from the additive effects of
two loci on the phenotype [8]. One popular way to test
the statistical epistasis is to use the likelihood ratio test.
Given two SNPs Xp and Xq, there are three steps in such
a procedure:

• Fit the logistic regression model for only individual
effect terms and obtain the MLE L̂M

log
P(Y = 1|Xp,Xq)

P(Y = 2|Xp,Xq)
= β0 + β

Xp
i + β

Xq
j . (1)

• Fit the logistic regression model for both individual
effect terms and interaction terms and obtain the
MLE L̂F

log
P(Y = 1|Xp,Xq)

P(Y = 2|Xp,Xq)
= β0 + β

Xp
i + β

Xq
j + β

XpXq
ij .

(2)

• Conduct the χ2 test on 2 · (L̂F − L̂M) with df = 4.

We call this test as interaction test. However, estimat-
ing the MLE L̂M involves iterations (the estimation of the
MLE L̂F has the closed-form solution), which is computa-
tionally very expensive to evaluate hundreds of billions of
pairs in GWAS. Therefore, many methods use a different
procedure to estimate the epistasis.

• Remove all significant SNPs based on the single-locus
test with a given threshold.

• For every pair (Xp,Xq) in the remaining SNPs,

– Compute the log-likelihoods L∅ of the null
logistic regression model, defined as

log
p

1 − p
= β0. (3)

– Compute the log-likelihoods LF of the full
logistic regression model in Eq.(2).

– Conduct χ2 tests on 2 · (LF − L∅) with 8
degrees of freedom.

We call the test with 8 degrees of freedom as full asso-
ciation test. In the full association test, a threshold is
required to filter out the significant SNPs. Otherwise, it
will produce many false epistasis involving one marginally
significant SNP with an irrelevant one.
The full association test is totally different from the

interaction test. It measures the sum of individual effects
and interaction effects and thus its degrees of freedom is
8 while the interaction test only only measures the inter-
action effect with 4 degrees of freedom. Both tests have
their pros and cons. In the full association test, it is very
difficult to decide the threshold to filter out the signifi-
cant SNPs. For a stringent threshold, many SNPs below
the threshold may produce strong associations in the full
model with a little interaction effect. For a loose thresh-
old, some SNPs involved in true epistasis may be filtered
out. In the interaction test, those epistasis involving SNPs
having medium individual effects and meanwhile having
medium interaction effect will be ignored. Most impor-
tantly, they all suffer from the issue where the underlying
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degree of freedom is lower than the one assumed in their
statistical tests, which is caused by the low MAF. The rel-
atively robust solution to tackle this issue is to use the test
of compositional epistasis.

The definition of two-locus compositional epistasis
A two-locus compositional epistasis can be defined by
a 3-by-3 penetrance table (see Table 1). The columns
represent the three genotypes of the first SNP and the
rows represents the three genotypes of the second SNP.
The entry pij in this table is the probability of develop-
ing a disease with the corresponding joint genotype at
the two SNPs. One common approach of defining dis-
ease models is to restrict the value of pij to two levels,
e.g., 0 or 1, which corresponds low risk or high risk.
With this restriction, the total number of possible epis-
tasis patterns is 29 = 512. Each model can be associ-
ated with a unique label which is defined as the decimal
number of (p11p12p13p21p22p23p31p32p33)2. For example,
Table 2 gives the definition of popular dominant epis-
tasis model. The label of the dominant epistasis model
is (000011011)2 = 27. Because of the symmetry in the
model definition, the number of non-redundant epistasis
models is less than 512. In [13], it was shown that there
are 51 unique epistatic patterns, including the recessive
model (M1) and some complicated patterns which may be
difficult to interpret biologically (e.g., M170).
The trivial pij in Table 1 will decrease the power of both

the full association test and the interaction test. The com-
positional epistasis can solve this issue by reducing the
3 × 3 penetrance table into the 2 × 2 risk table according
to the model definition.

The test of two-locus compositional epistasis
To identify the compositional epistasis for SNPi and SNPj,
a contingency table of these two SNPs and the class label
Y should be collected first (See Table 3). The size of the
contingency table is 3 × 3 × 2. In Table 3, nijk denotes
the observed count in the cell (i, j, k). The total number of
samples is n = ∑

i,j,k ni,j,k .
Next, for a particular compositional epistasis model

defined by a penetrance table, Table 3 can be converted
into a 2 × 2 risk table (See Table 4). For example, for the
dominant epistasis model defined in Table 2, the risk table
is defined with a = n110 + n120 + n130 + n210 + n310, b =

Table 1 Two locus penetrance table

SNP2 = 1 SNP2 = 2 SNP2 = 3

SNP1 = 1 p11 p12 p13

SNP1 = 2 p21 p22 p23

SNP1 = 3 p31 p32 p33

The element pij is the probability of developing a disease with the
corresponding joint genotype at the two SNPs.

Table 2 The dominant epistasis model

SNP2 = 1 SNP2 = 2 SNP2 = 3

SNP1 = 1 0 0 0

SNP1 = 2 0 1 1

SNP1 = 3 0 1 1

Its unique label is 27 = (000011011)2 .

n220+n230+n320+n330, c = n111+n121+n131+n211+n311,
and d = n221 + n231 + n321 + n331. The risk table allows
us to compare the proportion of samples in cases and con-
trols with the assumption that the given epistasis model is
true. If the proportions of samples in different rows vary
significantly between columns, we draw a conclusion that
the risk factors (genotypes) and the disease traits (class
labels) are not independent for the given epistasis model.
The significance of the difference between the two pro-
portions can be assessed with Pearson’s chi-squared test.
The test statistic is defined in Eq.(4) with the degree of
freedom df = 1.

X2
df=1 = (ad − bc)2(a + b + c + d)

(a + b)(c + d)(a + c)(b + d)
(4)

For SNPi and SNPj and each of 51 possible compo-
sitional epistasis models, the chi-square test statistic is
calculated using Eq.(4). Those models with test statistics
passing a given significance threshold will be considered
as the possible interaction patterns of SNPi and SNPj.

Compositional epistasis detection in GWAS
In a typical GWAS, there are hundreds of billions of
pairs of SNPs to be tested. It is computationally expensive
to evaluate every possible compositional epistasis for all
pairs of SNPs. However, it is widely believed that among
the very large number of SNP pairs, only a small portion
may be relevant with the disease trait. Therefore, it is a
huge waste to test all SNP pairs to find significant compo-
sitional epistasis. If we can quickly compute the best fit of
compositional epistasis model given the observed data for
a SNP pair, we can first remove those pairs unlikely to be
significant and then focus on evaluating all possible com-
positional epistasis model for the remaining SNP pairs.
By doing so, the entire process will be substantially sped
up. The approach in selecting the best splits for classifica-
tion trees with categorical variables provides a solution to
identify the compositional epistasis model best fitting the
observe data.
In classification trees, leaves represent class labels, inter-

nal nodes represent features and branches represent con-
junctions of features that induce class labels. In this work,
class labels are phenotypes and features are genotypes.
To construct a binary classification tree, a typical method
iteratively searches all features for the best split. If the fea-
ture is categorical with M items, the number of all the
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Table 3 The genotype counts in controls (Y = 0) and cases (Y = 1)
Y = 0 SNPj = 1 SNPj = 2 SNPj = 3 Y = 1 SNPj = 1 SNPj = 2 SNPj = 3

SNPi = 1 n110 n120 n130 SNPi = 1 n111 n121 n131

SNPi = 2 n210 n220 n230 SNPi = 2 n211 n221 n231

SNPi = 3 n310 n320 n330 SNPi = 3 n311 n321 n331

possible splits is 2M−1. However, for a two-class classifi-
cation problem, [14] proved the following theorem that
reduces the search complexity into O(M).

Theorem 1. Suppose there is a categorical variable X
taking categorical values from {1, 2, · · · ,M} in two classes,
class Y = 0 and class Y = 1. The categories are arranged
in the ascending order of P(Y = 1|X = i). Then one of
M − 1 splits, L = {1, · · · ,m} and R = {m + 1, · · · ,M}
where 1 ≤ m < M, minimize the misclassification rate.

Theorem 1 only holds for the two-class problem. Some
extensions to the multi-class problem have been pro-
posed on the basis of Theorem 1 but they are only locally
optimal.
In the test of compositional epistasis, we can re-arrange

Table 3 into a 2 × 9 sorted ratio table (See Table 5). Then
one of the 8 splits, L = {1, · · · , i} and R = {i+1, · · · , 9}will
lead to the minimummisclassification error. The intuition
is straightforward. The best split should put all those cat-
egories leading to high probabilities of being in Y = 0 into
one side and the categories leading to high probabilities
in Y = 1 into another side. The connection between the
misclassification rate of a split and the chi-square statistic
of the corresponding 2× 2 contingency tables is also sim-
ple. If the chi-square statistic of this table is small, then the
risk factor, i.e. SNP, gives little information about the class
because they are nearly independent. If the chi-square
statistic is large, then the risk factor is very informative
on class labels and certainly serves as a good predictor. In
[15], it was shown that the split that leads to the minimum
misclassification error also gives rise to the maximum of
chi-square statistic of 2 × 2 contingency tables.
Based on Theorem 1, we propose a two-stage (screening

and testing) searchmethod to find compositional epistasis
in GWAS data.

• In the screening stage, the method evaluates all SNP
pairs by checking 8 splits to find an upper bound and
remove pairs with the upper bound less than τ . The

Table 4 Risk table for testing the fit of an epistasis model

Low risk High risk

Control (Y = 0) a b

Case (Y = 1) c d

threshold τ corresponds to the significant threshold
(with the Bonferroni correction) specified by users.
Because the Bonferroni correction tends to be
conservative, a smaller threshold can be used to put
more SNP pairs into the testing stage. We set τ = 20
in our method, which corresponds to the unadjusted
p-value 7.744 × 10−6, which is a relatively liberal
significance level for a genome-wide study.

• In the testing stage, the method checks each selected
pair using all non-redundant compositional epistasis
models. The p value for each model tested is adjusted
by the Bonferroni correction, with the number of
tests L(L − 1)/2 where L is the total number of SNPs
before screening.

GPU implementation
To accelerate the analysis process in GWAS, the proposed
method is implemented using the parallel computation
of graphical processing units (GPUs) (http://docs.nvidia.
com/cuda/). The development of GPUs enables modern
display cards to have hundreds of core at a low price,
which can be easily set up for the large-scale data analy-
sis. To achieve a good speed-up, our GPU implementation
maximizes the coalesced memory access and makes full
use of the texture memory. The coalesced memory access
groups 16 consecutive global memory transactions into a
single memory transaction. It is the key technique to save
memory access time in CUDA-enabled GPU. The texture
memory is used for tasks with random memory access
to improve the memory access speed. Our GPU imple-
mentation chooses the bit data structure and then fits the
entire data into the GPU memory, which minimizes the
overhead between the device and the host. The kernel pro-
gram in our GPU implementation is designed with only a
few registers being used and allows for a large number of
concurrent threads. Without using GPU computing, our
method needs around 120 hours to finish the genome-
wide compositional epistasis analysis of a typical data set
(with around 5, 000 subjects and around 350, 000markers)
on a single workstation. The GPU enabled implementa-
tion can finish the same analysis in two hours.

Results
The compositional epistasis and statistical epistasis are
two most commonly considered epistasis. In general,
there are two types of statistical epistasis, named

http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
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Table 5 The sorted ratio table for finding themaximum of chi-square statistics in the test of compositional epistasis

Y = 0 s1 s2 s3 s4 s5 s6 s7 s8 s9

Y = 1 t1 t2 t3 t4 t5 t6 t7 t8 t9

Ratio r1 r2 r3 r4 r5 r6 r7 r8 r9

In this table, ri = si
si+ti

and r1 ≤ · · · ≤ ri ≤ · · · ≤ r9 .

‘Interaction’ and ‘Full Association’. In this section, we
will evaluate these three types of epistasis using both
simulated data and real data. To compare the statistical
power among them, we have another issue of multiple
test correction to consider. For each pair of SNPs, both
the interaction test and the full association test compute
one statistic and conduct the hypothesis test with the
corresponding degrees of freedom. In the test of composi-
tional epistasis, each SNP pair is associated with multiple
epistatic patterns and thus with multiple statistics. In
our comparison experiments, we choose the maximum
one. Since we need to check 8 patterns to get the maxi-
mum statistic (see Theorem 1), we need to multiply the
computed P-value with 8.

Simulation 1: epistasis with main effects
Data generation
In this experiment, we select four epistasis models whose
odds tables are given in Table 6. Please see [3] for the
detailed description of these four models. For each model,
we generate genotype data with the assumption that the
SNPs satisfy Hardy Weinberg equilibrium in the general
population with a given prevalence. We set the MAFs of
disease associated SNPs as 0.1, 0.2, and 0.4. We generate
the MAFs of un-associated SNPs uniformly from [0.05,
0.5]. The parameters of each model for each setting are
calculated based on the pre-specified disease prevalence
p(D) and the genetic heritability h2. The disease preva-
lence p(D) and genetic heritability h2 are computed as

p(D) =
∑

i
p(D|Gi)p(Gi), (5)

h2 =
∑

i(p(D|Gi) − p(D))2p(Gi)

p(D)(1 − p(D))
, (6)

where p(D|Gi) denote the probability of an individual
being affected given its genotype combination Gi (i.e., the
penetrance of Gi). Let p(D̄|Gi) denote the probability of
an individual not being affected given its genotypeGi. The
odds of a disease for genotype Gi is defined as

ODDGi = p(D|Gi)

p(D̄|Gi)
= p(D|Gi)

1 − p(D|Gi)
. (7)

Then the penetrance p(D|Gi) of the genotype Gi can be
calculated using

p(D|Gi) = ODDGi

1 + ODDGi
. (8)

In our simulation, the prevalence p(D) and the heri-
tability h2 are controlled by the parameters α and θ (see
Table 6). We first specify the disease prevalence p(D),
genetic heritability h2, and then numerically solve the
parameters (α and θ ) based on Eq.(5-8). For example,
when p(D) = 0.1 and h2 = 0.03 in model 1, we have
α = 0.1 and θ = 3.45 for MAF = 0.1. We simulate
100 data sets under each setting for each disease model.
Each data set contains 1,000 SNPs. To take sample sizes
into consideration, we generate 800 and 1,600 samples
with the balanced design. Figure 1 provides the analy-
sis of variance of the generated data. The total variance
of disease traits is decomposed into two parts: the vari-
ance explained by individual main effects and the variance
explained by interactions, i.e. epistasis.

Performance comparison
The performance comparison of three tests is provided
in Figure 2 with the significance thresholds selected as
0.1, 0.2 and 0.3 after the Bonferroni correction. It exactly
matches the analysis of variance (ANOVA) of the four
disease models. It is not surprising to see that the test

Table 6 The odds tables for four epistasis models

model 1 BB Bb bb model 2 BB Bb bb

AA α α α AA α α(1 + θ) α(1 + θ)

Aa α α(1 + θ) α(1 + θ)2 Aa α(1 + θ) α α

aa α α(1 + θ)2 α(1 + θ)4 aa α(1 + θ) α α

model 3 BB Bb bb model 4 BB Bb bb

AA α α α(1 + θ) AA α α(1 + θ) α

Aa α α(1 + θ) α Aa α(1 + θ) α α(1 + θ)

aa α(1 + θ) α α aa α α(1 + θ) α

The parameters α and θ control the prevalence p(D) (Eq.(5)) and the heritability h2 (Eq.(6)).
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Figure 1 Variance composition in the different epistasis models. The total variance of disease traits is decomposed into two parts: the variance
explained by marginal effects and the variance explained by interactions.

of compositional epistasis and the test of full association
outperform the test of interaction because most mod-
els display noticeable main effects. Specifically, when the
MAF is high, which indicates that all the pij in Table 1 are
non-trivial, the test of compositional epistasis and the test
of full association perform equally well. However, when
the MAF is low, the test of interaction and the test of full
association perform poorly while the test of compositional
epistasis performs reasonably well. For all the models, the
test of compositional epistasis has a higher power than the
other two tests. We can also see that the sample size plays
an important role for all methods. The power increases
significantly when the sample size increases from n =
800 to 1600. In general, the test of interaction’ has the
good performance in epistasis models in which marginal
effects of SNPs are trivial. The test of full association has
its advantage in epistasis models that own both marginal
effects and interaction effect. The test of compositional
epistasis has high power in the situation that a sparse

contingency table is involved in the epistasis test due to
the low MAF of loci.

Simulation 2: epistasis without main effects
This type of epistasis demonstrates weak main effects, but
strong interaction effect. Finding such type of epistasis
is a challenging task. It is the advantage of the inter-
action test to detect such type of epistasis. We use the
commonly used data sets from the Dartmouth Medical
School in this experiment. The web-site, http://discovery.
dartmouth.edu/epistatic data, provides 70 models, com-
posed of combinations of the following parameter values:
(1) two MAF settings of 0.2 and 0.4; (2) six heritabil-
ity settings of 0.4, 0.3, 0.2, 0.1, 0.05 and 0.025. For each
model, the statistical power is evaluated under different
sample sizes, including 400, 800 and 1600, where there
are equal numbers of cases and controls. For each set-
ting, 100 data sets are generated. Each data set contains
1000 SNPs. Figure 3 summarizes the comparison results

http://discovery.dartmouth.edu/epistatic_data
http://discovery.dartmouth.edu/epistatic_data
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Figure 2 The performance comparison of three epistasis tests. The significance thresholds are selected as 0.1, 0.2 and 0.3 after the Bonferroni
correction.

for the 70 models categorized with the heritability. It can
be observed that for epistasis without main effects, the
test of compositional epistasis and the test of interaction
perform equally well.

Simulation 3: type-1 error rate
To show the type I errors of our method, we conduct the
following null simulation. We generate 100 null data sets.
Each data set contains 2,000 SNPs and 2,000 samples. All
SNPs are generated independently with MAFs uniformly
distributed in [ 0.05, 0.5]. The result is shown in Figure 4.
It can be seen that the type I errors of our method is close
to the nominal level.

Experiments on seven data sets fromWTCCC
The Wellcome Trust Case Control Consortium
(WTCCC) is a collaboration of many British research
groups. In the first phase, the WTCCC has examined
the genetic signals (500K SNPs) of seven common
human diseases: bipolar disorder (BD), coronary artery

disease (CAD), Crohn’s disease (CD), hypertension (HT),
rheumatoid arthritis (RA), type 1 diabetes (T1D), and
type 2 diabetes (T2D) (14,000 cases in total and 3,000
shared controls). Before we analyze these data sets, we
first apply a similar quality control procedure as suggested
in (WTCCC, 2007) to pre-process the data. Next we
filter out those SNPs with significant individual effects.
The threshold is chosen as p = 3.059 × 10−7, which is
equivalent with pc = 0.10 after the Bonferroni correction.
The number of remaining SNPs is roughly 350,000 for
each disease. The results from the three epistasis tests are
reported in Table 7.

T1D
For T1D, all identified SNP pairs by three epistasis
tests are located in the major histocompatibility com-
plex (MHC) regions. The MHC region in chromosome 6
has long been comprehensively studied for many decades
because its high diversity and significance in infection,
inflammation, autoimmunity, and transplant medicine
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Figure 3 The power comparison between the compositional epistasis (CE) and the interaction (IA) in models without main effects.
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Figure 4 The type-I error rates in null simulation.

Table 7 The number of SNP pairs identified from theWTCCC data sets of seven diseases under different tests

BD CAD CD HT RA T1D T2D

Compositional Epistasis 0 0 17 0 47 234 3

Interaction 0 0 1 0 0 317 0

Full Association 0 0 0 0 10 346 0
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Figure 5 The distributions of SNP pairs among three epistasis tests in T1D.

[16]. The recent study conducted by theWTCCC [17] has
shown that T1D are strongly associated with the MHC
region via single-locus association mapping. The epista-
sis analysis provides extra evidence for the association
study. Please note that the SNPs involved in the identi-
fied SNP pairs do not display significant individual effects

and thus can not be reported by the single-locus test. The
distributions of SNP pairs among three epistasis tests in
T1D are visualized in Figure 5. A further analysis reveals
that 44 percentage of the identified SNPs pairs possess an
XOR pattern (M78). The top panel of Figure 6 provides
all identified compositional epistasis patterns in T1D. This
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Figure 6 Compositional epistasis patterns in T1D and RA.
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is a new finding and may provide some new insights in
studying the causes of T1D.

RA
For RA, the test of compositional epistasis reports 47
pairs, which includes the 10 pairs reported by the test of
full association. The test of interaction does not report any
significant pairs. A careful inspection of these pairs reveals
that the epistatic effect of these pairs consists of partial
individual effects and partial interaction effects. Among
47 reported pairs, 43 pairs involve SNP rs2107191 and
the paired SNPs are all located in a very gene-rich region
(the genome location is from 29, 778, 109 to 30, 363, 351).
There are about 31 pairs involving SNP rs2107191 dis-
playing a recessive-interference pattern (M2) [13]. The
SNP rs2107191 is located very closely with gene OR2H1,
which has been reported as a susceptibility locus for RA
[18]. The bottom panel of Figure 6 provides all iden-
tified compositional epistasis patterns in RA. It can be
observed that T1D and RA have different epistasis pat-
terns. A further investigation on these patterns may reveal
a new direction on the study of the etiology of RA
and T1D.

Discussions
In this work, we have focused on the genome-wide case-
control studies; i.e., the disease phenotype can be rep-
resented as a binary variable. In its current testing, the
compositional epistasis can not be easily extended to
consider continuous phenotypes. Moreover, the current
work only detect two-way compositional epistasis. How-
ever, we note that there is no widely accepted definition
of high-order compositional epistasis. These issues are
worth pursuing in the future.

Conclusions
Studying the epistasis between two loci is a natural step
following traditional and well-established single locus
analysis. In this paper, we have proposed a computation-
ally efficient and statistically soundmethod to test compo-
sitional epistasis in GWAS data. The method is applicable
to case-control studies and consists of a two-step (screen-
ing and testing) process. In the screening stage, only a
limited number of epistatic patterns are evaluated for each
pair of SNPs and those passing a specified threshold are
selected to be more thoroughly studied in the testing
stage, where all epistatic patterns for each selected pair are
evaluated. The method is implemented using the parallel
computational capability of commercially available GPUs
to greatly reduce the computation time involved. We have
successfully applied our method to analyze seven data
sets from the WTCCC. Our experimental results demon-
strate that the complete compositional epistasis detection
is computationally feasible in GWAS.
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2. Carlborg Ö, Haley C: Epistasis: too often neglected in complex trait

studies? Nat Rev Genet 2004, 5(8):618–625.
3. Wan X, Yang C, Yang Q, Xue H, Fan X, Tang N, Yu W: BOOST: a boolean

representation-based method for detecting SNP-SNP interactions in
genome-wide association studies. Am J Human Genet 2010,
87(3):325–340.

4. Ritchie M, Hahn L, Roodi N, Bailey L, Dupont W, Parl F, Moore J:
Multifactor-dimensionality reduction reveals high-order
interactions among estrogen-metabolism genes in sporadic breast
cancer. Am J Human Genet 2001, 69:138—147.

5. Ritchie M, Hahn L, Moore J: Power of multifactor dimensionality
reduction for detecting gene-gene interactions in the presence of
genotyping error, missing data, phenocopy, and genetic
heterogeneity. Genet Epidemiol 2003, 24(2):150—157.

6. Phillips PC: Epistasis-the essential role of gene interactions in the
structure and evolution of genetic systems. Nat Rev Genet 2008,
9(11):855–867.

7. Wan X, Yang C, Yu W: Comments on ’An empirical comparison of
several recent epistatic interaction detection methods’.
Bioinformatics 2012, 28:145–146.

8. Fisher RA: The correlations between relatives on the supposition of
Mendelian inheritance. Philos Trans R Soc Edinb 1918, 52:399–433.

9. Zhang Y, Liu J: Bayesian inference of epistatic interactions in
case-control studies. Nat Genet 2007, 39:1167–1173.

10. Schwarz D, König I, Ziegler A: On safari to random jungle: a fast
implementation of random forests for high-dimensional data.
Bioinformatics 2010, 26(14):1752–1758.

11. Zhang X, Huang S, Zou F, Wang W: TEAM: efficient two-locus epistasis
tests in human genome-wide association study. Bioinformatics 2010,
26(12):217–227. [http://bioinformatics.oxfordjournals.org/content/26/12/
i217.abstract]

12. Wu J, Devlin B, Ringquist S, Trucco M, Roeder K: Screen and clean: a tool
for identifying interactions in genome-wide association studies.
Genet Epidemiol 2010, 34(3):275–285.

13. Li W, Reich J: A complete enumeration and classification of two-locus
disease models. HumHered 2000, 50:334–349.

14. Breiman L, Friedman J, Olshen R, Stone C: Classification and Regression
Trees. Belmont, CA: Wadsworth & Brooks; 1984.

15. Shih YS: Families of splitting criteria for classification trees. Stat
Comput 1999, 9:309–315.

16. Lechler R, Warrens A: HLA in Health and Disease. San Diego, CA: Academic
Press; 2000.

http://bioinformatics.oxfordjournals.org/content/26/12/i217.abstract
http://bioinformatics.oxfordjournals.org/content/26/12/i217.abstract


Wan et al. BMC Genetics 2013, 14:7 Page 11 of 11
http://www.biomedcentral.com/1471-2156/14/7

17. The Wellcome Trust Case Control Consortium: Genome-wide
association study of 14,000 cases of seven common diseases and
3,000 shared controls. Nat 2007, 447(7145):661–678.

18. Orozco G, Barton A, Eyre S, Ding B, Worthington J, Ke X, Thomson W: HLA-
DPB1-COL11A2 and three additional xMHC loci are independently
associated with RA in a UK cohort. Genes Immun 2011, 12(3):169–175.

doi:10.1186/1471-2156-14-7
Cite this article as:Wan et al.: The complete compositional epistasis detec-
tion in genome-wide association studies. BMC Genetics 2013 14:7.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Epistasis tests
	The definition of two-locus compositional epistasis
	The test of two-locus compositional epistasis
	Compositional epistasis detection in GWAS
	GPU implementation

	Results
	Simulation 1: epistasis with main effects
	Data generation
	Performance comparison

	Simulation 2: epistasis without main effects
	Simulation 3: type-1 error rate
	Experiments on seven data sets from WTCCC
	T1D
	RA


	Discussions
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

