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Carriers of a novel frame-shift insertion in
WNT16a possess elevated pancreatic expression
of TCF7L2
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Abstract

Background: The discovery of TCF7L2 as a global type 2 diabetes (T2D) gene has sparked investigations to explore
the clinical utility of its variants for guiding the development of new diagnostic and therapeutic strategies. However,
interpreting the resulting associations into function still remains unclear. Canonical Wnt signaling regulates 3-catenin
and its binding with TCF7L2, which in turn is critical for the production of glucagon-like peptide-1 (GLP-1). This study
examines the role of a novel frame-shift insertion discovered in a conserved region of WNT16g, and it is proposed
that this mutation affects T2D susceptibility in conjunction with gene variants in TCF7L2.

Results: Our results predicted that the insertion would convert the upstream open reading frame in the Wnt16a
mRNA to an alternative, in-frame translation initiation site, resulting in the prevention of nonsense-mediated decay,
leading to a consequent stabilization of the mutated WNT16a message. To examine the role of Wnt16a in the Wnt
signaling pathway, DNA and serum samples from 2,034 individuals (48% with T2D) from the Sikh Diabetes Study were
used in this investigation. Prevalence of Wnt16a insertion did not differ among T2D cases (33%) and controls (32%).
However, there was a 3.2 fold increase in Wnt16a mRNA levels in pancreatic tissues from the insertion carriers and a
significant increase (70%, p < 0.0001) in luciferase activity in the constructs carrying the insertion. The expression of
TCF7L2 mRNA in pancreas was also elevated (~23-fold) among the insertion carriers (p=0.003).

Conclusions: Our results suggest synergistic effects of WNTT16a insertion and the at-risk T allele of TCF7L2 (rs7903146)
for elevating the expression of TCF7L2 in human pancreas which may affect the regulation of downstream target genes
involved in the development of T2D through Wnt/B-catenin/TCF7L2 signaling pathway. However, further studies would
be needed to mechanistically link the two definitively.
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Background

Transcription factor 7-like 2 (TCF7L2) has been strongly
linked to type 2 diabetes (T2D) susceptibility, with an
elevated genetic predisposition accounting for 20% of
T2D cases [1]. The association of common intronic vari-
ants in the TCF7L2 gene with the increased susceptibility
for T2D has been extensively documented in major ethnic
groups of the world by several different investigators [2].
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Meta-analysis of the published studies estimated the odds
ratio (OR) of 1.46 (p=5.4x10"*°) [3]. TCF7L2 polymor-
phisms were also significantly linked to diabetes risk in
our own studies in Asian Indian Sikhs [4,5]. Indeed, our
recent Sikh genome-wide association study (GWAS) and
meta-analyses in Sikhs (n=7,329/3,354 cases) and South
Asians (n=47,303/19, 482 cases) showed a robust associ-
ation of TCF7L2 (rs7903146), with OR 1.5 (p=7.8x10""")
and OR 1.13 (p=6.1x10") in Sikhs and South Asians,
respectively [6]. However, despite extensive replication, no
study has unequivocally demonstrated the underlying
molecular mechanism of this association. Little is known
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about the clinical role of TCF7L2 in T2D beyond progres-
sion from impaired glucose tolerance to diabetes [7].

Various in vitro and in vivo studies have shown that
several components of the Wnt pathway are involved in
[B-cell proliferation [8], insulin secretion and cholesterol
metabolism [9], and production of glucogon-like peptide-
1 (GLP-1) [10]. Wnts are secreted glycoproteins with a
well-established role in the early stages of development
through adulthood [11]. Wnts bind to frizzled and LRP
receptors, which, in turn, inactivate the degradation com-
plex consisting of AXIN, DVL, and GSK3B (Figure 1).
This prevents the phosphorylation of f-catenin by GSK3B,
and leads to its binding to the nuclear transcription
factors, TCF7, LEF1, TCF7L1 and TCF7L2, leading to the
activation of more than 60 different genes involved in
growth regulation and differentiation, as well as GLP-1
expression [12]. Since Wnt signaling has a role in regulat-
ing and stabilizing -catenin and its binding with TCF7L2,
we hypothesized that any alternation in the canonical
Wnt pathway would have profound consequences in insu-
lin secretion and the generation of new [-cells, particu-
larly given that Wnt signaling is required for normal
development of the pancreas and islets during embryonic
growth [13].

The present investigation is a follow-up study to
explore the role of a novel, four-nucleotide (CCCA)
insertion polymorphism we discovered in the most
conserved region of WNTI6a in US American Sikhs.
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Figure 1 Wnt signaling pathway in diabetes mellitus.
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The objectives of this investigation are: 1) to study the
potential role of this WNT16a insertion in T2D in our
diabetic sample of Punjabi Sikhs, 2) to quantify and com-
pare gene expression of WNT16a and TCF7L2 between
carriers and non-carriers of the CCCA insertion within
the WNT16a gene using mRNA samples from 27 frozen
human pancreatic tissues, 3) to investigate the functional
impact of this insertion on protein levels and message
translation using a luciferase reporter vector containing
the wild-type and mutant WNT16a 5'untranslated re-
gions (UTR) transfected into cultured cells, and 4) to per-
form immunohistochemistry to examine the expression of
WNT16a in human pancreas among insertion carriers vs.
non-carriers.

Methods

Study participants

The DNA samples of 2,034 (52% male) individuals from
our ongoing Sikh Diabetes Study (SDS) were used [14].
Of these, ~48% were ascribed as having T2D based on
established guidelines of the American Diabetes Associ-
ation, as described [15]. A medical record indicating
either (1) a fasting blood glucose (FBG) =126 mg/dL
(=7.0 mmol/L) after a minimum 12 h fast or (2) a 2 h
post-glucose level (2 h oral glucose tolerance test
[OGTT]) = 200 mg/dL (>11.1 mmol/L) on more than
one occasion, combined with symptoms of diabetes,
confirmed the diagnosis. Impaired fasting glucose (IFG)
is defined as a fasting blood glucose level 2100 mg/dL
(5.6 mmol/L) but <126 mg/dL (7.0 mmol/L), as described
previously [16]. Common characteristics observed in dia-
betics include excessive thirst, hunger, polyuria, blurry vi-
sion, common skin and urinary tract infections, nocturia,
loss of bladder control, and fatigue. Impaired glucose
tolerance (IGT) is defined as a 2 h OGTT >140 mg/dL
(7.8 mmol/L) but <200 mg/dL (11.1 mmol/L). Subjects
with IFG or IGT were considered pre-diabetics and were
excluded from the analysis. The 2 h OGTTs were
performed following the criteria of the World Health
Organizations (WHO) (75 g oral load of glucose). Body
mass index (BMI) was calculated as (weight (kg)/height
(meter) [2]. Homeostasis Model Assessment (HOMA) for
insulin resistance (HOMA-IR) was calculated as fasting
glucose X fasting insulin/22.5, as described [17].

The normoglycemic subjects were recruited from the
same Punjabi Sikh community and geographic location as
the T2D patients [14]. The majority of the subjects were
recruited from the state of Punjab in North India and
Punjabi Sikhs living in the US. Individuals of South, East,
and Central Indian origin were excluded, as were individuals
with type-1 diabetes, a family member with type 1 diabetes,
rare forms of T2D called maturity-onset diabetes of young
(MODYs), or secondary diabetes (e.g., hemochromatosis,
pancreatitis). Demographic and clinical characteristics of the
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SDS subjects are summarized in Table 1. All blood
samples were obtained at the baseline visit and all partici-
pants provided a written informed consent for these inves-
tigations. All SDS protocols and consent documents were
reviewed and approved by the University of Oklahoma
Institutional Review Board and the Human Subject Protec-
tion Committees at the participating hospitals and insti-
tutes in India.

Metabolic estimations

Insulin was measured by radio-immuno assay (Diagnostic
Products, Cypress, USA). Serum lipids (total cholesterol,
low density lipoprotein cholesterol [LDL-C], high-
density lipoprotein [HDL-C], very low-density lipopro-
tein cholesterol [VLDL-C], and triglycerides [TG]) were
measured by using standard enzymatic methods (Roche,
Basel, Switzerland), as described [16,18]. C-peptide, TNFa,
and MCP-1 measures were simultaneously quantified
using Millipore’s Magnetic MILLIPLEX Human Metabolic
panel (St. Charles, MO) and analyzed on a Bio-plex 200
multiplex system (Bio-Rad Hercules, CA), as described
previously [19].

Whole-genome exome sequencing

We performed genome-wide exome sequencing on two
Punjabi Sikh subjects: a 64-year-old healthy normogly-
cemic male, and a 67-year-old diabetic female, using an
[lumina GAIIx and “SureSelect Human All Exon Kit” by
Agilent Technologies and “Paired-End Sequencing
Library Prep by Illumina” (Version 1.0.1). The sequences
containing 75x reads were filtered against public data-
bases of genetic variants. The present investigation is
focused on exploring the role of a frame-shift insertion
(CCCA) discovered in a conserved region of human
WNTI16a gene (Additional file 1: Figure S1).

Genotyping

Genotyping of the insertion polymorphisms was performed
by polymerase chain reaction (PCR) and a gel-based assay.
Forward primer Wntl6a-F (5 [TACCACTCTCCTCCCT
CC] and reverse primer Wntl6a-R (3') [CCCTGATCAAA
TCCCCAAAT] were used to amplify the region containing
the identified insertion; PCR amplification generated a
458 bp product in the sample containing no insertion. PCR
conditions included an initial denaturation for 5 min. at
95°C, followed by 36 cycles (30 sec. 95°C, 45 sec. 53.7°C,
30 sec. 72°C), and a 10 min. extension at 72°C. Positive and
negative controls were included for every PCR. 15uL of the
PCR product was then separated on a 2.5% nusieve/
agarose gel (3:1) for 2.5 hours at 140 volts to determine the
genotype of participants as insertion (462 bp), non-
insertion carriers 458 bp, and heterozygotes containing
insertion/normal sequence of 462/458 bp (Additional file 1:
Figure S2). To confirm the presence of the WNT16a
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insertion scored on the gel-based assay, approximately
30 samples were sequenced using an ABI 3730 capillary
sequencer (Applied Biosystems Inc. Foster City, CA) and
were analyzed using Mutation Surveyor DNA variant ana-
lysis software (v4.0.6.)(SoftGenetics, State College, PA).
Genotyping of rs7903146, located in intron 3 of the
TCF7L2 gene, was performed with a TagMan genotyping
assay (Applied Biosystems, Foster City, CA), using a 7900
genetic analyzer, as described previously [4].

Quantitative gene expression studies on WNT16a

Gene expression studies for Wntl6a were performed using
27 human pancreatic tissue specimens (13 diabetic and 14
non-diabetics) collected from the Department of Surgery
at the University of Oklahoma Health Sciences Center.
Total RNA was extracted from frozen tissues (stored in
liquid nitrogen) using Ambion’s mirVana RNA kits (Grand
Island, NY), followed by RT-PCR using Bio-Rad’s iScript
RT-PCR kit (Hercules, CA), according to the manufac-
turers’ instructions. Real Time PCR was then performed
using an ABI 7900HT genetic analyzer in conjunction with
Qiagen’s QuantiTect primer assay (Chatworth, CA) and
Bio-Rad’s iTaq SYBR Green Supermix with ROX (Hercules,
CA). Results were then analyzed on ABI's RQ Manager
(v.1.2.1) software. Beta-actin was used as a normalizing
control.

Transient DNA transfection and dual-luciferase assay

The 5" UTRs of the wild-type and mutant Wntl6a mes-
sage were incorporated into oligonucleotide primers as
depicted in Additional file 1: Figure S3. Note that each
of the 5" primers incorporated a Sac I site for insertion
into pCI-GFP, followed by the sequence of the Wntl6a
5" UTR, then a region homologous to firefly luciferase.
The pCI-GFP vector was developed by inserting eGFP
into the parent vector, pCI-Neo (Promega, Madison,
WI), and allowed us to monitor transfection efficiency.
The 3" primer was homologous to a site in the pGL3
vector past a unique Xba I site in the vector. After PCR
amplification using pGL3 as a template, the amplimers
were digested with Sac I and Xba I, and then ligated into
pCI-GFP. For transfection into cultured cells, each con-
struct (0.125 pg per culture well) was added to 1 pl Plus re-
agent and 15 ul Opti-MEM (Life Technologies, Carlsbad,
CA), along with 0.125 pg per well of an empty pGL3-Basic
vector (which served as carrier DNA) and 0.01 pg per
well pGL4.74 (a Renilla luciferase construct used for
normalization) for a total of 0.26 pg DNA. This was
added to 0.5 pl Lipofectamine reagent in an additional
15 pl of Opti-MEM and used to transfect HEK-293
cells (74,000 cells per well) in a 48-well plate. After
48 hours in medium plus 10% calf serum, cells were
washed in PBS, and lysed for luciferase activity. Lysates
were diluted until the luciferase values fell within a
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linear response range. Both firefly and Renilla luciferase
values were measured using a dual luciferase detection
kit (Promega, Madison, WI).

Immunohistochemistry

Formalin-fixed paraffin-embedded pancreatic tissues were
cut at a thickness of 4 pm, mounted on SuperfrostPlus®
slides (Statlab Medical Products, Lewisville, TX), and subse-
quently deparaffinized, rehydrated, and washed in Tris Buff-
ered Immunohistochemistry wash buffer + Tween 20
(TBST, catalog# 935B, Cell Marque, Rocklin, CA). Antigen
retrieval was accomplished by placing slides in 10 mM
citrate buffer, pH 6.0 (cat. #52389,Target Retrieval Solution,
DAKO, Carpentaria, CA), in a steamer for 20 minutes,
followed by 20 minutes cooling in deionized water at room
temperature. According to the manufacturer’s directions,
sections were treated with a background blocker (cat.
#927B, Cell Marque, Rocklin, CA) and a peroxidase
blocking reagent (cat. #925B, Cell Marque, Rocklin, CA) to
inhibit endogenous peroxidase activity, followed by three,
five-minute washes each in deionized water. Rabbit anti-
Wnt antibody was prepared in antibody diluent (cat.
#936B, Cell Marque, Rocklin, CA) and added to slides at
2 pg/ml (1:500 dilution, cat. #LS-A9630, MBL International
Corporation, Woburn, MA). Antigen retrieval was accom-
plished according to the manufacturer’s recommendation
for the Wntl6 antibody (LSBio, Woburn, MA). Following
incubation for 1 hr at room temperature, the sections
were processed for immunohistochemistry using the
HiDef detection HRP Mouse/Rabbit polymer system
(cat. #954D, Cell Marque, Rocklin, CA). Sections were
washed three times for five minutes each in tris buff-
ered immunohistochemistry wash buffer + Tween 20
(TBST), incubated with the amplifier, washed three
times for five minutes each in TBST, and incubate with la-
beled polymer. Following a final wash in TBST, slides were
incubated with 3'3’diaminobenzidine tetrahydrochloride
(DAB) (cat. #957D, DAB substrate Kit, Cell Marque, Rock-
lin, CA). Counterstaining was performed with Immuno
Master Hematoxylin (American Master*Tech Scientific,
Inc., Lodi, CA). Controls were incubated with rabbit IgG
isotype at 2 pg/ml (rabbit [DA1E] mAB IgGXP® isotype
control, cat. #3900, Cell Signaling Technologies Danvers,
MA). A total of seven tissues (1 T2D and 6 controls) with
Wntl6a genotypes were used for immunohistochemistry.
Slides were scored based on intensity (0- no, 1- weak,
2- moderate and 3- strong), and the area of stain (0 for
0%, 1-<10%, 2-between 10-15%, and 3- between 51-81%).
The consolidated scores (ranging from 0-7) were derived
from the sum of scores of intensity and area, negative be-
ing in the range of 0-2, weakly positive-3, moderately
positive ranging from 4-5, and highly positive ranging
from 6-7.
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Statistical analysis

Association analysis

Data quality for SNP genotyping was checked by
establishing reproducibility of control samples. Departure
from Hardy-Weinberg equilibrium in controls was checked
using Pearson’s Chi-square, as reported previously [5].
Descriptive statistical analyses were performed with SPSS
Statistics Software (v 15.0). The chi-square test for categor-
ical variables and t-test for continuous variables were used
to test differences where appropriate. While multivariate
logistic-regression was used to assess the association of the
insertion with T2D and obesity, multivariate linear-
regression was used for each quantitative trait after adjust-
ment for relevant covariates (age, sex, diabetes status, BMI,
and medication), assuming an additive model. Skewed vari-
ables were detected by Shapiro-Wilk’s test for continuous
traits. Subsequently, TG, total cholesterol, LDL-C, VLDL-C,
FBG, C-peptide, MCP-1, and HOMA-IR were normalized
by log-transformation before statistical comparisons, and all
p-values were derived from analyses of transformed data.
The summary statistics (5, S.E., and p-values) were used to
assess SNP-phenotype association. Gene expression analyses
were performed using Applied Biosystems’ RQ Manager
(v.1.2), which uses the comparative Ct method for relative
quantification. We determined the ACr value by (Target
Average Ct-Endogenous Control Average Cr), then calcu-
lated the AACy to determine the fold-difference in gene
expression by ACt Target - ACt Calibrator. For the amount
of target determination, the data were normalized to the en-
dogenous control and relative to the calibrator by using
2744CT a5 described [20] . For reporter assays, the results
are presented as the mean + average deviation from the
mean for the number of observation, as indicated. Statis-
tical significance of differences between groups was esti-
mated using a two-tailed ¢ test.

Results

Whole-exome sequencing

As summarized in Additional file 2: Table S1, a total of
20,306 mutations were found in the control and 21,258 in
the diabetic subjects. Among these, 4,673 and 4,842 novel
SNPs were uniquely present in control and T2D cases, re-
spectively. To identify the functional significance of the
variants identified, we performed initial comparative gen-
omic screening on the mutations found in some selected
loci using UCSC’s Vista Genome Browser. From these re-
sults, several candidate genes involved in insulin secretion,
B-cell proliferation, or related pathways were identified
(data not shown). Interestingly, novel substitution in
WNT1I16a, which showed a 4-base-pair frame-shift inser-
tion near two known SNPs, was in an evolutionarily con-
served region (as shown in Additional file 1: Figure S3)
and was predicted to be disruptive.
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Table 1 Clinical characteristics of study subjects stratified by Wnt76a insertion carriers versus non-carriers

Trait Non carrier Carrier P value
Number 1377 657 -
% Males 52 51 -
Age (yrs) 534+ 129 517 £121 0.004
Obesity
BMI (kg/m?) 268 £49 268 £ 5.1 0.930
Weight (kg) 69.8 £ 140 700 + 143 0811
Waist (cm) 936+ 122 934+ 120 0.704
WHR 0.95 £+ 0.08 0.95 £+ 0.08 0.242
Metabolic
Fasting Blood Glucose mg/dL 120.7 £ 454 1215+ 454 0.736
Insulin (uIU/mL) 6.9 (6.6-7.3) 7.5 (7.0-8.1) 0.081
HOMA-IR 20(19-22) 22 (21-24) 0.059
C-peptide pg/mL 519.5 (473.7-569.7) 602.8 (525.6-691.4) 0.078
Inflammation
TNFa pg/mL 79 (74-85) 9.2 (8.2-10.2) 0.029
MCPT pg/mL 3155 (296.7-335.6) 3265 (297.9-357.8) 0.541
Lipid
Triglyceride mg/dL 1490 + 82.3 1515+ 859 0.542
Total Cholesterol mg/dL 1738 £ 529 179.2 £ 499 0.038
HDL-C mg/dL 372 £ 147 379+ 142 0.292
LDL-C mg/dL 102.1 £ 400 1049 + 383 0.143

WHR-Waist to hip ratio, LDL-C -low density lipoprotein cholesterol, HDL-C -high density lipoprotein cholesterol, BMI- body mass index, HOMA-IR -homeostasis

model assessment for insulin resistance.

Association studies

A genetic screening of 2,034 SDS individuals (977 T2D
cases and 1,057 controls T2D cases and 1,057 controls)
showed that 33% of T2D cases and 32% non-diabetic
controls were carriers of a CCCA insertion; the number
of carriers of this insertion did not differ significantly

among cases versus controls (p=0.08). Multiple regres-
sion analysis, performed in diabetics and non-diabetic
controls separately, did not reveal any association of the
Whntl6a insertion with obesity (BMI, waist-to-hip ratio
[WHR]) (Table 1). However, the insertion carriers
showed moderately higher mean (+SD) levels of total

unadjusted p=0.029 54
2.37 adjusted p=0.008
2.3+
5.8
2.2-
o 5.8
£ -
< 22 £ 58
oo S
o o
3 51 a 58
" . -
g g 5.8
2.1 s
5.7 4
20 5.7
2.0 7
Carriers Non Carriers 27
WNT16a Genotyping
was seen with MCP-1. The statistical analysis was performed in combined samples
of age, BMI, gender, and T2D status.

Carriers

unadjusted p=0.541
adjusted p=0.440

M Carriers
O Non Carriers

' Non Carriers
WNT16a Genotyping

Figure 2 Distributions of serum levels (mean +SD) of inflammatory cytokines (TNFa and MCP-l) among Wnt16a insertion carriers non-
carriers in SDS subjects. Serum levels of TNFa were significantly higher (p=0.008) in insertion carriers, while a similar but non-significant trend

(T2D and controls) after adjusting for the confounding effects
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MQL TT CLRET
WT MERMHPTCSSPLASGRP
AGCCTGCAAAARACCACAGAGGGCAAAGCCAGARAGATGGARAGGCACCCATGCAGCTCACCACTTGCCTCAGGGAGACT

L FTGASQKTSLWWLGI ASFGVPEIZKILG
S SQGLLKRPPYGGWALUPPSGFQRSWA
CTCTTCACAGGGGCTTCTCAAAAGACCTCCCTATGETGETTGGGCATTGCCTCCTTCGGGCTTCCAGAGAAGCTGGGCT

C ANLPLNS
AP I CR-—
GCGCCAATTTGCCGCTGARCAG

Mutant MERHPPMOAQLTTCLR RET
AGCCTGCAAAAACCACAGAGGGCAAAGCCAGAAAGATGGAAAGGCACCCACCCAFGCAGCTCACCACTTGCCTCAGGGAGACC

L FTGASQKTS SLWWLGI ASFGVYPEIZKTILG
CTCTTCACAGGGGCTTCTCAAAAGACCTCCCTATGGTGGTTGGGCATTGCCTCCTTCGGGGTTCCAGAGAAGCTGGGC

C ANL PL NS

TGCGCCAATTTGCCGCTGAACAG
Figure 3 The human Wnt16 gene includes two alternative transcription start sites, resulting in two alternative first exons and three
common exons. The Wnt16a message, which is only expressed in pancreas, includes an upstream open reading frame (UORF) that initiates
14 bp 5' of the coding sequence AUG. As shown, in the WntT6a wild-type allele, translation of the 5" UTR would terminate 140 base pairs later,
presumably resulting in nonsense-mediated decay, since two down-stream exon junction complexes would not be disrupted during the pioneer
round of translation. The 4 base-pair CCCA insertion of the mutated Wnt16a message, on the other hand, results in the transition of the uORF to
an in-frame alternative translation initiation site. Translation initiation from either AUG during the pioneer round of translation would not trigger
nonsense-mediated decay of the Wnt16a massage.

cholesterol compared to non-carriers (173.8£52.9 (mg/ RT-PCR and qualitative gene expression studies

dL) vs. 179.2449.9 (mg/dL), p=0.038). Serum mean levels
of inflammatory cytokines TNFa were also significantly
higher among insertion carriers compared to non-
carriers (p=0.008) (Figure 2). A similar but non-
significant trend was seen with increased mean levels of
MCP-1 among insertion carriers compared to non-
carriers (p=0.440) (Figure 2). There was a significant dif-
ference in the frequency of “T” (the at risk allele for T2D)
in rs7903146 of TCF7L2 among cases and controls (38%
cases vs. 28% controls). The age- and sex-adjusted OR
showing “T” allele-associated T2D risk was 1.51 (95%CI
[1.37-1.66], p=1.53x10"7). However, no association of
TCF7L2 polymorphism was seen with inflammatory cyto-
kines (TNFa or MCP-1) (data not shown).

Bioinformatics, gene expression studies, and western
blotting

The Wntl6a message, which is uniquely expressed in
pancreas, includes an upstream open reading frame
(uORF) that initiates 14 bp 5" of the coding sequence
AUG (Figure 3). Translation of this 5° UTR would ter-
minate 140 bp later, presumably resulting in nonsense-
mediated decay (NMD) of the message, since two
down-stream exon junction complexes would not be
disrupted during the pioneer round of translation [21].
The 4-base-pair insertion (CCCA) of the mutated
Wntl6a message, on the other hand, would result in
the transition of the uORF to an in-frame alternative
translation initiation site. In this case, translation initi-
ation from either the first or second AUG during the
pioneer round of translation would not trigger NMD.

#were performed by quantifying mRNA expression of
WNT16a and TCF7L2 genes among carriers and non-
carriers of Wntl6a. Of 27 participant donors of human
pancreatic tissue, nine were carriers of the insertion in
WNTI16a. As shown in Figure 4, our data revealed a
~3.2-fold increase in the expression of WNT16a among

2.00
1.80

p=0.030
1.60
1.40
1.20
1.00
0.80

0.60

0.40

WNT16a mRNA Fold Change (2-AACt)

0.20

0.00
Non Carrier

Carrier

WNT16a Genotype

Figure 4 Gene expression studies for Wnt16a were carried out
using 27 pancreas tissue samples by quantifying mRNA
expression of WNT16a by real-time PCR. Of 27 participant donors
of human pancreatic tissue, nine were carriers of CCCA insertion in
WNTI16a. Our data revealed a 3.2 fold increase in the expression of
WNT16a among insertion carriers compared to non-carriers.
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was elevated among diabetics compared to non-diabetic controls.

Figure 5 Gene expression study of TCF7L2 in the same 27 pancreatic tissues used to determine the expression of Wnt16a by real-time
PCR analysis. Figure 5A shows a significant elevation of TCF7L2 mRNA levels among CCCA insertion carriers and a very low expression of TCF7L2
mRNA was observed in non-carriers (p= 0.003). Figure 5B shows that within CCCA insertion carriers, the expression of TCF7L2 mRNA in pancreas
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insertion carriers compared to non-carriers. The ex-
pression of WNT16a was consistently higher among in-
sertion carriers irrespective of disease status. Gene
expression analysis of TCF7L2 in the same pancreatic tis-
sues revealed a significant elevation (p=0.003) of the

amount of TCF7L2 mRNA among insertion carriers
compared to non-carriers (Figure 5A). In the stratified
data by disease within CCCA insertion carriers, the ex-
pression of TCF7L2 mRNA was higher in diabetic pan-
creatic tissues compared to non-diabetic pancreas,

p=0.039
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Figure 6 Stratification of TCF7L2 mRNA quantitation by TCF7L2 genotypes of rs7903146 among Wnt16a insertion carriers and non-

carriers. The at-risk T" allele carriers of TCF7L2 with CT+TT genotypes showed a 8.7-fold increase in the expression of TCF7L2 compared to CC
genotypes. Note that this increase was only observed in Wnt16a (CCCA) insertion carriers and not in the non-carriers.
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Figure 7 Reporter constructs assembled with the mutated form
of the Wnt16a 5’ UTR are more efficiently translated than the
wild-type form. The wild-type and mutant Wnt16a 5" UTR
sequences were inserted adjacent to a luciferase cDNA, and the
resulting plasmids were used to transfect HEK-293 cells. 48 hours
after transfection, cells were lysed, and firefly luciferase (FFL) and
Renilla luciferase (RL) levels were measured. Our reporter constructs
using the wild-type and the mutant (insertion) sequence of Wnt16a
showed significantly increased (70%, p<0.0001) levels of luciferase
protein in the constructs carrying the mutant sequence.

@&

however, this increase was not statistically significant
(p=0.155). (Figure 5B). Further stratification of quanti-
tative mRNA expression among the at-risk ‘I’ allele
carriers of TCF7L2 SNP (rs7903146) revealed that the
CT+TT genotypes showed an 8.7-fold increase in the
expression of TCF7L2 compared to CC genotypes in
Wntl6 a insertion carriers, while the non-insertion car-
riers showed the same allelic trend at a significantly re-
duced magnitude (Figure 6).

Luciferase reporter assay
In order to further evaluate the influence of the CCCA
insertion on translation of the Wntl6a message, we
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assembled reporter constructs driven by the cytomegalo-
virus (CMV) promoter that included the wild-type and
the mutant sequence of the Wntl6a 5° UTRs. The long
uORF was mimicked in our luciferase construct by the
presence of a translation stop site in-frame with the up-
stream AUG. If the first AUG in the message was used
to initiate translation, then no luciferase protein should
have been produced. Indeed, when we inserted the add-
itional four nucleotides to replicate what occurs in the
mutant situation, we noted a significantly increased level
(~70%) of luciferase expression (p=0.0001) (Figure 7).
This suggests that the upstream AUG can act as an effi-
cient translation initiation site. In the wild-type gene,
this would reduce expression of the full-length protein
by preventing initiation at the second AUG. In the pres-
ence of the CCCA insertion, both AUGSs are in the same
reading frame, so full-length protein would be produced
regardless of which AUG was used to initiate translation.

Immunohistochemistry

Immunoperoxidase staining of paraffin-embedded pancre-
atic tissues of normoglycemic controls and diabetic cases
were scored for the intensity of antibody as described in
methods. As shown in Figure 8, the tissues with insertion
carriers revealed a higher expression of Wntl6a showing
high intensity staining among insertion carriers verses
negative staining in non-carriers. The scoring intensity
was indifferent among diabetics and non-diabetics.

Discussion

The key effector pathway of Wnt signaling (5-cat/
TCF7L2) has been recently implicated in metabolic
homoeostasis, diabetes, obesity, osteoporosis, cardiovas-
cular disease, and cancer [9,22-24]. The discovery of
TCF7L2 as a T2D susceptibility gene in different ethnic
populations through genome-wide studies has triggered
numerous investigations to explore the clinical utility of
identifying TCF7L2 genetic variations, and whether the
identified SNPs can be used as markers for tailoring cus-
tomized therapeutics. However, the underlying molecular
mechanism by which TCF7L2 variants influence T2D re-
mains unclear. While a number of recent studies have
suggested the essential involvement of S-cat/TCF7L2 in
the Wnt signaling pathway for pancreatic development
and function [25,26], the role of S-cat in pancreatic 5 cell
development remains unclear and controversial [13,27].
Mice lacking f3-cat developed pancreatitis prenatally; how-
ever, they later recovered from pancreatitis and regenerated
normal pancreas and duodenal villi from wild-type cells
that escaped earlier 5-cat deletion. These observations sug-
gested that mouse embryos were capable of overcoming
substantial f-cat reduction through complicated compen-
satory mechanisms [13]. Other studies have shown that the
over-expression of S-cat at different development stages
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Insertion Carriers

Non Insertion Carriers
Figure 8 Immunoperoxidase staining of 5 micron thick histological sections of paraffin-embedded pancreatic tissues. The sections were
processed for immunohistochemistry using the HiDef detection HRP Mouse/Rabbit polymer system as described in detail under methods. The
CCCA insertion carriers revealed a higher expression of Wnt16, showing staining score from +1 to +3 among insertion carriers versus negative
staining in non-carriers, which showed staining scores from 0 to +1. The scoring intensity was not different among diabetic and non-diabetics.

generated different effects [27]. Similarly, some studies
suggest an essential and beneficial role of TCF7L2 in
pancreatic  cell development [28,29], while other studies
revealed a destructive role of TCF7L2 by over-expression
of TCF7L2 mRNA due to alternatively spliced variants,
which increased the risk of developing T2D [30]. Further,
the increased expression of TCF7L2 in pancreatic B-cells
was positively correlated with insulin gene expression but
was negatively correlated with glucose-stimulated insulin
release [30]. Therefore, it is still unclear how S-cat/TCF in
Wnt signaling is mechanistically involved in pancreatic
development and increased T2D susceptibility.

In this investigation, the discovery of a frame-shift
insertion in the most conserved region of WNT16a
(Additional file 1: Figure S4), and the restricted and ex-
clusive expression of Wntl6a isoform in the human pan-
creas [31], prompted us to explore the role of this
Wntl6a insertion in T2D using genetic epidemiologic,
molecular, and physiologic studies. TCF7L2 polymor-
phisms have demonstrated the biggest effect on the risk
for developing T2D in recent GWAS and replication
studies in multiple ethnic populations, including our
own studies in Asian Indians [4-6,32,33]. The Wntl6a
isoform is exclusively expressed in the pancreas of
humans, while its close relative, Wnt16b, is ubiquitously
expressed in many other organs [31]. The prevalence of
the CCCA insertion polymorphism did not differ signifi-
cantly among diabetic cases (33%) versus controls (32%)
in our cohort. Although our epidemiological data did
not clarify the role of CCCA insertion in T2D, obesity,
or lipid metabolism (Table 1), our multiple linear regres-
sion results showed significant elevation in serum
TNFa levels among insertion carriers versus non-carriers
(p= 0.008), as well as a non-significant trend in the same
direction for another inflammatory marker, MCP-1
(p=0.44). These findings are in agreement with earlier
studies reporting the influence of Wnt signaling in inflam-
mation [34], and suggest that the presence of the CCCA

insertion appears to promote circulatory levels of pro-
inflammatory cytokines in our samples.

Our in silico analysis (Figure 3) clearly suggested that
the frame-shift insertion of the mutated WNT16a results
in the transition of the uORF to an in-frame alternative
translation initiation site. During the pioneer round of
translation, initiation at this up-stream AUG would not
result in NMD. In non-carriers, initiation at this up-
stream AUG would prevent the production of mature pro-
tein, and would likely result in NMD, thereby reducing
the expression of this gene. This was further verified in
our quantitative real-time PCR results that consistently
showed the wild-type (non-insertion carriers) message
levels being ~3.2-fold lower than those observed in sam-
ples from the insertion carriers (Figure 4). Additional
evidence of the influence of the CCCA insertion on trans-
lation of the message was obtained using reporter con-
structs that incorporated the wild-type and the mutant
(insertion) sequence of the WNT16a 5° UTR. Using this
approach, we noted a marked increase in the levels of lu-
ciferase expression in the constructs carrying insertion
(p=0.0001) (Figure 7). This was additionally confirmed in
histological sections of the embedded human pancreatic
islets stained with Wnt16 antibody. It was interesting to
observe that the tissues with insertion carriers showed
higher expression of Wntl6a with staining score ranging
from +1 to +3 verses negative staining in non-carriers
(Figure 8).

Our comparison of the expression of TCF7L2 mRNA in
the same pancreatic tissues used for Wntl6a analysis
showed a significantly increased (p=0.003) expression of
TCF7L2 among the WNTI16a insertion carriers compared
to the wild-type (non-carriers) (Figure 5A). This signifi-
cantly enhanced expression of Wntléa and TCF7L2
among insertion carriers in human pancreas would be pre-
dicted to affect the expression of several -cat /TCF7L2 or
Wnt downstream target genes [22]. It was interesting to
observe that, despite the fact that the frequency of the at-
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risk ‘T allele in rs7903146 of TCF7L2 did not differ among
WNTI16a insertion and non-carriers (0.34 insertion carriers
vs. 0.33 non-carriers), TCF7L2 mRNA levels were signifi-
cantly elevated (~23 folds) among WNTI6a insertion
carriers vs. non-carriers (Figure 5A). Additionally, the at-
risk “T” allele carriers of TCF7L2 (rs7903146) also showed
significantly increased expression of TCF7L2 mRNA in
pancreas compared to CT and CC carriers (Figure 6). This
is consistent with enhanced Wnt signaling, something we
would predict given the impact of the Wntl6a insertion
mutation identified here.

TCF7L2 has been shown to be abundantly expressed
in GLP-1-producing intestinal epithelial cells [35]. It has
also been shown to be expressed in pancreas and to me-
diate pancreatic p cell proliferation and survival [28,36].
However, in other studies, TCF7L2 was shown to be
present at low levels or not expressed at all in pancreas
[29,35,37]. We have identified a significant elevation of
TCF7L2 mRNA in pancreas, especially among the
CCCA insertion carriers, which appears to increase dia-
betes risk by increasing the expression of TCF7L2
among ‘I” risk allele carriers of rs7903146 of TCF7L2.
These results suggest a synergistic effect of Wntl6a
insertion and the atrisk ‘T ‘allele of TCF7L2 in
compounding the risk of T2D, likely through elevated
[B-cat/TCF7L2 activity and the expression of downstream
Wnt targets. Higher expression of TCF7L2 among ‘T” al-
lele carriers was evident in pancreatic tissues of diabetic
patients compared to non-diabetic controls. These re-
sults are in agreement with earlier findings by Lysenko
et al. [30], where carriers of ‘I’ allele in rs7903146 of
TCF7L2 exhibited five-fold increases in TCF7L2 mRNA
levels in pancreatic islets of diabetic patients, and
showed an associated impairment of insulin secretion.
Previous findings by others have shown that, while ele-
vated mRNA expression of TCF7L2 was linked with ‘T’
risk allele of rs7903146, even though no apparent in-
crease in TCF7L2 protein amount was observed [38,39].
In spite of this, the same groups demonstrated that the
higher mRNA expression of TCF7L2 variants resulted in
the down-regulation of GLP-1-induced insulin secretion,
and increased the risk of T2D through Wnt signaling
[38,40]. Since GLP-1 receptors are primarily located in
pancreas and Wntl6a is exclusively expressed in pan-
creas, it is quite conceivable common insertion poly-
morphism in WNTI16a may affect GLP-1 receptor
activity by modulating TCF7L2 expression, thus influ-
ence GLP-1-induced insulin secretion. Since Wnt
signaling is known to stabilize the binding of B-catenin
with TCF7L2, which is critical for expression of many
other genes involved in [(-cell development, any alter-
ation in the canonical Wnt pathway should have pro-
found consequences in insulin secretion and the
generation of new [-cells, as this pathway is required to
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be tightly regulated. It will be also of interest to deter-
mine if WNT16a can modulate GLP-1 receptor expres-
sion independent of TCF7L2.

Conclusions

To our knowledge, ours is the first study reporting the
role of WNT16a in -cat/TCF7L2 signaling and the risk
of developing T2D, which appears to be mediated through
the increased expression of TCF7L2 in pancreas, a path-
way critical for the regulation of several dozen down-
stream genes involved in glucose metabolism, apoptosis,
skeletal muscle function, and atherosclerosis. Therefore, a
detailed examination of Wntl6a and its potential role in
genetic predisposition to T2D through Wnt signaling, and
cross-talk between other signaling pathways, may help
identify therapeutic targets for the treatment of T2D.

Additional files

Additional file 1: Figure S1. Exome sequencing reveals the presence of
4 base pair insertion (CCCA) between A and T of ATG start codon in Wnt16a
which was confirmed by targeted sequencing of 30 DNA samples using an
ABI 3730 sequencer (Applied Biosystemes Inc. Foster City, USA) and were
analyzed using Mutation Surveyor (v4.0.6.). Figure S2. Nusieve-Agarose (3:1)
gel showing wild-type (458 bp), heterozygous insertion (458/462 bp) and
homozygous insertion (462 bp) bands in WNt16a gene. Figure S3.
Oligonucleotides used to amplify Wnt-16a luciferase reporter constructs.
Figure S4. Comparative genomic analysis showing evolution of translation
initiation sites in Wnt16a. Arrow indicates the position of insertion in the
evolutionarily conserved region at the start codon.

Additional file 2: Table S1. Genome-wide Exome Sequencing in Asian
Sikhs.
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