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Abstract

Background: Incorporating family data in genetic association studies has become increasingly appreciated,
especially for its potential value in testing rare variants. We introduce here a variance-component based association
test that can test multiple common or rare variants jointly using both family and unrelated samples.

Results: The proposed approach implemented in our R package aggregates or collapses the information across a
region based on genetic similarity instead of genotype scores, which avoids the power loss when the effects are in
different directions or have different association strengths. The method is also able to effectively leverage the LD
information in a region and it can produce a test statistic with an adaptively estimated number of degrees of
freedom. Our method can readily allow for the adjustment of non-genetic contributions to the familial similarity, as
well as multiple covariates.

Conclusions: We demonstrate through simulations that the proposed method achieves good performance in
terms of Type I error control and statistical power. The method is implemented in the R package “fassoc”, which
provides a useful tool for data analysis and exploration.
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Background
With the availability of cost-effective next generation
sequencing platforms, one hot topic in the field is the ana-
lysis of low frequency and rare variants, which are believed
to play an important role in the etiology of common com-
plex diseases and may explain a portion of the missing
heritability [1,2]. However, the sample sizes investigated in
most studies are not large enough to ensure sufficient
power for detecting rare variants with small or moderate
effect sizes using single-marker tests [3]. Combining both
family and unrelated data can improve statistical power
over separate analysis of family data and unrelated data
[4]. Current methods for testing rare variants are mainly
based on aggregation or group tests that first pool to-
gether all variants with low minor allele frequencies in a
region of interest and then test the association between
phenotypes and the combined super-locus. Two of the
earliest collapsing methods proposed are the combined
multivariate and collapsing (CMC) test [5] and the
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reproduction in any medium, provided the or
weighted-sum method [6]. A number of variations of
these methods have also been quickly developed [3,7-9].
Despite these developments, challenges remain to identify
rare risk variants under different scenarios and assump-
tions. Because the aggregation test needs to assume
homogeneity in the magnitude and direction of the indi-
vidual effect sizes, it may experience massive loss in power
when both protective and risk variants are present in the
tested region, or when inappropriate weights/priors (or
threshold of allele frequency) are used on rare variants. It
is therefore timely to seek more powerful and reliable
methods and designs. Motivated by recent works of Feng
et al. [10] and Zhu et al. [11] who found that using sib pair
data can increase power over using only unrelated sam-
ples, here we further explore the performance of methods
with family information in searching for rare variants
underlying complex traits.
In this work, we present an R package that implements a

variance-component (VC) based association test that can
test multiple common or rare variants jointly using both
family and unrelated samples. The VC or linear mixed
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model (LMM) based approach aggregates or collapses the
information across a region based on genetic similarity in-
stead of genotype effects, which avoids the power loss when
the effects are in different directions. A comparison study
of binary traits [12] has also shown that the similarity-
based test can be more powerful than the collapsing test
when the rare variants have different association strengths.
We propose to include an additional random effect in the
mixed model in order to model polygenic effects and fa-
milial correlations.
Our method can readily allow adjusting for a non-

genetic contribution to the familial similarity (shared en-
vironmental effects), as well as multiple covariates such as
principal components of population structure. We com-
pare the performance of the proposed method across a
range of simulation scenarios with a fixed-effect or sum
test based on Feasible Generalized Least Squares (FGLS).
We also investigate the factors that influence power for
testing rare variants. In this paper, we also show the con-
nection between our method and kernel machine based
methods [13,14], which may provide more flexibility in
extending the proposed model. Although the simulations
in this paper focus on rare variants analysis, our package
can be readily applied to common variant association tests
without any change.

Implementation
Assume there are q subjects in the sample studied, in-
cluding both family and unrelated individuals; and sup-
pose for all individuals there is one gene or genetic
region genotyped or sequenced that contains n variant
sites or SNPs. For the ith individual, yi denotes the ob-
served quantitative trait value; Xi = (xi,1, xi,2 . . . xi,m) ' de-
notes an m × 1 vector of covariates (which might include
sex, age, environmental factors, and principal components
to allow for population stratification); Si = (si,1, si,2, . . . si,n) '
denotes an n × 1 genotype score vector for the n SNPs or
variants in the region, coded 0, 1, or 2 (i.e., additive cod-
ing), reflecting the number of copies of the minor allele;
and Zi = (zi,1, zi,2 . . . zi,n) ' denotes a standardized genotype

vector with the ij-th element zi;j ¼ sij � 2fj
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fi 1� fj

� �q
,

where fj is the minor allele frequency of the jth SNP or
variant site.

Linear mixed model and score test
The setup of our model is similar to the linear mixed
model recently proposed to estimate the genetic variance
explained by genome-wide SNPs [15,16], in which using
all common SNPs was claimed to be able to uncover a
large portion of missing heritability. That model re-
quired all subjects to be unrelated and assumed the
similarity among individuals’ phenotype values is com-
pletely due to the similarity of their genetic components.
The mixed model is written in matrix form as y =Xβ +
Wμ + ε with var yð Þ ¼ WW 0σ2u þ Iσ2e , where y is a
phenotype vector (assumed to be centered), X is a covar-
iate matrix whose ith row is Xi’, β is a vector of coeffi-
cients (fixed effects) for covariates X, μ is a vector of

causal variant effects with μeN 0; Iσ2μ
� �

, W is a stan-

dardized genotype matrix, I is an identity matrix and ε is
a random error vector with εeN 0; Iσ2ε

� �
. In the real case

when the position and number of causal variants are un-
known, a working model can be represented as y =Xβ
+ δ + ε, where δ is a vector representing random effects
of all SNPs, with δeN 0;Ασ2δ

� �
and thus var yð Þ ¼

Aσ2δ þ Iσ2ε . A can be interpreted as the genetic relation-
ship matrix (GRM) among individuals and its jk-th elem-

ent is Ajk ¼
XN
i¼1

sij � 2fi
� �

sik � 2fið Þ
2fi 1� fið Þ =N , where N is the

total number of genome-wide SNPs. The variance com-
ponents can be estimated via the restricted maximum
likelihood (REML) method [16].
To estimate and test the variance expressed by a gene

or a genomic region using both family and unrelated
data, intuitively one can extend the above model by

y ¼ Xβþ Zγ þ δþ ε ¼ Xβþ gþ δþ ε; ð1Þ
where γ is a vector of the random effect of SNPs in the

studied region distrtibuted eN 0; Iσ2γ
� �

, Z is the stan-

dardized genotype matrix, and δ is a vector of random
effect representing the polygenic genic effects over the
genome. Under this model, the marginal phenotypic
variance Vy can be partitioned into components attribut-
able to the SNPs in the studied region, polygenic and re-
sidual variances:

Vy ¼ Vg þ Vδ þ Vε ¼ ZZ0σ2
γ þ Aσ2δ þ I σ2ε

¼ Sσ2g þ Aσ2δ þ I σ2
ε ; ð2Þ

where S = ZZ '/n, and σ2g represents the variance explained

by the SNPs in the region, i.e., σ2g ¼ nσ2γ . A and S can thus

be interpreted as two genetic similarity matrices. In this
model, if two individuals are from different families (unre-
lated), their corresponding entry in A is calculated
genomewide in the same way as above, but excluding the
SNPs in the region we are testing. For individuals in the
same family, or when the genome-wide SNPs are not avail-
able, the corresponding entries in A can be approximately
computed by twice their kinship coefficients - which de-
pends only on the relatedness between individuals - in
which case Vy ¼ Sσ2g þ 2Φσ2δ þ Iσ2ε , where Φ denotes the

q × q kinship matrix. To account for the common environ-
mental factors shared by family members, we can include a
common environmental factor in the model. Our mixed
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linear model now becomes y =Xβ + g + δ + α + ε with
Vy ¼ Sσ2g þ Aσ2δ þ Cσ2α þ I σ2ε , where a is the effect due to

the shared common environment factors with
αeN 0;Cσ2α

� �
and C is a matrix with the the jk-th element

being 1 if the j-th and k-th individuals belong to the same
family and 0 otherwise. Note that, by adding a variance
component common to siblings, it is also easy to allow for
the fact that siblings resemble each other more than do par-
ents and their offspring, whether due to dominant effects
or common environment.
This model can be readily applied to haplotype-based

analysis with the design matrix for genotype scores Z re-
placed by a haplotype matrix H, where a vector Hi re-
cords the i-th individual’s haplotype pair via a given
scoring rule [17]. Hence, Model (1) becomes y =Xβ +
Hγh + δ + ε with Vy ¼ Shσ2h þ Aσ2δ þ I σ2ε , where γh rep-
resents the random effect of haplotypes; Sh is a matrix of
pair-wise similarity scores between the haplotype pairs
of two individuals, with the ij-th element equal to
∑
h;k

Hi;hHj;k � s h; kð Þ [18], where s(h, k) is a similarity

matrix measuring the similarity between haplotypes h
and k. If we set s(h, k) as the proportion of matching al-
leles between two haplotypes, the ij-th element of Sh will
be equivalent to the average allelic sharing across mul-
tiple markers between two individuals and thus phase
information is not required.
Our primary interest lies in detecting whether there is

an effect of a genomic region on the phenotype, which is
assessed by testing the null hypothesis H0 : σ2g ¼ 0: In

the following, we construct a fast score test based on the
MLE and REML framework as an extension of that pro-
posed by Tzeng and Zhang [17]. For the sake of demon-
stration, we first assume there is no shared
environmental effect within families. Assuming a nor-
mally distributed quantitative trait, the log-likelihood
function and its REML version for the variance compo-
nent model are written as

ℓ σ2
g ; σ

2
δ ; σ

2
e ; y

� �
¼ � 1

2
log Vj j � 1

2
log XTV�1X

�� ��
� 1
2

y � Xβð ÞTV�1 y � Xβð Þ

ℓREML σ2
g ; σ

2
δ ; σ

2
e ; y

� �
¼ � 1

2
log Vj j � 1

2
log XTV�1X

�� ��
� 1
2
yTP�1y;

where V ¼ Sσ2g þ Aσ2δ þ I σ2ε , and P =V− 1 −V− 1X(XTV
− 1X)− 1XTV− 1 is the projection matrix under the linear
mixed model (1).
It will be convenient to denote the parameter of inter-
est σ2g by τ, and the nuisance parameters β; σ2δ; σ

2
e

� �
by η.

Under the null hypothesis, the score statistic with re-
spect to τ is given by

Uτ η̂ð Þ ¼ ∂ℓ τ; η; yð Þ
∂τ

����τ¼0;η¼η̂

¼ � 1
2
tr V�1

0 S
� �þ 1

2
y � X

^
β

� �T
V�1

0 SV�1
0 y � X

^
β

� �
where V0 ¼ Aσ̂δ

2 þ I σ̂ε
2 , and η̂ ¼ ^

β; σ̂
2
p; σ̂ e

2
� �

is the

maximum likelihood estimate of η under the null linear
mixed model y =Xβ + δ + ε. These estimates can be
obtained using the regular statistical software that imple-
ment mixed-model functionality, or even more easily in
some genetic analysis packages that can directly read in a
kinship matrix, such as EMMA [19] (http://mouse.cs.ucla.
edu/emma/) and GenABEL (http://www.genabel.org/).
However, the asymptotic distribution of the above

score statistic is not a typical standard normal distribu-
tion (neither does the corresponding LRT statistic con-
verge to a mixture of χ20 and χ21 ). This is because, in
contrast to IBD, the genotype-based similarity matrix S
= ZZ '/n does not have a block diagonal structure, and
thus the statistic cannot be written in a form of a sum of
independent variables that meets the asymptotical con-
ditions indicated in Lin [20]. Instead, we can construct
the test on the basis of the second term of Uτ η̂ð Þ, follow-
ing the approach proposed by Zhang and Lin [21]. Let-

ting M ¼ 1
2V

−1
0 SV−1

0 and ˜y˜ ¼ V−1=2
0 y−Xβ̂

� �
, the new

statistic becomes

Tτ ¼ y � X
^
β

� �T
M y � X

^
β

� �
¼ eyTV0

1=2MV0
1=2ey;

Because asymptotically y˜eN 0; Ið Þ , Tτ follows a

weighted sum of chi-square variables: Tτ∼∑m
i¼1λiχ

2
1i ,

where χ21i are independent chi-square random variables
with one degree of freedom, and the weights λi are the i-
th ordered nonzero eigenvalues of V0

1/2MV0
1/2. A good

approximation may be obtained using only r (<<q) dom-
inant eigenvalues as λ usually decays rapidly toward
zero.
Significance of a test can be evaluated empirically

through simulating a large set of sums of chi-squared
random variables, where the p-value is obtained by cal-
culating the proportion of the generated random vari-
ables that are greater than the observed statistic.
However, this is considerably slower than computing the
eigenvalues of V0

1/2MV0
1/2 when the sample size is large.

Furthermore, to ensure reliable results for a large effect
size or small α level, one needs to run a huge number of
simulations. For instance, when α is set at 1 × 10-5, at
least 107 simulations are needed for each test. This be-
comes computationally infeasible for a genome-wide

http://mouse.cs.ucla.edu/emma/
http://mouse.cs.ucla.edu/emma/
http://www.genabel.org/
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scan. Here we consider Satterthwaite’s procedure to ap-
proximate the null distribution of Tτ by a scaled chi-
square distribution kχ2υ or a gamma distribution Gamma
(a, b). The two parameters in the approximate distribu-
tion are calculated by matching the first and second mo-
ments (mean and variance) with those of the score
statistic. Taking a Gamma distribution as an example,
we attempt to obtain ab ¼ μT and ab2 ¼ νT⇔ a ¼
μ2T=νT and b ¼ νT=μT . Due to its quadratic form, it is
easy to obtain the mean and variance of Tτ:

μT ¼ E eyTV0
1=2MV0

1=2ey� �
¼ tr V0

1=2MV0
1=2

� �
¼ 1

2
tr V0

�1S
� �

νT ¼ var eyTV0
1=2MV0

1=2ey� �
¼ 2tr V0

1=2MV0
1=2

� �2
� 	

¼ 1
2
tr V0

�1S
� �2h i

To account for the fact that the nuisance parameters η
are estimated and replaced by their MLEs η̂ , vT may be
replaced by the partial information Iτ ¼ Iττ−IτηI−1ηη Iητ (to

subtract the loss of information in the data due to η be-

ing unknown), where Iττ ¼ 1
2 tr V0

−1Sð Þ2
h i

, Iτη ¼
1
2 tr V0

−1SV0
−1 ∂V

∂η

h i
, Iηη ¼ 1

2 tr V0
−1 ∂V

∂η V0
−1 ∂V

∂η

h i
and Iητ ¼

ITτη . When the estimation and score test is based on the

REML, the above formulas remain the same but with V0
−

1replacedbytheprojectionmatrixP0 =V0
− 1 −V0

− 1X
(XTV0

− 1X)− 1XTV0
− 1.

Satterthwaite’s procedure is fairly fast but may not
have desirable performance in the extreme tails of the
distribution. An alternative procedure would be to fit a
distribution for which the first three moments are esti-
mated, rather than only the first two. Possibilities would
be to assume the distribution is a multiple of a non-
central chi-square distribution, estimating the multiple
and the two parameters of the non-central chi-square
distribution from the empirical first three moments; al-
ternatively, one could fit a distribution that is a multiple
of a power of a chi-square distribution, estimating the
multiple, the power and the d.f. from the first three mo-
ments. A similar strategy of utilizing higher moments/
cumulants has been proposed by Liu et al. [22], in which
the parameters of the approximate distribution are deter-
mined in such a way that skewness is matched while the
difference in kurtosis is minimized. Other possible
methods include the Davies method [23] (based on numer-
ical inversion of the characteristic function), Farebrother’s
[24] and Imhof ’s methods [25,26]. These methods are
available in an R package called “CompQuadForm”.
The VC score approach described above has a special

advantage of being easily extended to, and compatible
with, the kernel machine regression that allows for more
flexible modeling of genetic effects. Methods like least-
square kernel machines (LSKM) and their variants have
been successfully applied in multi-marker association
tests with both common and rare variants [13,14,27].
Under the framework of LSKM, the outcome of an indi-
vidual can be described by the following semiparametric
regression model:

yi ¼ xTi βþ h sið Þ þ δi þ εi ;

where h(.) is a nonparametric smoothing function that
allows a flexible modeling of the influence of the geno-
type information si on the trait value. The function space
that h(.) lies in is fully determined by a positive
semidefinite kernel function K(.,.). A kernel function can
implicitly map input data to a higher-dimension inner
product space, and thus defines the complexity level of
the relationship between the genotypes and the trait. In-
tuitively, a kernel function K(si,sj) can also be thought as
a similarity measure between the genotypes of individ-
uals i and j (in the genomic region tested). Three types
of kernel used most often are the linear, quadratic and
Gaussian kernels. Note that the linear kernel K si; sj

� � ¼
sTi sj will be analogous to a covariance when s is cen-
tered. One can choose an appropriate non-linear kernel
to accommodate interaction and nonlinear genetic
effects.
Given the close relationship between the LSKM and

GLMM framework, Liu et al. [28] found that it is much
more convenient to test the null hypothesis H0 : h(z) = 0
based on the related linear mixed model. The corre-
sponding model in our method is

y ¼ Xβþ hþ δþ ε ;

where h is regarded as a random effect with mean zero
and variance τK, where K is an n × n matrix with the
ij-th element equal to K(si,sj). It can be shown that the
best-linear unbiased estimators (BLUP) of h and β have
the same form as those derived via LSKM estimation
[27]. The equivalence implies that we can directly use
the above likelihood functions and the test procedures
that are constructed on Model (1), but with g replaced
by h, and the similarity matrix S replaced by K.
To accommodate rare variant SNPs, a weighted kernel

function might be used so that similarity in rare variants
will be emphasized. Assuming additive genotypic coding,
a weighted IBS kernel can be written as K si; sj

� � ¼
∑p
l¼1wl 2− si;l−sj;l

�� ��� �
. One such weight is wl ¼ 1=

ffiffiffiffi
pl

p
,

where pl is the minor allele frequency of the lth SNP or
variant. A more flexible way is based on the density
function of a beta distribution: wl = Beta(pl; a, b) [14].
Note that, when a = b = 0.5, wl will be equal to 1/pl(1 −



Figure 1 Quantile-quantile plot comparing empirical p-values
(based on 400,000 simulations under the no assocation model)
against those expected under the null.
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pl), in which case the weighted IBS kernel with the ori-
ginal genotype scores will be analogous (but not exactly
identical) to using standardized genotypes in model (1).
Under this formulation, the VC score test can be viewed
as a special case of the LSKM approach.

Simulations
We performed simulation studies to examine the type I
error and power of the proposed score approach for
detecting genetic variants under a range of scenarios, es-
pecially when rare variants are the cause of the phenotypic
variation. We began by simulating 10,000 haplotypes of a
500 kb genomic region under the coalescent model using
the software “cosi” (http://www.broadinstitute.org/~sfs/
cosi/), with an effective population size of 104, mutation
rate set at 1.5 × 10-8 per bp per generation, and the recom-
bination rate varying across the region with a local win-
dow size of 100 kb. A total of 2883 variant locations were
generated using this setting, of which 73 % had minor al-
lele frequencies < 0.05. We randomly picked a region of
500 variants as our test region. In determining causal vari-
ants and risk haplotypes, we used a procedure similar to
that described in Feng et al. [10]. Specifically, we assumed
that only the variants with MAF < 2% can be causal vari-
ants, and considered a collapsing risk model in which the
risk of one haplotype is determined by the presence of a
minor allele at any risk location within the region. We
then randomly drew causal variants from the pool of loca-
tions with MAF <2% until the accumulated frequency of
risk haplotypes reached 10%. In each simulation, this pro-
cedure led to around 5%-8% of the variants being risk vari-
ants. In other words, we considered as risk haplotypes
those that include at least one causal variant and assumed
that their contributions to the phenotype are identical, i.e.,
the phenotype of an individual depends upon a genomic
region only through the number of risk haplotypes she/he
carries. The genotypes of unrelated individuals or those of
founders in family data were simulated by randomly sam-
pling with replacement two haplotypes from the 10,000
haplotypes. The haplotype data within one individual were
then combined and converted into unphased genotype
data. For illustration purposes, we only considered nuclear
families for family data in our simulations, in which the
number of children in each family was a random number
drawn from a Poisson distribution with mean λ = 2. To
simulate the genotypes of the second generation, we ran-
domly drew one of the two haplotypes from each parent
and then transmitted them to his/her offspring.
We determined the quantitative trait values based on a

normal distribution. Specifically, we first calculated the
causal genetic score (g) of an individual by g = zu, where u
is the effect size and zi is coded as 0, 1, or 2 indicating the
number of risk haplotypes. Next we generated the overall
residual variance by var(g)(1/h2 − 1), in which h2 is the
proportion of phenotypic variance explained by a genomic
region, and var(g) is the theoretical variance of the genetic
score calculated as var(g) = var(z)u2 − 2r(1 − r)u2, where r
is the proportion of risk haplotypes (in 10,000 samples).
The variances of the polygenic effect (p) and random error
effect (e) were split from the overall residual variance to
meet two conditions: var(g) + (p) = 0.4 and var(e) = 1-var
(g)-var(p). For founders and unrelated individuals, we gen-
erated values of g, p, and e from normal distributions with
means zero and variances var(g), var(p) and var(e), respect-
ively. For children, p was generated by pc ¼ 1

2 pm þ pf
� �þ

1ffiffi
2

p pi , where pm and pf are the values of the parents and

pi~N(0, var (p)). The phenotypic value of each individual
was then calculated as y = g + p + e, and all y were centered
before any analysis. For simplicity, here we did not simu-
late covariates or shared environment effects.
We designed various simulation scenarios by changing

parameters such as h2, sample sizes, and the proportion
of risk haplotypes. Each set-up consisted of 200 inde-
pendent replications (by updating each time not just
phenotypes, but also genotypes). To compare with fixed-
effect sum tests, each data set was also analyzed by the
feasible generalized least squares regression model (FGLS).
FGLS is very similar to generalized least squares except
that it uses an estimated variance-covariance matrix
(which can be obtained under the null model) [29]. We
used the ‘FGLS’ function in the R package “MixABEL”
(http://www.genabel.org/packages/MixABEL) to imple-
ment this analysis.
We have evaluated the type I error for the proposed

method by generating 400,000 replicates under the H0.

http://www.broadinstitute.org/~sfs/cosi/
http://www.broadinstitute.org/~sfs/cosi/
http://www.genabel.org/packages/MixABEL


Table 1 Power of VC-score tests under different sample
sizes

Design h2 Significance level (α)

0.05 1 × 10-5 1 × 10-6

I. 500/3000

0.01 0.840 0.355 0.270

0.02 1 0.855 0.780

0.03 1 0.985 0.980

II. 750/2000

0.01 0.890 0.345 0.235

0.02 1 0.825 0.725

0.03 1 0.975 0.970

III. 750a/2000

0.01 0.94 0.435 0.335

0.02 1 0.92 0.880

0.03 1 1 0.990

Note.—The design column indicates # of families / # of unrelated individuals.
Only nuclear families are simulated, with each family having two parents with
a mean of two children.
a. 750 families simulated with enriched risk haplotypes.
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Figure 1 shows a quantile-quantile plot of observed p
values against those expected under the null.

Results and discussion
In our primary set of simulation for power comparison,
500 nuclear families and 2,000 unrelated individuals
were generated, based on the simulation procedures de-
scribed above, where the proportion of phenotypic vari-
ance explained by a region was set at (0, 0.01,. . ., 0.05).
Each data set was analyzed by four different strategies:
(1) the proposed VC-score test with all 500 variants; (2)
the FGLS test using the genotype sum of 500 variants;
(3) the VC-score test with only rare variants (with minor
allele frequency (MAF) < 0.02 in the sample) included;
(4) the FGLS test using the genotype sum of rare vari-
ants. Because we used standardized genotypic scores and
true MAF thresholds for rare variants, results from
method (4) should represent the best results that a
weighted-sum aggregation test could possibly reach. The
power was assessed at the 0.05 and 1 × 10-6 significance
levels using 200 replications. When α was set at 0.05
and h2 (heritability) set at 0, all analysis strategies main-
tain type I error rates around the nominal level. The
power of the VC-score test is close to or higher than the
FGLS method under all scenarios. The VC-score method
also demonstrated great robustness to the number of
noise markers. Results indicate that excluding common
variants (all non-causal) results in noticeable power in-
crease when using the FLGS method, but has nearly no
effect on the VC method. We also tried the VC method
using the genotype sum of rare variants only. Results are
not presented here because they are exactly the same as
those from method (4) in view of the equivalence of the
two statistics when the genotype sum is used.
The simulation results indicate that, under the current

simulation settings and sample sizes, the proposed
method will have adequate power to detect a genomic
region with h2 around 0.01 in a candidate gene analysis,
or a region with h2 around 0.02 in a genome-wide scan.
Table 1 summarizes the results from the simulations
with increasing sample sizes, in which the power was
evaluated at significance levels of .05, 1 × 10-5, and 1 ×
10-6, respectively. Three different designs were consid-
ered. In design I we included an additional 1,000 unre-
lated individuals, while in design II we added another
250 families (approximately the same genotyping effort
as 1000 unrelated individuals). Both designs gave appar-
ent power increase compared to previous simulations
(around 15% more when h2 is below 0.03), but the in-
crease in design I is slightly greater than that in design
II. Our preliminary simulations show that the difference
can be more significant when using a smaller base sam-
ple size. As generally accepted, an association analysis
using related individuals is less informative than one
using the same number of unrelated individuals, and is
thus less powerful. In practice, families are not randomly
sampled but often selected through probands or because
of existing linkage evidence. We explored this effect in
design III. Rather than going through the complex mod-
eling of the ascertainment process, we created an
enriched risk haplotype pool by directly removing 2,000
non-risk haplotypes. Therefore, each risk haplotype has
a little more than 1/8 chance to be assigned to a family
founder instead of about 1/10. As shown in Table 1, de-
sign III had much better performance than design I.
We also indirectly compared the performance of the

VC and FGLS methods by varying parameters that can
affect the effect sizes. We calculated the power of the
two methods when the proportion of risk haplotypes
was set at 5%, i.e., only 500 haplotypes were tagged as
risk in the 10,000 haplotype pool. Although each individ-
ual has less chance to carry a risk haplotype, there would
be fewer causal variants with larger effect size simulated
(if the variance explained by a region is fixed). It was
found that both methods had substantial power increase
compared to the first simulation, but the VC method
had greater improvement than the FGLS. In a simulation
set-up where causal SNPs (rare variants only) were not
assigned independently (but pairs of SNPs close to each
other, and thus correlated, were selected), we found the
VC method had a slight power improvement while the
FGLS had a small loss in power. Detailed results are
listed in Additional file 1. In this work, we did not simu-
late data with a polygenic term but analyzed the data ig-
noring it because the results from such a comparison are
quite predictable. Because the polygenic terms are
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correlated among individuals within a family, ignoring
such correlations in the analysis will cause a deflated type
I error rate and thus render any power comparison
invalid.
Many extensions are possible for improved implementa-

tion of the proposed model and testing procedure. This
method can be easily extended to incorporate nonlinear
and interaction effects. As discussed previously, our
method can be considered as a special case in the frame-
work of the kernel machine method. Interaction and
nonlinear effects among markers can be further included
in the model through specifying a valid kernel function or
similarity metric. Also, more flexible weights may be incor-
porated into the kernel function according to allele fre-
quencies or other prior information. Although a normally
distributed trait was assumed throughout this study, the
derived score statistic is also appropriate for non-normal
traits [17]. For binary traits, we can construct the score
test analogously, based on the logistic version of the
mixed variance model (1) with the outcome y replaced
by logit[P(y = 1)], or via extending the logistic kernel ma-
chine method [13]. When there are several correlated
traits available, the multivariate variance component
model will be very useful because it can have more power
than univariate analysis.
Conclusions
We propose a multi-marker VC-based association test
using both family and unrelated data. A fast score test
has been built on the ML and REML framework, in
which only the parameters in the null model need to be
estimated. Owing to the non-block-diagonal structure of
the genotype-based similarity matrix, the score statistic
derived has a different form from that based on the typ-
ical VC model for linkage analysis. We demonstrate
through simulations that the proposed method achieves
good performance in terms of Type I error control and
statistical power. The method is implemented in the R
package “fassoc”. We believe that “fassoc” will be a use-
ful tool to complement existing software for family-
based association studies.
Availability and requirements
Project name: fassoc package
Project home page: https://r-forge.r-project.org/R/?
group_id=1379
Operating system(s): Linux, Mac OS X, Windows
Programming language: R
Other requirements: R (≥2.15.1)
License: GNU GPL
Any restrictions to use by non-academics: none except
those posed by the license
Additional file

Additional file 1: Additional simulation results and software.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
XW and NJM participated in the design of the study and implementation of
the method. XW drafted the manuscript. XZ and RCE participated in the
conception and design of the study and in editing the manuscript. All
authors read and approved the final manuscript.

Acknowledgements
The work was supported by the National Research Foundation of Korea,
funded by the Korean Government, grant number NRF-2011-220-C00004,
and by the National Institutes of Health, grant numbers HL086718 from the
National Heart, Lung and Blood Institute, HG003054 and U01HG006382 from
the National Human Genome Research Institute. The content is solely the
responsibility of the authors and does not necessarily represent the official
views of the National Human Genome Research Institute or the National
Institutes of Health.

Author details
1Department of Biostatistics, Harvard School of Public Health, Boston, MA
02115, USA. 2Department of Epidemiology and Biostatistics, Case Western
Reserve University, Cleveland, OH 44106, USA.

Received: 9 July 2012 Accepted: 11 February 2013
Published: 4 March 2013

References
1. Bodmer W, Bonilla C: Common and rare variants in multifactorial

susceptibility to common diseases. Nat Genet 2008, 40:695–701.
2. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ,

McCarthy MI, Ramos EM, Cardon LR, Chakravarti A: Finding the missing
heritability of complex diseases. Nature 2009, 461:747–753.

3. Morris AP, Zeggini E: An evaluation of statistical approaches to rare
variant analysis in genetic association studies. Genet Epidemiol 2010,
34:188.

4. Zhu X, Li S, Cooper RS, Elston RC: A unified association analysis approach
for family and unrelated samples correcting for stratification. Am J Hum
Genet 2008, 82:352–365.

5. Li B, Leal SM: Methods for detecting associations with rare variants for
common diseases: application to analysis of sequence data. Am J Hum
Genet 2008, 83:311–321.

6. Madsen BE, Browning SR: A groupwise association test for rare mutations
using a weighted sum statistic. PLoS Genet 2009, 5:e1000384.

7. Han F, Pan W: A data-adaptive sum test for disease association with
multiple common or rare variants. Hum Hered 2010, 70:42–54.

8. Zawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zöllner S:
Extending rare-variant testing strategies: analysis of noncoding
sequence and imputed genotypes. Am J Hum Genet 2010, 87:604–617.

9. Price AL, Kryukov GV, de Bakker PIW, Purcell SM, Staples J, Wei LJ, Sunyaev
SR: Pooled association tests for rare variants in exon-resequencing
studies. Am J Hum Genet 2010, 86:832–838.

10. Feng T, Elston RC, Zhu X: Detecting rare and common variants for
complex traits: sibpair and odds ratio weighted sum statistics
(SPWSS, ORWSS). Genet Epidemiol 2011, 35:398–409.

11. Zhu X, Feng T, Li Y, Lu Q, Elston RC: Detecting rare variants for complex
traits using family and unrelated data. Genet Epidemiol 2010, 34:171–187.

12. Basu S, Pan W: Comparison of statistical tests for disease association with
rare variants. Genet Epidemiol 2011, 35:606–619.

13. Wu M, Kraft P, Epstein M, Taylor D, Chanock S, Hunter D, Lin X: Powerful
SNP-Set analysis for case–control genome-wide association studies. Am J
Hum Genet 2010, 86:929–942.

14. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X: Rare variant association
testing for sequencing data using the sequence kernel association test.
Am J Hum Genet 2011, 89:82–93.

https://r-forge.r-project.org/R/?group_id=1379
https://r-forge.r-project.org/R/?group_id=1379
http://www.biomedcentral.com/content/supplementary/1471-2156-14-17-S1.docx


Wang et al. BMC Genetics 2013, 14:17 Page 8 of 8
http://www.biomedcentral.com/1471-2156/14/17
15. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden
PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM:
Common SNPs explain a large proportion of the heritability for human
height. Nat Genet 2010, 42:565–569.

16. Yang J, Lee SH, Goddard ME, Visscher PM: GCTA: a tool for genome-wide
complex trait analysis. Am J Hum Genet 2011, 88:76–82.

17. Tzeng JY, Zhang D: Haplotype-based association analysis via variance-
components score test. Am J Hum Genet 2007, 81:927–938.

18. Tzeng JY, Zhang D, Chang SM, Thomas DC, Davidian M: Gene trait
similarity regression for multimarker based association analysis.
Biometrics 2009, 65:822–832.

19. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E:
Efficient control of population structure in model organism association
mapping. Genetics 2008, 178:1709–1723.

20. Lin X: Variance component testing in generalised linear models with
random effects. Biometrika 1997, 84:309.

21. Zhang D, Lin X: Hypothesis testing in semiparametric additive mixed
models. Biostatistics 2003, 4:57–74.

22. Liu H, Tang Y, Zhang HH: A new chi-square approximation to the
distribution of non-negative definite quadratic forms in non-central
normal variables. Comput Stat Data Anal 2009, 53:853–856.

23. Davies RB: Algorithm AS 155: the distribution of a linear combination of
2 random variables. J R Stat Soc Ser C Appl Stat 1980, 29:323–333.

24. Farebrother R: Algorithm AS 204: the distribution of a positive linear
combination of 2 random variables. J R Stat Soc Ser C Appl Stat 1984,
33:332–339.

25. Imhof J: Computing the distribution of quadratic forms in normal
variables. Biometrika 1961, 48:419–426.

26. Duchesne P, Lafaye De Micheaux P: Computing the distribution of
quadratic forms: further comparisons between the Liu-tang-zhang
approximation and exact methods. Comput Stat Data Anal 2010,
54:858–862.

27. Kwee L, Liu D, Lin X, Ghosh D, Epstein M: A powerful and flexible
multilocus association test for quantitative traits. Am J Hum Genet 2008,
82:386–397.

28. Liu D, Lin X, Ghosh D: Semiparametric Regression of Multidimensional
Genetic Pathway Data: Least-Squares Kernel Machines and Linear Mixed
Models. Biometrics 2007, 63:1079–1088.

29. Li X, Basu S, Miller MB, Iacono W, McGue M: A rapid generalized least
squares model for a genome-wide quantitative trait association analysis
in families. Hum Hered 2011, 71:67–82.

doi:10.1186/1471-2156-14-17
Cite this article as: Wang et al.: A variance component based multi-
marker association test using family and unrelated data. BMC Genetics
2013 14:17.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Linear mixed model and score test
	Simulations

	Results and discussion
	Conclusions
	Availability and requirements
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

