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Abstract

Background: Many QTL studies have two common features: (1) often there is missing marker information, (2) among
many markers involved in the biological process only a few are causal. In statistics, the second issue falls under the
headings “sparsity” and “causal inference”. The goal of this work is to develop a two-step statistical methodology for
QTL mapping for markers with binary genotypes. The first step introduces a novel imputation method for missing
genotypes. Outcomes of the proposed imputation method are probabilities which serve as weights to the second
step, namely in weighted lasso. The sparse phenotype inference is employed to select a set of predictive markers for
the trait of interest.

Results: Simulation studies validate the proposed methodology under a wide range of realistic settings.
Furthermore, the methodology outperforms alternative imputation and variable selection methods in such studies.
The methodology was applied to an Arabidopsis experiment, containing 69 markers for 165 recombinant inbred lines
of a F8 generation. The results confirm previously identified regions, however several new markers are also found. On
the basis of the inferred ROC behavior these markers show good potential for being real, especially for the
germination trait Gmax.

Conclusions: Our imputation method shows higher accuracy in terms of sensitivity and specificity compared to
alternative imputation method. Also, the proposed weighted lasso outperforms commonly practiced multiple
regression as well as the traditional lasso and adaptive lasso with three weighting schemes. This means that under
realistic missing data settings this methodology can be used for QTL identification.

Keywords: Arabidopsis, Germination traits, QTL mapping, Recombinant inbred line (RIL), Binary genotypes,
Likelihood-based genotype imputation, Sparse variable selection, Weighted lasso

Background
Quantitative traits are traits that vary continuously. The
phenotype of a quantitative trait (QT) is the cumulative
result of several genes, their interactions and the environ-
ment. Regions within genomes that contain genes associ-
ated with a particular QT are known as quantitative trait
loci (QTL) [1]. The major biological question is to iden-
tify the QTL associated with variation in traits. Under-
standing the genetic architecture of quantitative traits is
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important for animal and plant breeding, medicine, and
evolution. For example, plant breeders can use the QTL
identified for seed quality to select and breed plants with
certain desirable characteristics. Molecular markers are
specific fragments of DNA that represent the genetic
differences between individual organisms or species [1].
Development of molecular (or genetic) markers creates
new opportunities for QTL identification. Markers are
not usually targets themselves but act as “flags” for genes
controlling the trait. Molecular markers that are closely
located and tightly linked to genes that control the trait
are referred to as “tags” .
The process of coupling the phenotype (i.e. trait

measurements) and genotype (i.e. molecular markers)
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data followed by QTL analysis is known as QTL map-
ping. The aim of QTL mapping is to identify the markers
which are tightly linked to genes affecting the trait as
well as to estimate the magnitude of their effects. Most
methods consider repeated single QTL models, but it
is now understood that modeling multiple QTLs simul-
taneously, as we consider in this paper, is superior to
single QTL models [2]. Often both the phenotype and
genotype data are incomplete. Though imputation meth-
ods for phenotype data in the context of QTL mapping
is quite well-developed [3,4], there is less consensus on
imputation of missing genotype data, due to its categori-
cal nature. Two major strategies for genotype imputation
are based on: (1) a maximum likelihood and (2) multiple
imputation strategies [5]. Although multiple imputation is
potentially flexible, it tends to be slow for large fraction
of missing values. Therefore, we propose a likelihood-
based method. In the context of QTL mapping, existing
genotype imputation methods use phenotype data and
multiple generation information to obtain a conditional
probability of a missing genotype [6]. These methods are
design-specific and lack generalizability [6,7]. Most com-
monly, the missing genotypes are replaced with predicted
values that are based on the observed genotypes at neigh-
boring markers, as in the multiple QTL mapping (MQM)
algorithm [8,9].
Due to the roughly Markov structure of the meiosis pro-

cess, we introduce a probability imputation method for
markers with binary genotypes that includes information
only from immediate neighbors. This method is applied
to recombinant inbred line (RIL) experiment, though it
can be extended to other mating designs with binary
genotypes (e.g. backcross, double-haploid). Clearly, our
method is applicable to a wider set of designs and it
does not require the phenotype data in order to com-
pute a probability for missing genotype. In contrast to
others [8], the recombination rate is not estimated sepa-
rately but rather a specific parameter is computed within
the algorithm that plays a similar role. Our imputation
method considers two separate models, one for markers
at the edge of a chromosome and another for all others.
Each model requires an estimation of a recombination
rate parameter. The model-specific parameter for mid-
dle markers is estimated as a function of the genotypes
of the two flanking markers and the genetic distances
towards those neighbors. A distinguishing characteristic
of our imputation method is that the outcomes are prob-
abilities which correspond to weights of observing one of
the two parental lines at that locus. We integrate these
weights into a lasso [10] to advance the QTL identifi-
cation. The proposed analysis pipeline is validated using
extensive simulations and compared to alternative meth-
ods. It is then applied to a real dataset that motivated our
method and which is described next.

Motivating example
The primary biological goal of this work is QTL detec-
tion and the eventual goal is to improve the quality of seed
production in Arabidopsis thaliana. It has been shown
that measurements of the germination rate of maize in
the laboratory could predict the relative performance in
field sowing [11]. An increase in sowing performance can
result in economically important crops. A similar strategy
is taken in our study where germination characteristics
of Arabidopsis seeds were examined in order to find
QTLs associated with each trait [12]. Lines from recom-
binant inbred population are important and convenient
resources to study the genetic mapping of quantitative
traits in plants or animals.
All RILs have the same parents. Each RIL has a unique

combination of loci derived by recombination of the alle-
les present in the parents. Thus, each RIL has a unique
genetic make-up. One traditional way of RIL construction
is to cross two parental plants to produce an F1 genera-
tion, followed by several consecutive generations of self-
mating. This results in a so called “core population” . These
lines are practically homozygous and can be propagated
indefinitely as clones. Biological and technical details of
the RIL procedure are shown in Figure 1.
In our study, F8 seeds from 165 lines of Arabidop-

sis were obtained from the Versailles Biological Resource
Centre [13]. The seeds were the results of cross between
Bayreuth and Shahdara Arabidopsis plants, using an
inbreeding approach over eight generations. Bay-0 orig-
inates from a fallow-land habitat near Bayreuth in
Germany, whereas Shahdara grows at high altitude in

Parent ShaParent Bay 0

F1

F2: Self mating

F8: Repeated self mating

Figure 1 Arabidopsis RIL procedure. Left-RIL procedure with
self-mating over 8 generations; right-Arabidopsis plant (source:
http://www-ijpb.versailles.inra.fr/), namely left, the vegetative stage,
before flowering and growth of the floral stalk (bottom left). On the
center an adult plant at full flowering/seed set. On the rigth, flower,
floral stem and seeds. White bars represent 1 cm, except for flower
and seeds: 1 mm.



Demetrashvili et al. BMC Genetics 2013, 14:125 Page 3 of 19
http://www.biomedcentral.com/1471-2156/14/125

the Pamiro-Alay mountains in Tadjikistan [14]. The Bay-
0 and Sha RIL populations have been used in several
previous studies to map QTLs [12]. Arabidopsis has five
chromosomes. For every RIL, 69 markers were genotyped
with an average genetic distance of 6.1 centimorgans
(cM) between markers [14]. Of the 69 included markers,
respectively 18, 11, 12, 11 and 17 markers are located on
chromosomes 1, 2, 3, 4 and 5. The lengths of chromo-
somes are 91.3, 64.6, 72.2, 69.1 and 91.2 cM respectively.

Arabidopsis germination experiment
The phenotyping experiment was conducted in two
stages: (1) seed sowing followed by measurements of
grown plant traits and (2) collecting seeds from these
plants followed by germination [12]. In this study we
examine traits from the second part of the experiment,
namely germination. In the first stage of the experiment
(2008), Arabidopsis seeds obtained from Versailles were
randomly allocated to three plates and grown in a cli-
matized chamber. The plates can be considered technical
replicates, each with 3-5 RIL plants. One year later, seeds
stored in 2008, were planted on a fourth plate. In addition,
the best seeds (free of fungus, etc.) from the first three
plates were collected and germinated in 2009 on a fifth
plate. In the second stage of the experiment, 50-100 seeds
from each line of the core population of grown plants were
collected and germinated.
Several factors were varied or simply needed to be

accounted for in germination experiment, such as seed
age, dormancy, imbibition, growing plate (and selec-
tion), temperature, and chemical stress. With respect
to dormancy, i.e. storage conditions, two types can be
identified, namely fresh and after-ripened (AR) [12].
Besides normal temperature, two types of tempera-
ture stresses were applied, namely cold and heat shock.
The following chemical stresses were applied: table salt,
osmotic-inducing mannitol, oxidizer hydrogen peroxide,
inhibitor abscisic acid (ABA), and controlled deteriora-
tion (CD) [12]. Germination process under all chemicals
except hydrogen peroxide was carried out in light and
dark imbibition conditions.
Cumulative germination data were gathered to estimate

the germination performance. Five relevant parameters
from the germination-time curve were extracted using
the Germinator package [13]. These parameters are (1)
the percentage of maximum germination, Gmax, indicat-
ing the maximum germination capacity of a seed lot, (2)
the time to reach 10% of germination, T10, indicating
initiation of germination, (3) the time to reach 50% of ger-
mination, T50, indicating rate of germination, (4) the time
between 16% and 84% of germination, U8416, indicating
uniformity of germination, and (5) the area under the ger-
mination curve between t=0 and t=100 hours, AUC100
(see Figure 2).

Figure 2 Cumulative germination curve, described by Gmax (%),
T50 (h), T10 (h), U8416 (h), and AUC100 (%× h).

Statistical design
All five traits are continuous traits (Gmax (%), T50 (h), T10
(h), U8416 (h), AUC100 (%× h)). Higher Gmax means more
germination. Lower T10 and T50 mean faster germina-
tion. The aim of this QTL analysis is to find the markers
that are associated with these five response variables. We
use the terms “(quantitive) trait” and “response variable”
interchangeably.
The set of explanatory variables are the 69 markers. Our

genetic dataset contains genotypes of 69 markers for 167
plants (including parental Bay and Sha). Marker geno-
types for Bay and Sha are denoted by 0 and 1 respectively.
Genotypes across all markers are the same for each par-
ent. Genotypes in children plants are inherited from either
of the parents, therefore each marker has only two pos-
sible genotypes {0, 1}. So, technically, the 69 markers can
be seen as a distinct combination of 0’s and 1’s across the
RILs.
All 167 plants are treated under 42 different conditions

resulting in 7014 observations for every trait, some of
which are missing. These conditions are made up from
combination of the factors (described in previous section),
which are not of primary interest, but which must be
taken into account. Conditions are age, dormancy (Fresh,
AR), plate (1-5), imbibition (light, dark), temperature
(8, 10, 20, 25, 30 degrees Celcius) and chemical stress (no,
salt, mannitol, hydrogen peroxide, ABA, CD). Hence, each
response variable is adjusted for these nuisance variables.
Such adjustment confirms that any detected marker effect
is robust under all these conditions.

Missing data
The phenotypes Gmax, T50, T10, U8416, and AUC100 con-
tain respectively 0.49%, 1.90%, 1.90%, 1.92% and 0.49%
missing data. It seems reasonable to assume that the miss-
ingness of any observation for a given trait is independent
of the observed and unobserved values. Such missing
mechanism is known as missing completely at random
(MCAR). Furthermore, the small percentage of missing-
ness across all phenotypes means that we can safely omit
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the missing observations from our analysis, even if the
MCAR assumption is not true.
We summarized the number of missing markers per

plant and the number of missing plants per marker. About
25% of RILs do not have missing values for any marker.
The remaining RILs have up to 9 missing values, with only
two RILs have 20 and 24missing markers. As for the num-
ber of missing plants per marker, we counted that each
marker has at least one missing RIL. The number of miss-
ing RILs per marker vary between 1 and 13. Missingness
inmarkers may be caused by essay quality, poor hybridiza-
tion and/or other reasons. Such nature of missingness
is unlikely to be MCAR, as the missingness may well
statistically depend on whether its neighbor is missing –
due to the sequential operation of the genotyping instru-
ment. This missingness feature might then be described
as missing at random (MAR) since the missingness does
not depend on the unobserved markers themselves, but
it does depend on the observed markers, i.e. we observe
whether its neighbor is missing or not and this enables
prediction of the probability that this marker is missing.

Methods
Marker probability model
There are only two possible genotypes for each marker in
a RIL experiment. Let x(i)

c,t be the parental type for a RIL i
at chromosome c at genetic location t. Namely:

x(i)
c,t =

{
0, if parental type at (c, t) for RIL i is Bay
1, if parental type at (c, t) for RIL i is Sha.

(1)

We assume that for eachmarker the genotype at position t
depends on the genotypes of two immediate neighboring
markers at positions t0 and t1, as well as the distances (t1−
t) and (t−t0) assuming t0 < t < t1. It would be reasonable
to assume an Isingmodel on switching the genotypes from
one marker to another:

P
(
x(i)
c,t |

{
x(i)
c,s

}
s≤t0∪s≥t1

)
= P

(
x(i)
c,t |x(i)

c,t0x
(i)
c,t1

)
, (2)

where t0 and t1 are genetic locations of flanking markers
and x(i)

c,t0 and x(i)
c,t1 are genotypes of those markers. In our

case genetic locations t0, t and t1 refer to genetic distances
from starting point of a chromosome.
As stated above, markers in a RIL have only two geno-

types {0, 1}. There are two possible sources of the genetic
variability, genetic recombination and mutation. Recom-
bination/meiosis is a process of chromosomal crossover
whereby two chromatids can mesh with one another. The
variations, isolated by breeders are the result of recom-
bination and not mutation due to short period of time
involved with the isolation of the varieties. Variation due

to mutation on the time-scale of this experiment (i.e. 6/8
generations) is dwarfed by the variation of recombination.
This physical intertwining during meiosis induces nat-

urally (though not necessarily) a Markov dependence
structure, whereby knowledge of the configuration of
chromatids at a particular marker depends only on the
neighboring configurations. With respect to the shape
of the dependence structure, we note that it is natural
that the absolute value of the derivative of the probabil-
ity model is minimal exactly half-way through the interval
between two known markers. This reflects the fact that
the amount of change of information is smallest when we
are further away from the known markers. This leads to
four possible scenarios of a marker with immediate neigh-
bors. Figure 3 shows two of such scenarios, the remaining
two are symmetric (about the x-axis) of the ones depicted
on this Figure. These scenarios are meaningful only for
markers having both neighbors. In turn, a marker has
both neighbors if it is not at the edge of a chromosome.
As for edge markers, only two scenarios are possible (not
depicted here). Considering scenarios given in Figure 3,
we propose a model that exhibits the same shape. We
introduce a parameter α ∈[ 0;∞) which technically has a
scaling function and biologically it has a role similar to the
recombination rate. The probability model for a RIL i and
a marker located in the middle of a chromosome is:

π(α) ≡ P
(
x(i)
c,t = 1|x(i)

c,t0 = x0, x(i)
c,t1 = x1

)
= 1

2
+ 1

2
δx0

( t1 − t
t1 − t0

)[α(t1−t0)+1]

+ 1
2
δx1

( t − t0
t1 − t0

)[α(t1−t0)+1]
,

(3)

location
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t0 t1

0
0.

5
1

?

scenario 1

location
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t0 t1

0
0.

5
1

?
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Figure 3 Possible scenarios for genotypes of three consecutive
markers located at locations t0, t (at mark ?) and t1 for RIL i:
(scenario 1) y axis shows the probability of observing Sha at
location t given we observe Sha at locations t0 and t1,
P(xc,t = 1|xc,t0 = 1, xc,t1 = 1); (scenario 2) y axis shows the
probability of observing Sha at location t given we observe Bay
at t0 and Sha at t1, P(xc,t = 1|xc,t0 = 0, xc,t1 = 1).
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where x0, x1 ∈ {0, 1} and δx is defined by:

δx =
{
1, if x = 1
−1, if x = 0.

(4)

Note, for a marker surrounded by two known markers, if
α = 0 this means the recombination rate is zero. There-
fore, (3) gives us that the probability of a Sha marker
between two given Shamarkers is 1. In contrast, if α → ∞
then the recombination rate is infinite meaning that there
is no information in neighboring markers. Therefore, (3)
gives us a probability of 0.5 for any value of the flanking
markers.
Likewise, for markers at right edge of a chromosome the

probability model involves a parameter β ∈[ 0;∞):

π(β) ≡ P
(
x(i)
c,t = 1|x(i)

c,t0 = x0
)

= 1
2

+ 1
2
δx0β

(t−t0), (5)

where x0 ∈ {0, 1} and δx is defined as in (4). The probabil-
ity model for the markers at left edge of a chromosome is
similar to equation (5).

Pseudomaximum likelihood in imputation
To estimate the parameters α and β in probability mod-
els (3) and (5) we use only the children plants and not the
parents. The pseudo log-likelihood [15,16] of a model (3)
for middle markers is:

�(α) ∼= �i,c,t lnP
(
x(i)
c,t |x(i)

c,(t−1), x
(i)
c,(t+1)

)
= �i,c,t

[
x(i)
c,t ln(π(α))

+
(
1 − x(i)

c,t

)
ln(1 − π(α))

]
,

(6)

from which we estimate α. In a similar way we estimate β .
We examined whether separate parameters are required

for every chromosome. For middle markers we tested H0:
α1 = α2 = α3 = α4 = α5 versus H1: at least one α differs
from others. Subsequently, we computed the pseudo log-
likelihood on five parameters and compared it with the
pseudo log-likelihood on one parameter using the pseudo
likelihood ratio test (LRT) statistic:

LRT = −2[ �(α̂OneChr) − �(α̂FiveChr)] . (7)

The distribution of the LRT is the weighted sum of four
independent χ2

1 distributions [17]. Since the pseudo like-
lihood is probabilistically close to the true likelihood, the
LRT can also be approximated by χ2

4 . Alternatively, the
p-value can be calculated using a bootstrap approach.
We also tested the goodness of fit of the proposedmodel

using Pearson’s chi-squared statistic.

Genotype imputation
The missing markers are substituted with a one or a zero,
by rounding the probability P(x(i)

c,t |x(i)
c,t0x

(i)
c,t1) to an integer.

The substituted value is more certain when the proba-
bility is closer to zero or one. It is less certain when the
probability is close to 0.5. In the analysis we will use
the weights that would represent this uncertainty. The
weights for the missing genotypes are:

w(i)
c,t = 2|P

(
x(i)
c,t |x(i)

c,t0x
(i)
c,t1

)
− 1

2
|, (8)

wherew(i)
c,t ∈[ 0, 1]. Indeed, zero weights are used for geno-

types with rounded probabilities equal to 0.5 and weights
of ones are used when the imputed probabilities approach
to zero or one. For non-missing genotypes, we assume that
they are observed with complete certainty resulting in a
weight of one. The highest possible weights are given to
the observed genotypes. The weights w(i)

c,t are computed
from the imputed (predicted) probabilities P̂(x(i)

c,t). These
probabilities were estimated via the maximum likelihood
estimation procedure given in previous two sections.

Phenotype response
We adjusted every trait for the effect of the nuisance
variables (age, dormancy, plate, imbibition, temperature,
chemical, Bay, Sha). For observation i, the adjustment was
carried out using a linear regression as shown on the
example of Gmax below:

Gmaxi = φ0 + φ1agei + . . . φmShai + yi, (9)

where the residual variance is constant across all obser-
vations and the residual is distributed independently and
identically (iid), yi

iid∼ N(0, τ 2). The model (9) employs
m regression parameters φ0, . . . ,φm. Then we computed
the difference between the observed and fitted values for
every observation and used these residuals yi as inputs to
weighted lasso.

Weighted lasso phenotype inference
The original lasso weights all observations equally [10].
An adaptive lasso is an extension of lasso by weighting
or penalizing different coefficient differently in a way that
depends on the data [18]. The proposed weighted lasso
(wlasso) is a different extension of the lasso by weighting
different observations differently in a way that depends
on the data and the value of the coefficients. An adaptive
lasso places weights in the penalty part of the objective
function, whereas wlasso places weights in the sum of
squares part of the objective function.
For convenience, we use in this section the notation xij

and wij instead of x(i)
cj ,tj and w(i)

cj ,tj for the genotype and
weight information of RIL i at chromosome cj at loca-
tion tj, since information about chromosomal locations
and genetic distances have already been incorporated into
the estimates of the probabilities π(α) or π(β) and the
corresponding weights. Below we describe the wlasso
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algorithm. LetX be thematrix that contains original geno-
type values {0, 1} and the rounded imputed probabilities;
xij is an element of this matrix for RIL i and marker
j. yi is the residual response for RIL i, as described in
previous section. We assume that the observations are
independent. We define the wlasso estimate θ̂ as:

θ̂λ = argmin
θ

⎧⎪⎨⎪⎩
n∑

i=1

∑p
j=1 wij|θj|∑p
j=1 |θj|

⎛⎝yi −
p∑

j=1
θjxij

⎞⎠2

+λ

p∑
j=1

|θj|
⎫⎬⎭ .

(10)

The idea behind the method is to downweight obser-
vations with a lot of imputed values xij: note for instance
that observations with all weights wij zero are eliminated
from the regression, whereas observations with a fully
observed xi., and therefore all weights wij equal to one,
are fully taken into consideration. Moreover, observations
that have only missing values on marker locations j that
are deemed irrelevant for the regression, i.e. θ̂j = 0, will
not be penalized for their partial missingness. The model
naturally accounts for imputation imprecision, without
letting irrelevant imputations affects the quality of the
estimate and with the ordinary lasso as limiting case when
no imputation was performed.
Just as in ordinary lasso, the selection of “best” reg-

ularization parameter λ is not obvious. Various selec-
tion methods, such as the Bayesian information criterion
(BIC), Akaike information criterion (AIC) and cross-
validation, have been proposed. As suggested [19], the BIC
is the most relevant criterion when the sparsity of the
model is of primary concern. The BIC tends to lead to con-
sistent selection of λ and quite sparsemodels with relevant
biological interpretation. Therefore it is used in this study,
i.e. we minimize the following objective function across λ:

BIC(λ) =
n∑

i=1

(
yi − ∑p

j=1 θ̂λ,jxij
)2

s2
+ d̂f (λ) ln(n), (11)

where s2 is some robust estimate of the variance that does
not depend on λ and df (λ) = ∑p

j=1 1{θ̂λ,j 
=0} is the number
of non-zero parameters in the model.
Given that (10) cannot be minimized explicitly, we use

an iterative procedure to obtain θ̂λ, which given initial
non-zero weights is guaranteed to converge to the global
minimum. In practice, we define initial estimates θ̂

(0) =
(θ̂

(0)
1 , θ̂ (0)

2 , . . . , θ̂ (0)
p ) for all markers using the regular lasso.

Such initialization is the same as assigning weights of ones
w(0)
i = 1 to every RIL i. In iteration k + 1, the regression

parameters are updated as:

θ̂
(k+1) = argmin

θ

⎧⎪⎨⎪⎩
n∑

i=1
w(k)
i

⎛⎝yi −
p∑

j=1
θjxij

⎞⎠2

+λ

p∑
j=1

|θj|
⎫⎬⎭ ,

(12)

where the weights w(k)
i for each RIL in equation (12) are

updated in an iterative way as:

w(k)
i =

∑p
j=1 wij|θ̂ (k)

j |∑p
j=1 |θ̂ (k)

j |
. (13)

We are defining convergence as the first k, such that
|w(k+1)

i − w(k)
i |2 < ε, where ε is a predefined tolerance

level. Using tolerance level ε = 10−8 all five traits con-
verged in 4 iterations. The plots of weights are included
for visualization convenience (see Additional files 1, 2
and 3).

Results
In this section, we first present the results of detecting
QTL effects for germination in Arabidopsis. Then, we
present the strategies and results from three simulation
studies. With the first simulation study we aim to jus-
tify our proposed methodology. In the second and third
simulation studies we compare our methodology with
alternative methodologies for the case study. The second
study emphasizes a comparison of our imputation meth-
ods with the nearest marker imputation. The third study
focuses on comparison of sparse variable selection tech-
niques, namely our weighted lasso, the traditional lasso
[10] and adaptive lasso [18].

Analysis of Arabidopsis germination experiment
For the genotype data, we estimated two recombination
rate parameters, depending on whether the marker was
on the edge or in the interior of a chromosome. The
parameters α and β in probability models (3) and (5)
were estimated using 165 children plants. The maximum
pseudo log-likelihood estimates for these parameters
were α̂ = 0.0047 and β̂ = 0.9524 (see Figures 4 and 5).
The need for introducing a separate parameter for each
chromosome is shown not to be necessary for interior
markers (LRT=4.633, df=4, chi-square p-value=0.327,
bootstrap p-value=0.456) and for edge markers
(LRT=4.116, df=4, chi-square p-value=0.391). The good-
ness of fit of the proposed recombination models for
interior and edge markers was tested using Pearson’s
chi-squared statistic. The results suggest a good fit of
both models (for interior marker: χ2=7458.23, df=9280,
p-value=1; for edge markers: χ2=1210.51, df=1591,
p-value=1), suggesting that we do not need more than just
the flanking markers to infer the genotype of the missing
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marker. This is in agreement with the traditional meiosis
model of recombination.
We adjusted all 7014 observations of every trait using

regression model (9). Number of regression parameters
φ0, . . . ,φm is high since some of the input variables are cat-
egorical. In total we estimated m = 15 parameters. Then,
the residuals were modeled using wlasso, as described in
previous sections. The marker effects, demonstrated by
regression coefficients in wlasso, are presented in Figure 6.
These values will be used in the simulation studies below.
The BICs for all five traits are shown in Figure 7. For
each trait, those markers are selected by wlasso as indi-
cated by the minimal BIC value. Thus, on the basis
of BIC 29, 10, 15, 11 and 22 markers are selected for
Gmax, T50, T10, U8416, and AUC100 respectively. Clearly,
the number and selection of markers differ for each
trait. They represent in total 39 out of the 69 available
markers.
We computed the LRT under the full and a restricted

models on a 10-base logarithm scale for markers selected
by wlasso. We present the 39 marker names, genetic dis-
tances and respective LRT statistic in Table 1. The larger
the LRT statistic, the stronger the evidence in favor of a
QTL effect at a particular location of the chromosome.
The LRT statistic below 0.01 was substituted by 0. We
would like to emphasize that detecting peaks that contain
several markers increased our confidence in the region

Figure 6 Plots of weighted lasso regression coefficients θ̂ vs.
number of steps in weighted lasso for traits Gmax, T50, T10, U8416,
and AUC100.
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Figure 7 Plots of BIC vs. number of steps in weighted lasso for traits Gmax, T50, T10, U8416, and AUC100.

being associated with a trait. For example, the beginning
of chromosome 3 (with markers MSAT399, ATHCHIB2,
MSAT305754) and middle of chromosome 4 (MSAT415,
CIW7, MSAT418) give strong evidences of these regions
to be associated with Gmax (we see a set of genes with
a high LRT statistic). Loci at chromosomes 3 and 5 are
strongly indicative for all five traits. We also visualized the
LRT statistic across genetic distance and presented the
plot for T50 in Figure 8. Five peaks with eight markers
are seen for T50 peak1-MSAT399, ATHCHIB2; peak2-
MSAT332; peak3-MSAT49, MSAT468; peak4-MSAT514,
NGA139; peak5-MSAT520037. We have the highest con-
fidence in peak3 since it contains multiple markers having
the large LRT statistic. All peaks except the one at chro-
mosome 4 have been detected by biologists as well [12].
Thus, we have found one additional peak for T50.
None of the detected peaks at chromosomes 2 and 4

were identified before [12]. Peaks at chromosome 2 are
relatively low. The region with MSAT25 provides rel-
atively high confidence for association with T10. The
duo markers (MSAT238 and MSAT241, IND216199 and
MSAT210, MSAT210 andMSAT222), with a considerable
LRT value, demonstrate a certain confidence of associa-
tion with Gmax, T10 and U8416 respectively. Thus, regions
at chromosome 2 should be considered among QTL
despite their low LRT statistic. Similar interpretations
apply to detected regions at chromosome 4. In addition,
several peaks detected by us at chromosomes 1, 3 and 5
have not been identified by others [12].

For comparison with LRT given above, we computed
the LOD-score for every marker across each trait. The
LOD-score is essentially the LRT statistic on a 10-base
logarithm scale. It measures the strength of evidence for
the presence of a QTL at a particular location. The LOD-
score for each marker is computed as the LRT under the
full and a restricted models. The full model includes all
69 markers, while the restricted model includes all but the
marker of interest. We present the LOD-scores for T50 in
Figure 9 and it is clear that some of the peaks from the
LRT are much sparser and that several large peaks have
disappeared. This shows the instability of the ordinary
multiple regression approach as compared to the stable
lasso method.

Simulation strategies
Simulating genotype data by an Ising model (interac-
tion parameter η) is quite realistic for a recombination
process on a chromosome [20]. The parameter η shows
the strength of the dependence between markers. We
considered that inheritance at loci on different chromo-
somes are independent events and simulated the markers
of every chromosome one at a time. We included the
dependence between markers in two ways: (1) the depen-
dence between equally-spaced neighboring markers using
an Ising model with η = 0.4, (2) the genetic distances
between the observed markers by subsampling the full
process. In particular, we rounded the genetic distance of
every chromosome and simulatedmarkers with genotypes
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Table 1 LRT statistic of markers selected by weighted lasso
for Gmax, T50, T10, U8416, and AUC100 ordered by genetic
distance across 5 chromosomes in Arabidopsis

Marker chr gdist Gmax T50 T10 U8416 AUC100

MSAT100008 1 0 0.64

F21M12 1 9.7 0.09

IND4992 1 15.4 0.04 0.32

MSAT110 1 21.6 0.02 0

MSAT108193 1 26.6 0.14 0.21

T27K12 1 49.1 1.27 0.65

F5I14 1 69.6 0 0

MSAT127088 1 82.7 0.15 0.33

MSAT15 1 91.3 0.01 0.81 0

MSAT25 2 0.19

MSAT200897 2 7.9 0.02

MSAT238 2 13 0.16 0.15

MSAT241 2 35 0.09 0

IND216199 2 51.5 0.03

MSAT210 2 57.9 0.17 0.24

MSAT222 2 64.6 0.86

MSAT399 3 3.2 0.68 0.79 0.58 1.03

ATHCHIB2 3 6.6 0.57 0.02 0 0.16

MSAT305754 3 7.9 0.58

MSAT319 3 23.2 0.03 0.13

MSAT332 3 39.5 0.17 0.38 0.51 0.03 0.31

MSAT321 3 48 0.33 0.09 0.25

MSAT318406 3 53.3 0.05 0

MSAT318 3 64.1 0

MSAT370 3 72.2 1.28

MSAT48 4 2 0.09 0.04

MSAT443 4 10.7 0.52

MSAT415 4 33.5 0.45

CIW7 4 45 1.22 0.29

MSAT418 4 47 0.03

MSAT49 4 55.6 0.06 0.60 0.31 0

MSAT468 4 61.8 0.33 0.17

MSAT500027 5 0 0.34 0.5

MSAT514 5 26.6 0 0.16 0.01 0.46 0.09

NGA139 5 30.4 0.42 0.03 0 0.13

MSAT520037 5 67.4 0.9 0.30 0.27 0.01 1.07

MSAT512 5 71.6 0.13 0.39 0.31

MSAT519 5 85 0.26 0.01

K9I9 5 91.2 0.35 0.08 0.25

{0, 1} 1 cM apart for 165 RILs. Then we selected those
markers which were spaced with the same genetic dis-
tances as markers in our RIL experimental data. Markers
for every chromosome were simulated independently and
then joined together as a genotype dataset.
We assumed that among all observed markers about

10% have the true QTL effect. Thus, the largest posi-
tive and negative θ̂ of 6 markers from weighted lasso
of our real experiments were selected as the true effects
(see Figure 6). Among the simulated 69 markers, 6 evenly
spaced markers (along five chromosomes) were selected
as the true input variables. An additive effect of mark-
ers was assumed and the response variable was generated
using the multiple regression model. Residual error, hav-
ing the normal distribution with mean μ = 0, was added
to the trait. We studied our method under several val-
ues of residual error variances, namely σ 2 = 0.5, 1, 2, 3.
We also investigated our methodology with 6 true mark-
ers being clustered (3 markers on the first chromosome
and 3 on the second one) and compared it with the case of
evenly-spaced markers.
We studied two missing mechanisms among mark-

ers: (1) an MCAR using Bernoulli missingness and (2)
MAR using an Ising missingness model. Following our
experimental data, we explored the case with 10% of
missingness. Thus, the probability parameter in Bernoulli
distribution is 0.1. We assumed the stronger dependence
ηMAR = 0.6 among missing markers than simply among
observed and non-observed markers (η = 0.4). For
every above described scenario, we carried out 50 simu-
lations. The simulated data were analyzed using the pro-
posed imputation model and wlasso as well as alternative
approaches. For every simulation scenario, we summa-
rized the performance of the tested methodology using
the receiver operating curve (ROC). For that we measured
the fraction of true positives out of all positives, so called
true positive rate (TPR) and the fraction of false positives
out of the negatives, so called false positive rate (FPR).
To be specific, TPR=TP/(TP+FN) and FPR=FP/(FP+TN),
where TP, TN, FP, and FN are the numbers of true pos-
itives, true negatives, false positives, and false negatives.
TPR and FPR are also known as the sensitivity and (1-
specificity) respectively.
For the sparse variable selection methods, we studied

the TPR and FPR across a range of the lasso regularization
parameter λ (BIC is not employed here as it was for real
case study).

Simulation study 1: justification of the proposed
methodology
The ROC curves for equally-spaced markers with MCAR
and MAR are demonstrated in Figures 10 and 11. We
see, that as the residual error variance increases, both
the TPR and FPR decrease. This trend was very similar
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Figure 10 ROC curves comparison across different residual error variances for evenly-spacedmarkers with MCARmechanism.
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Figure 11 ROC curves comparison across different residual error variances for evenly-spacedmarkers with MARmechanism.
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for clustered markers with both missing mechanisms.
Though, as the residual error variance increases (σ 2 > 1),
the TPR and FPR drop more for clustered markers than
for equally-spaced markers in MAR (see Figure 12).
To evaluate the accuracy of RIL experiments, we have

to examine the results from real data in light of the sim-
ulation results. Traits Gmax and T50 were examined as
examples. In the simulation studies: regression coeffi-
cients were θ = 0.5 (and up), investigated residual error
variances were σ 2 = 0.5, 1, 2, 3, and the number of RILs
was 165. In experiment for T50: regression coefficients
were θ = 0.5 (and up), residual error variance was σ 2 =
150, and the number of observations was n = 165 × 42 =
7014. These are equivalent to simulations with 165 RILs
and σ 2 ≈ 3.5. In experiment for Gmax: θ = 0.02 (and
up), σ 2 = 0.04, n = 7014. These are equivalent to sim-
ulations with θ = 0.5 (and up), 165 RILs, and σ 2 =
0.04(0.5/0.02)2/42 ≈ 0.6. From these residual error vari-
ances, we can find the corresponding ROC curves for T50
and Gmax (see Figure 10 or 11). Thus, the results of T50
experiment are less powerful given the overall low ROC
curve (σ 2 = 3). In contrast, the results of Gmax are highly
stable, given the overall high ROC curve (σ 2 = 0.5).

Simulation study 2: comparison of the proposed
methodology focusing on imputation methods
The nearest marker imputation and multiple regres-
sion are frequently employed methods for QTL analysis.
Our imputation was compared with the nearest marker

imputation and wlasso was compared with the multiple
regression. As a result we examined four models: (1) our
imputation and wlasso, (2) our imputation and multi-
ple regression, (3) nearest marker imputation and wlasso,
(4) nearest marker imputation and multiple regression.
Whenever wlasso was included in a simulation we studied
the TPR and FPR across a range of the tuning parameter
λ. Whenever multiple regression was included in a sim-
ulation we used the full significance level range [ 0, 1] by
increments of 0.015. Such increment results in 67 steps
which are of the same order as number of steps in the
wlasso. All four models were applied to simulated data
described above and were studied for equally-spaced and
clustered markers with MCAR and MAR mechanisms.
The results were summarized using ROC curves. The
ROC curves across four models for clustered markers
when the residual error variance is small (σ 2 = 0.5)
are shown in Figures 13 and 14. Our model 1 outper-
forms others under all scenarios. We also show similar
plots for larger residual error variance (σ 2 = 3) when
the markers are evenly-spaced (see Figures 15 and 16).
Clearly, as the residual error variance increases, ourModel
1 has more pronounced sensitivity and (1-specificity) than
other models have. We also demonstrate the results for
intermediate variance (σ 2 = 1) when markers are evenly-
spaced and clustered (see Figures 17 and 18). Interestingly,
for smaller residual error variance (σ 2 ≤ 1), the ROC
curves of Model 2 are slightly above the curves of Model
3. This implies that the probabilistic imputation method
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Figure 13 ROC curves comparison across 4 models for clustered markers with MCARmechanismwhen σ 2 = 0.5.
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Figure 14 ROC curves comparison across 4 models for clustered markers with MARmechanismwhen σ 2 = 0.5.
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Figure 15 ROC curves comparison across 4 models for evenly-spacedmarkers with MCARmechanismwhen σ 2 = 3.
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Figure 16 ROC curves comparison across 4 models for evenly-spacedmarkers with MARmechanismwhen σ 2 = 3.



Demetrashvili et al. BMC Genetics 2013, 14:125 Page 15 of 19
http://www.biomedcentral.com/1471-2156/14/125

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

False positive rate (1−specificity)

Tr
ue

 p
os

iti
ve

 r
at

e 
(s

en
si

tiv
iy

)

Model 1
Model 2
Model 3
Model 4

Figure 17 ROC curves comparison across 4 models for evenly-spacedmarkers with MARmechanismwhen σ 2 = 1.

with multiple regression has slightly higher accuracy than
nearest marker imputation with wlasso. For larger resid-
ual error variance (σ 2 > 1), the ROC curves of models
2 and 3 are approximately on top of each other, implying
that the improvement for both wlasso and the probabilis-
tic imputation method is roughly the same. However, just
comparing our imputation method with nearest marker
imputation for wlasso (Model 1 vs. Model 3) and for
multiple regression (Model 2 vs. Model 4) demonstrates
that our imputation method outperforms nearest marker
imputation.

Simulation study 3: comparison of the proposed
methodology focusing on sparse variable selection
techniques used for phenotype inference
Our wlasso is compared with the classical lasso and
an adaptive lasso with three weighting schemes [18]. In
an adaptive lasso, we estimated the weight vector as
ŵadaptive = 1/|θ̂OLS|γ , where θ̂OLS is a vector of ordinary
least square estimates and γ = 0.5, 1, 2 [18]. All five mod-
els were applied to the simulated data described above.
For lasso and adaptive lasso, the imputed probabilities
were rounded towards zeros and ones after the imputa-
tion (ignoring our weighting procedure). Thus, an input
matrix to lasso and adaptive lasso contained genotype val-
ues {0, 1}. We investigated settings for equally-spaced and
clustered markers with both, MCAR and MAR mecha-
nisms. Again, the results were summarized using ROC
curves. The ROC curves of the five models for both,

evenly-spaced and clustered markers with MCARmecha-
nism when the residual error variance σ 2 = 1 are shown
in Figures 19 and 20. Similar plots for MAR are presented
in Figures 21 and 22. Clearly, the wlasso is more accurate
than other four alternatives. This accuracy is maintained
across the investigated variances of all magnitudes (σ 2 =
0.5, 1, 2, 3), see Additional files 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, and 15. An obvious advantage of wlasso is
observed for both, evenly-spaced and clustered markers
with MAR mechanism (see Additional files 6, 7, 10, 11,
14, and 15). For clusteredmarkers withMCAR, the wlasso
has lost an obvious advantage but still remains at the same
accuracy level as lasso when the residual error variance
(σ 2 = 2, 3) increases (see Additional files 9 and 13).
Though, for evenly-spaced markers with MCAR and large
residual error variances (σ 2 = 2, 3), the wlasso main-
tains noticeably higher accuracy levels than the other four
approaches (see Additional files 8 and 12).

Discussion
The simulation studies have shown that the combina-
tion of the proposed probabilistic imputation method
and wlasso is an accurate methodology for QTL analy-
sis. The pipeline suggested in this paper has an advantage
of computational speed. An alternative to the proposed
likelihood-based imputation is multiple imputation [21],
but it is slower and leads every time to a possibly differ-
ent result. The wlasso is used to advance the selection of
markers associated with a trait.
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Figure 18 ROC curves comparison across 4 models for clustered markers with MARmechanismwhen σ 2 = 1.
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Figure 19 ROC curves comparison across 5 models for evenly-spacedmarkers with MCARmechanismwhen σ 2 = 1.
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Figure 20 ROC curves comparison across 5 models for clustered markers with MCARmechanismwhen σ 2 = 1.
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Figure 21 ROC curves comparison across 5 models for evenly-spacedmarkers with MARmechanismwhen σ 2 = 1.
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Figure 22 ROC curves comparison across 5 models for clustered markers with MARmechanismwhen σ 2 = 1.

In this paper, we analyzed each of the five traits of the
Arabidopsis separately. In principle, it is possible to anal-
yse the traits jointly, as they are all traits associated with
germination. Clearly, the QTLs shared by all traits can be
analyzed further. To identify whether these loci are causal
or reactive for a particular trait is an interesting follow-
up question. Possible causal relationships among a trio
of two traits and a QTL is summarized by others [22].
Their approach can be applied to various pairs of selected
Arabidopsis traits and extended to a quintet of traits in
order to determine the type of relationship (for exam-
ple, independent, reactive, causal) existing among traits.
Though, this goes beyond the scope of the paper.

Conclusions
Our methodology has high accuracy in terms of sen-
sitivity and specificity for clustered and evenly-spaced
markers for both, MCAR and MAR missing mecha-
nisms. Clearly, the accuracy increases as the magnitude
of the residual error variance decreases. In comparison
with other approaches, our proposed methodology out-
performs alternative methods under most investigated
scenarios but is never worse than any of the approaches.
More specifically, our probabilistic imputation method
is more accurate than the nearest marker imputation.
Also, our wlasso is more accurate than commonly prac-
ticed multiple regression, the traditional lasso, and adap-
tive lasso (with the three selected weighting scheme).
More importantly, our methodology has been biologically

validated on an Arabidopsis study and demonstrated good
accuracy. In conclusion, the proposed methodology can
be used for QTL identification, especially under the real-
istic setting of missing genotypes among markers.
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