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Abstract

Background: In many contexts, pedigrees for individuals are known even though not all individuals have been fully
genotyped. In one extreme case, the genotypes for a set of full siblings are known, with no knowledge of parental

genotypes. We propose a method for inferring phased haplotypes and genotypes for all individuals, even those with
missing data, in such pedigrees, allowing a multitude of classic and recent methods for linkage and genome analysis

to be used more efficiently.

available under a BSD-style license.
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Results: By artificially removing the founder generation genotype data from a well-studied simulated dataset, the
quality of reconstructed genotypes in that generation can be verified. For the full structure of repeated matings with
15 offspring per mating, 10 dams per sire, 99.89% of all founder markers were phased correctly, given only the
unphased genotypes for offspring. The accuracy was reduced only slightly, to 99.51%, when introducing a 2% error
rate in offspring genotypes. When reduced to only 5 full-sib offspring in a single sire-dam mating, the corresponding
percentage is 92.62%, which compares favorably with 89.28% from the leading Merlin package. Furthermore, Merlin is
unable to handle more than approximately 10 sibs, as the number of states tracked rises exponentially with family
size, while our approach has no such limit and handles 150 half-sibs with ease in our experiments.

Conclusions: Our method is able to reconstruct genotypes for parents when genotype data is only available for
offspring individuals, as well as haplotypes for all individuals. Compared to the Merlin package, we can handle larger
pedigrees and produce superior results, mainly due to the fact that Merlin uses the Viterbi algorithm on the state
space to infer the genotype sequence. Tracking of haplotype and allele origin can be used in any application where
the marker set does not directly influence genotype variation influencing traits. Inference of genotypes can also
reduce the effects of genotyping errors and missing data. The cnF2freq codebase implementing our approach is
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Background

Inference of haplotypes, or phasing, from genotype and
pedigree data can be useful in several ways. For traditional
linkage analysis, including QTL mapping, knowledge of
haplotypes can help in producing a more correct analy-
sis of linkage accurately tracing individual recombination
events, and thus higher statistical power. Phase data can
also be used directly or indirectly for genome-wide asso-
ciation studies (GWAS), for example by using knowledge
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of phase for a sparse marker map within a local popula-
tion as the basis for dense genotype imputation based on
reference populations [1].

In this article, we focus on reconstruction of haplotypes
where pedigrees are known and assumed to be reliable. In
such populations, full genotypes can be missing in ances-
tral generations, for some or all individuals. This situation
is especially frequent for species with long generation
times, where older historical records have to be used. In
wild mammal populations, the paternity of a litter might
also be unknown or unsure. Inference of haplotypes in
sib-ships with some or all parental genotype information
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missing has therefore been given more attention recently
[2,3].

Our approach to resolving haplotypes and missing
genotypes is based on repeated local analysis of focus
individuals and their immediate ancestors, representing
further relations by introducing a parametrization (called
skewness) of phase in each marker. This can be contrasted
against earlier models trying to create a global represen-
tation of the full pedigree [4]. We have earlier described
and demonstrated a less refined version of this approach
with simulated datasets [5,6], with an underlying assump-
tion that genotypes are static. We now extend the model
by treating the genotypes themselves, previously defined
as fixed and definite, as model parameters (sureness val-
ues) that can be optimized (fitted) based on the data.
Using the model and a specifically adapted optimization
algorithm, we demonstrate reconstruction of completely
missing parental genotypes from offspring genotype data
with high accuracy.

Our model is suitable for large families, a large num-
ber of generations and a large number of markers, making
it a versatile tool in all contexts where the pedigrees
are known and haplotypes or inference of missing geno-
types would be useful. Our methods are also applicable
to any pattern of missing ancestral genotype data, e.g.
only one parent genotyped, only a subset of microsatel-
lites genotyped or completely missing genotype data for
both parents, allowing higher accuracy and new types of
analysis to be performed on a wide set of experimental
datasets.

Methods

Our model is a specialized Hidden Markov Model
(HMM). In general, an HMM is defined by its states and
transitions between states [7]. The use of HMMs for trac-
ing haplotypes has a long history. In fact, certain aspects
of the approach presented here are shared with the orig-
inal presentation of MAPMAKER [8] (the Lander-Green
algorithm). Efficient implementations of related models
have also previously been made with the explicit goal of
extracting haplotypes from genotype data [4,9]. However,
many descriptions either describe only the model with-
out attention to important algorithmic aspects in their
implementation, or do not clearly separate computational
details from the mathematical representation of the statis-
tical models.

As much work in the field has been incremental, we
therefore here present our model in full, followed by a
description of relevant aspects of the optimization algo-
rithms used to fit the model in practice, i.e. adapting the
skewness and sureness parameters based on the observed
data. In addition, since the results of our experiments
are compared against results from Merlin [4], we specifi-
cally mention similarities and differences in the modelling
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compared to that tool. The approach described is simi-
lar to our earlier work [5,6], but the description of the
model and algorithm is more thorough. The handling of
genotype uncertainty represented as sureness parameters
is completely novel, while other aspects have also been
improved.

The building blocks of an HMM

An HMM consists of a set of states, allowed transi-
tions between states and emitted symbols [7]. The hidden
aspect of the model is that the state sequence is gener-
ally assumed to be unknown (and hence also the transi-
tions), while the emitted symbols are possible to observe.
One out of many popular bioinformatic applications for
HMMs is motif-finding, where the state is an idealized
(hidden) description of the protein structure. Transitions
would describe the possible orderings of such structures,
while nucleotides or amino acids would form the emission
alphabet.

We will present an HMM for haplotype determination
in pedigrees. The model is versatile, based on the observa-
tion that when phase information is available, the phasing
of a single non-phased individual can be performed using
only a local pedigree with the closest ancestors. We there-
fore parametrize uncertainty in phase as well as specific
alleles by the introduction of parameters that we choose
to call skewness (Vi) and sureness (Gip,).

Many HMMs tend to be time-independent. This means
that the emission and transition probabilities are defined
solely by the state of the model, no matter at what
position in the sequence that state is found. However,
time-dependent HMMs, where the emission and tran-
sition probabilities are dependent on the state as well
as the position (marker number), can also be powerful,
especially when the emitted symbol structure is complex.
The model we are using is of this nature. The emitted
symbols consist of marker values, or specifically, pairs of
binary (for biallelic markers) or other discrete values (for
e.g. micro-satellites), which are naturally different for dif-
ferent markers. The Markov property is still maintained,
since the probabilities are independent of the states in
other markers.

Choice of state space
The states that result in emissions in our model consist of
haplotype inheritance pathways, indicating which of the
two haplotypes in a diploid individual that was transmit-
ted, at a specific position, to a specific individual offspring.
A state realization for two parents and an offspring (a trio)
can for example be “chromatid 1 from father, chromatid 2
from mother”.

The state representation forms a crucial difference
between our work and that represented by e.g. Merlin [4].
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This difference is illustrated in Figure 1 (original pedi-
grees drawn using the R package kinship2 [10]). Merlin
represents a full clique of connected individuals (i.e. a
possibly multi-generational family) as one stochastic pro-
cess, while our model decomposes the clique into several
separate focus pedigrees of limited size and hence multi-
ple stochastic processes. The state in Merlin consists of
the global haplotype inheritance pathway tree, going back
from every descendant to the original founders. In a text
description, a state within the pedigree shown in Figure 1
could read “chromatid 1 from founder 1 to offspring 3,
chromatid 1 from founder 2 to offspring 3, chromatid 2
from offspring 3 to offspring 6, chromatid 1 from offspring
3 to offspring 7..”. As each meiosis includes a binary
choice, the cardinality of the total theoretical state space
becomes approximately 2N, where N is the cardinality of
the set of related individuals. Many of these states are
unlikely as they would be inconsistent with the observed
marker values. This sparseness property forms the basis
of the sparse gene flow trees used in the implementation
of Merlin. Since the state models the full tree of meiosis
events, haplotypes can be determined in one single run or
iteration over the data, using e.g. the forward-backward
algorithm, without any need for iterative refinement.

Our model, on the other hand, is inherently local, but
using an iterative approach to still share global informa-
tion from all parts of the pedigree. A complex pedigree
is viewed as multiple instantiations of the smaller prob-
lem of a single offspring individual and its ancestors k
generations back. For practical purposes k is restricted to
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1 or 2. Already k = 3 would lead to 16, 384 states, as the
number of states grows exponentially on the number of
ancestors, which itself grows exponentially on the number
of generations.

It is important to observe that in the case of informative
markers phasing can be solved for small local pedigrees
straightforwardly applying the Mendelian laws. Thus, in
informative markers, our model is able to resolve the
haplotypes, with no additional input. If both parents are
heterozygous in a marker, and thus that marker in itself
is not informative, some states will still be more likely
than others, as only some would correspond to emitted
symbols matching the observed data. If parental geno-
type phase and linkage to neighboring markers are known,
only a few states will have a non-negligible probability.
Those states will indicate the correct haplotype set in the
offspring.

When all focus pedigrees are analyzed in the first itera-
tion, using HMM algorithms, the state sequence will only
be uniquely defined in those regions where markers are
fully informative. We then iteratively refine parameters to
infer a consistent haplotype resolution in all markers step
by step, not only the most informative cases.

The description so far leaves no specific parameter to
refine in order to determine and represent haplotypes. For
this purpose, we introduce the two additional parameters
per marker per individual, skewness and sureness. The pur-
pose of introducing these is to carry relevant information
between focus pedigrees, as well as being useful indicators
of the true genome structure in their own right.

6 0 O o o

noo D D o o o

6 7 8 9 10 7 8 9 10 11

Figure 1 State space decomposition. A pedigree for a small set of half-sibs, including parents and one set of grandparents known. In Merlin (left)
[4], all meioses, i.e. all allele transmission, are covered by the state representation in a single stochastic process. In our model (right), on the other
hand, the pedigree is decomposed into a series of focus pedigrees, with one individual and its immediate ancestors k generations back. Here, k = 1.
Some individuals in this pedigree then appear in up to 6 unique focus pedigrees. Parameter values representing phase and unknown genotypes are
shared among all focus pedigrees. Thus, global information on allele transmission is inserted into the individual focus pedigrees, while avoiding the
exponential explosion in the size of the state space resulting from explicitly keeping track of all meioses at once, as is done in e.g. Merlin.
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Determining emission probabilities from states

We will now present in detail how to compute the emis-
sion probabilities, first without our added parametriza-
tion, and then including skewness (i) as well as sureness
(@im) parameters. An illustration of critical aspects of the
model structure, and the effect of our added parameters,
is found in Figure 2.

Without the parametrization, the emission probabilities
for all permissible symbols for a state are identical, while
the rest are zero. A permissible symbol would in this case
consist of a configuration of ordered marker pairs that is
internally consistent with the inheritance pathway defined
by the state. If the state includes chromatid 1 in A being
transmitted to chromatid 1 in B, which in turn is trans-
mitted to chromatid 1 in C, then the emitted pairs for
A, B, and C need to include the same allele in a correct
chromatid position.

The state s € S can thus be represented as a binary string
of N — 1 digits, each stating which of the two chromatids
that was transmitted from an ancestor to its offspring in
the current focus pedigree. The focus individual itself has
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no offspring in the pedigree, and thus no specific state
bit. In addition, we introduce a chromosome-wide shuf-
fling flag o determining the parental identity, mapping the
two distinct chromatids in an individual to its actual par-
ents. This flag includes one binary value per non-founder
individual within the focus pedigree. Depending on the
realization of the model, o can be kept fixed (e.g. all zeros),
or the full model can be evaluated over the chromosomes
for all possible assignments of o. Unless phase is speci-
fied explicitly in some way, the emission probabilities will
be symmetrical for different choices of o (modifying the
state accordingly), as the chromatid assignment is then
arbitrary.

The emitted symbols can be seen as a string with two
(ordered) marker symbols per individual (2N in total).
Alternatively, they can be represented as N binary digits,
if we assume that the observed marker values are correct,
and we only need to specify the chromatid assignment
for the two observed values per individual (e.g. xy or yx).
The latter description is more amenable for analysis, so we
will describe emitted symbols e € E as such strings of N

Parent

Ymi decides chromatid assignment of alleles

s; decides chromatid transmitted to offspring

Strand 1 1 1 2 1

Strand 2 ] 2 ; 1 1

o

Offspring

©; mapping chromatids to parental origin

jSlrand 1 1 1 2 1 1 1 2

Strand 2 | 2 2 2 2 2 2 2

Sureness

4 allows the allele assignment to be partial

4,,=0.5, uninformative
1 4,,=0.9, strong bias

1 a,,=1.0, no uncertainty

recorded allele value a

mi

"1" in all three examples

Figure 2 lllustration of model. Panels, from top to bottom: 1) In a focus pedigree, the skewness parameters yp,; per marker per individual
determine chromatid assignment of the recorded alleles. A state bit s; per individual in the pedigree (except for the focus individual) determines
which chromatid was transmitted to the offspring. Here, we see a recombination after the fourth marker in an imagined state sequence. The alleles
listed in the figure should be interpreted as the actual emitted symbols. 2) In every non-founder in the focus pedigree, the shuffling flag o; maps the
two chromatids to parental origin. Here, chromatid 1 is defined as originating from the parent shown in the panel above. 3) By introducing sureness
values @, any recorded allele value can be treated as not fully definite. In an iterative refinement, the genotypes can be inferred, going from low
information to an almost definite assignment. This is useful both for handling genotyping errors and for inferring missing genotypes.
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binary digits. Note that for any homozygous marker, the
two orderings are outwardly identical.

In summary, the actual allele being transmitted into a
specific offspring individual is thus dependent on up to
three things, each being a binary flag; the state s, the emit-
ted symbol e, and the shuffling flag 0. We define an opera-
tor Q as applying an exclusive or operation on these three,
or equivalently, s:- = Qi(sy,e;,01) = (s;i+ e; + 0;) mod 2
(substituting 0 for those individuals i where the relevant
terms are not defined). The list of alleles transmitted s} can
be concatenated into a string 5.

If we call the set of permissible allele transmissions &/,
then the non-normalized emission probability function
without parametrization for phase for marker m in the
focus pedigree P, E(e, s, o, m, P), can be expressed as:

1 se¥
0 s¢8

This definition of E would hold for Merlin and our
model alike, with the noted differences in the size of the
pedigree included in the state space representation. Based

on this definition of E, we can extend it to include our
added parameters, skewness and sureness.

E(e,s,0,m,P) = (1)

Skewness

We have previously proposed [6] that the phase can be
successfully parametrized as a scalar variable per marker
per individual, which we call skewness. This parameter is
shared between different focus pedigrees where the same
individual appears. Thus, in an iterative updating scheme,
information from different focus pedigrees will be fused
to compute the update, and then distributed to all analyses
in the next iteration. We use y;;,, to denote the skewness
for marker m in individual .

The skewness determines the relative probability for
ordering the unordered pair xy as xy (skewness 0) or yx
(skewness 1). That is, the skewness states whether the
true, biological, ordering of the marker values matches the
order in which they were more or less arbitrarily recorded
in the genotype data, or if it is the opposite ordering. If
the ordering is non-determinable, the skewness should
be 0.5. Conflicting data, where different offspring individ-
uals make different haplotype resolutions likely in their
common ancestors, could result in some other fraction.

The emission function when taking the set of skewness
values I into account can be expressed as:

N
Ey(e;s,0,m,P,T) = E(e,s,0,m,P) [ [ (1 — lei = yim)
i=1

(2)

Taking skewness into account thus can be described as
an independent filter on the non-phased emission proba-
bilities.
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Sureness

While skewness can separate phase when the alleles are
known, optimizing the skewness assignment will not
help if both alleles in some marker in an individual are
unknown. To handle the assignment of unknown alleles in
a similar way, by gradual refinement, eventually converg-
ing to the correct assignment, we introduce the sureness
parameter.

The description so far has treated the actual observed
marker values as completely fixed. This is not fully appro-
priate for several reasons. Genotype information can be
incorrect or inconclusive. To cope with genotyping errors,
a small non-zero emission probability is allowed in some
models for configurations that would not be permissi-
ble (outside of §’). This is not the case in Merlin, as a
small probability for any state would break the sparse-
ness assumption which is crucial to making Merlin effi-
cient. However, to handle systematically incomplete infor-
mation or error-prone genotype data, a more thorough
representation of this lack of information is needed.

We call the total set of possible alleles for each marker
A,,, and the two alleles in each individual a;,(0, 1). The
string s’ representing the allele configuration used in eq. 1
can thus be rewritten to be independent of the specific
alleles observed by constructing a’ as the concatenation
of aj,, (s'i), analogous to constructing s’ by concatenating
s;. Call the set of permissible allele configurations in this
form A’ and redefine E as E(e, s, 0, m, P, A):

1 ded

E(e,s,0,m,P,A) =
( ) 0 d¢A

®3)

The indicator function for set membership of 4’ in A’
can be rewritten as a function A’ of (e, s, o, m, A):

E(e,s,0,m,P,A) = A'(e,s,0,m, A) (4)

Here, a;,,(0,1) is defined as a scalar, which can alter-
natively be represented as an indicator vector within the
set of possible alleles, with a single 1 value and the rest
being 0. We add the sureness parameter allowing the sin-
gular 1 to take another value, representing some level of
uncertainty of the genotype (see Figure 2). Just like we
have a;,,(0,1), we then also have a;,(0,1), which rep-
resents the sureness of the allele specified by a;,, being
correct, and 1 — a;,(0, 1) for any other allele. Rather than
there being a single canonical a; for a specific configu-
ration (s;, e;, 0;), there are instead different probabilities
for different alleles in ;. Likewise, 4’ also becomes a
multi-dimensional probability space for all possible allele
configurations, although with most of the probability mass
centered on A" (assuming all surenesses being close to 1).
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The corresponding entity to the simple indicator func-
tion for set membership in A, A’, then becomes:

Ale,s,0,m,A,A) = Y i@ (5)

aeA

This results in another new expression related to E:

E(e,s,0,m,P,A,A) = A'(e, 5,0, m, A, A) (6)

Finally, if we use the sureness-aware E, we can also con-
struct the skewness-sureness-aware E,, using the same
filtering definition as in eq. 2:

E,(e;s,0,mP,T, A, A) =E(e,s,0,m,P,A,A)

N
<[]a-le—vym) (@

i=1

It is natural to fix 4 values to at least 0.5 (otherwise,
another allele than the one indicated by a would be the
most likely one). By the introduction of sureness, even
completely untyped individuals can be entered into the
analysis. Iteratively, their genotypes can be inferred and
the sureness values can converge.

In our previous work, only skewness was included, lim-
iting the flexibility in handling incorrect or missing geno-
types. A parameter configuration including skewness, but
not sureness, on the other hand, would not lend itself to
simple optimization. Our treatment of sureness requires
the two alleles in a marker to be distinguishable, and it is
only the introduction of skewness that achieves this goal
in the model structure.

Transition probabilities
Between different markers, state transitions can take
place. As a Markov process does not have any mem-
ory, the most obvious model of recombination will match
Haldane’s mapping function [11], with no recombination
interference. The recombination fraction in a single meio-
sis between markers m and m+1 can be represented as 7y,
supposedly in the range [0, 0.5), as normal linkage would
not be upheld otherwise.

The total transition probability between states so and
s1 (written as a sequence of binary digits) can thus be
computed as:

N-1

T(m,s0,51) = [ ] 11 = Isoi = s1il — rm ®)
i=1

The upper limit of the product excludes the last indi-
vidual, the focus individual itself, as we are not tracking
any meioses, and hence no state, from that individual.
Although we have here assumed r;, to be identical for
all individuals in the population, it is fully possible to
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generalize this in order to account for sex-specific or other
patterns in recombination probabilities, as done in other
work using HMMs for genotype or haplotype analysis
[12]. The values ry, also do not need to be specified a
priori, but can be part of the parameter set being itera-
tively optimized. However, for the Markov model to hold,
the marker order should be pre-defined and identical for
all individuals. Sex-specific recombination probabilities as
well as iterative updates of them are included in our actual
implementations of the model.

Summary of model

In our model, a set of different focus pedigrees, each cen-
tering on a single focus individual and its ancestors k
(k = 1,2) generations back are analyzed separately. By
including a set of optimizable parameters, including skew-
ness, sureness, and possibly mapping distances between
markers, information can be shared between all focus
pedigrees in an iterative manner. Haplotype resolutions
that are likely or unlikely due to the Mendelian inheri-
tance of alleles and genetic linkage in one focus pedigree
can influence those parameter values. Thus, all available
information can be taken into account, while not tightly
coupling the individuals into a single Markov process (as
is done in e.g. Merlin). Doing the latter can result in an
exponential explosion of the number of states, severely
reducing the practical applicability of the model.

As our parametrization is based on scalar probabili-
ties, rather than binary values, deterministic optimization
methods can be used. This can be contrasted against mod-
els where only non-deterministic Markov-Chain Monte
Carlo algorithms are used to fit the models in practice, e.g.
[13,14].

Method of model optimization
Actually finding optimal parameters for an HMM is not
a trivial task. In fact, it is generally established that for
all but the most simple cases, one can not expect to
find a global optimum, nor is it necessarily tractable to
quantify the quality of a local one. Our optimization
method is based on the generally established approach of
the Baum-Welch algorithm [15], itself a specific version
of expectation-maximization [16] for HMM parameter
optimization. The objective function that the algorithm
attempts to maximize is the likelihood of the observed
data, given the model. This can be understood by the
fact that HMMs are generative by their nature. Although
they are frequently used to analyze observational data,
what they prescribe is the (hidden) stochastic process
generating such observations. Adapting the parameters
to maximize the likelihood means that the model of the
generating process is adapted to match the observations.
The practical application of the Baum-Welch algorithm
involves counting the frequency of different events, such
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as emitted symbols (conditioned on state) and transitions
(between states). The expressions for the frequencies are
parametrized by probabilities, and it can be shown that
the likelihood is consistently improved if the new value
for a probability parameter is chosen based on the poste-
rior value for that probability based on a previous analysis.
Again, note that this consistent improvement does not
mean that the method in general will converge to a global
optimum in likelihood.

In our application, we have multiple observations, as
each focus pedigree consists of one separate realization
of the process. The total likelihoods for multiple indepen-
dent Markov chains are however equivalent to the product
of the likelihoods for the independent chains, which in
turn would be equivalent to a uniform state transition
probability distribution between the last position in one
chain and the first position in the next one. Thus, since
it is proven that the Baum-Welch algorithm optimizes
the parameters for a single observation chain, it also by
definition optimizes the parameters for multiple chains
in the same model. That means that parameter updates
from multiple observations can simply be combined lin-
early, with consistent improvements in the compound
likelihood for each iteration.

However, when k (the number of generations tracked)
exceeds 1, updates for the non-immediate ancestor gen-
erations need to be weighted. If we consider the sample
pedigree in Figure 1 (although that figure illustrates k =
1), there are two meiosis events resulting in individual 3.
Individual 3 in turn also has multiple offspring, but they
are all observations showing different aspects of the same
stochastic process representing the meioses generating
individual 3. The updates to individuals 1 and 2 from any
descendant pedigree should be equivalent. That means
that if there would be siblings to individual 3, no mat-
ter what number of offspring they have, the total update
from a child and its children to the grandparents should
be weighted equally. As individual 3 has three offspring,
the updates to individuals 1 and 2 from 3 and each of its
children should therefore be divided by four, in order to
be weighted equivalently to a child with no offspring on its
own.

Although generally simple and based on standard algo-
rithms, our implementation has certain properties that
merit specific mention, as we have found them critical
to efficient convergence not only to some local optimum,
but to one of acceptable quality consistent with biologi-
cal expectations. The general motivation behind many of
these concerns and their solutions is the fact that com-
pared to many HMM applications, our models could be
perceived as over-parametrized, as we are representing a
location-dependent single realization of a stochastic pro-
cess, resulting in specific parameters per marker and per
individual.
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Specifically, we will discuss the issues of:

* Initialization values - as the approach can converge
to a local maximum, the choice of initialization
values for parameters can greatly influence
convergence, or introduce bias.

Skewness updates - dampening is needed to fully

allow global information to propagate to all focus

pedigrees and across markers. Care needs to be taken
when weighting updates from multiple generations.

* Inversions - the updates in the Baum-Welch

algorithm work on a single-parameter basis, but our

parameter representation could induce errors that
are global in nature. This issue can be resolved by
testing whether likelihood is improved by inverting
all values downstream of some location.

Sureness updates - sureness values need to be capped

at 0.5, again reaffirming the need for a good choice of

initialization values, as well as dampening during the
update iterations.

* Recombination fraction updates - if the generated
mapping distances are to be used more generally, the
recombination fraction in marker stretches where
the specific location cannot be determined should be
averaged out, rather than allowing the full
recombination mass to converge on a single marker

gap-

Initialization values

One important aspect in initializing the HMM, and
expectation-maximization optimizations in general, is to
avoid total symmetry. For example, it might seem rea-
sonable to initialize all skewness values to 0.5. However,
bar numerical instability, with no absolute reference, the
skewness values would then never converge. A random
initialization for parameters will (almost certainly) avoid
such a stalemate, but the bias induced can be hard to
assess. We have therefore tried as consistently as possi-
ble to maintain biologically and mathematically justifiable
starting values, reflecting the (lack of) prior information.

The case where this needs to be explored in more detail
is that of the skewness values. We choose to initialize the
first heterozygotic marker on each chromosome in each
individual to 0.

When handling genotype uncertainty in the offspring
genotypes, the initial heuristic inference of allele and sure-
ness values needs to reflect this fact. The heuristics used
are based on Mendelian rules, and given a non-zero error
rate and enough individuals, all markers will be resolved
as heterozygous. Therefore, the sureness initialization
needs to represent the count of individuals supporting
the inferred allele. We suggest summing the logit values
for the genotype error rate based on the sureness values
of all offspring supporting a specific interpretation, and
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then dividing by a fourth of the total number of offspring,
which is the count expected given Hardy-Weinberg equi-
librium. In other aspects, the heuristics are similar to the
ones used by e.g. GridQTL [17] when computing line
origin probabilities.

Skewness updates

There is a definite risk that the updates suggested by the
Baum-Welch algorithm will vary drastically, or even start
oscillating, given the strong dependencies between sep-
arate focus pedigrees. For this reason, we have modified
the Baum-Welch updates of skewness in order to make
the method converge appropriately in practice, i.e. given
the effects of floating-point inaccuracy. In addition, com-
pared to ordinary HMMs, the binary nature of the phase
“events” means that either y,,; or 1 — y will by necessity
be included for some skewness y,,; in all focus pedigrees
where the corresponding marker and individual appears.
Even a comparatively small absolute change in y can then
exert a considerable influence on the likelihood.

For numerical reasons our implementation records the
logarithm of the frequency ratio between the two phasing
realizations from each focus pedigree. These are summed
and normalized. Due to the property where the likelihood
will always include either y or 1 — y, a logit transform is
applied. In the logit space, the updated skewness is damp-
ened by a factor d,, chosen to be 0.1. Especially when
sureness is optimized at the same time, the dampening
ensures that information is propagated before skewness
values become too fixed.

It should be noted that even in double-precision float-
ing point arithmetics, the “opposite” interpretation of say
15 consecutive markers when y = 0.1 will vanish and
become equal to the machine epsilon (~ 1071%). With-
out dampening, longer range phase dependencies might
not start influencing the skewness updates before they are
hidden by numerical inaccuracy, especially when sureness
updates are performed simultaneously.

In addition, a capping is also included for the maximum
relative change in the ratios [lfy, 1)—/;/ } The capping
constant controlling the maximum change, p,, has been
fixed at 3 when sureness updates are not included, but
decreased to 1.6 when optimizing sureness as well. The
reasoning behind introducing such a constant is similar to
the one for d,,. Having both constraints, rather than just
one of them, allows both to be chosen less conservatively,
ensuring faster convergence. Of the two, p, is the more
problematic, as the overall direction of the update vec-
tor is changed by capping the most drastic changes. The
effects from d,, are a more classical dampening. Despite
this, introducing p,, is important in cases where the first
few iterations exclusively suggest one single interpreta-
tion, before sureness updates and other skewness values
have begun to settle, and so modifying the picture.
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Inversions

Updates of the parameters, skewness as well as sureness,
are done on a per-marker basis. The posterior probabili-
ties are computed, given all existing parameter values. If
there is limited information in some marker region, the
skewness values can be “flipped” That is, a local region
converges to values opposite of what they should be, in
relation to the reference marker. This issue can appear
more easily in founders, as there is no inherent haplotype
reference based on parental genotypes for those individu-
als. However, not all errors in a model fit can be properly
resolved by a per-marker update.

During the iterative Baum-Welch update process, a sin-
gle marker on the border of an inverted region “sees”
influence from the flipped region as well as the correct
reference, but the two flanks will pull the y update in dif-
ferent directions. There is then no way to improve the
likelihood by modifying the skewness of a single marker
locally.

If two parents are both missing genotypes, such an error
in skewness in the offspring can also result in inferred
genotypes (alleles a as well as sureness values a) possibly
being flipped between the parents, as well.

Although this condition will not be handled by the con-
ventional Baum-Welch updates, thanks to the structure
with the state s, the shuffling flag o and emitted symbol e
all being binary flags, it is not computationally demand-
ing to compute the resulting likelihood from an arbitrary
inversion of skewness values as well as switching geno-
types at any marker and downstream thereof in a focus
pedigree.

For full sib families, or when only considering flips
involving a single individual (i.e. not moving genotypes
between parents) it is also relatively simple to combine the
likelihood contributions from different pedigrees. In this
way, we can take into account a selected set of updates that
are not confined to a single marker, effectively eliminating
the problem of inversion bubbles without influencing the
algorithmic complexity. Thus, this type of update can scale
well even as the marker count is increased (itself making
local inversions more likely).

Our implementation compiles a list of all inversion
configurations at all markers that would render a total
increase in likelihood. From this list, a set of flips incur-
ring the greatest relative likelihood increases, while not
overlapping each other, is chosen. No individual can be
included in multiple flips in the same iteration. If this
condition would not be included, in many cases several
flips would be chosen in neighboring markers, as they
all, individually, would improve likelihood. The end result
would be that they would neutralize each other, or create
patterns of oscillatory behavior between iterations.

The general problem of finding a non-overlapping and
consistent set of flips involving genotypes in pedigrees
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beyond full-sib families translates into a more complex
graph matching problem, similar to 3-SAT. This is an
avenue for future work. The implementation of inverting
skewness for single individuals has previously been tested
in complex multi-generational pedigrees [5,6].

Sureness updates

The updates on sureness and accompanying alleles (4,
a) are a rather straightforward application of the Baum-
Welch algorithm, but special care needs to be taken to
allow sureness and skewness to work in tandem, sep-
arating heterozygotes from homozygotes. In order for
skewness updates to work, the two alleles in a marker
need to be distinguishable by differences in a;,, or diy.
A completely standard sureness update algorithm would
distribute the probability of the two alleles equally on the
two positions in a marker. If there is some slight over-
representation of one allele in the data, the result would
be that many heterozygotic markers would be inferred
as homozygotes with rather low sureness values for both
chromatids.

Our current solution is two-pronged, involving the
initialization as well as the update process. First, miss-
ing genotypes are inferred heuristically based on alleles
appearing in offspring. This pre-inference step gives an
initial substrate for the true genotypes, e.g. both parents
carrying a 1 allele, fixing that allele in one of the two
chromatids. When this initial separation between the two
alleles has been introduced, the skewness and sureness
updates in tandem will find which parent might be carry-
ing a 2 allele etc. A dampening is also used for sureness
updates to avoid oscillatory behavior between the updates
of the two closely related sureness values in each marker
in each individual.

The current implementation only handles sureness
updates in first-level parents found in the focus pedigrees,
although the concept is not inherently limited to that case
in any way.

Recombination fraction updates

Due to numerical inaccuracy, as well as the shifting inter-
pretations due to other parameter updates, a stretch of
markers m1;...my where there are no (or very few) recom-
bination events in the dataset can be represented in such
a way that most of the recombination fraction for the
whole region is “absorbed” in a single r,,/, where m’ can
be any marker in that range. The other r parameters then
converge to 0.

While compatible with a single set of observations, the
presence of such a region does not result in a robust map
that would properly account for the possible interpreta-
tions, especially if the purpose is to have a general map
applicable to other samples from the same population. If
there are indeed a few recombination events present that
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are only recognized when the phases converge, those are
also more easily detected if the recombination fractions
have not already approached an extreme configuration.
For this reason, we have implemented an explicit test
verifying whether the total likelihood is affected by
distributing the recombination fraction evenly between
every set of pairs of neighboring markers. In cases where
there is no information either way, that test will succeed.
When that happens, the existing r,, values are shared
between the two markers, irrespective of their previous
values. Just like the inversion testing described previously,
this check can be performed using the existing data struc-
tures from the forward-backward algorithm and Baum-
Welch training, thus incurring no change in algorithm
complexity and only a very slight penalty to runtime.

Parallel execution

Compared to a model where the meioses for all related
individuals are tracked in a single state space, our model
approach and optimization algorithm are far simpler to
run in parallel on modern computing architectures. The
analysis of each focus pedigree can be performed inde-
pendently in a separate thread, with limited communi-
cation and computation needed to compile the results
and perform the necessary parameter updates (includ-
ing inversions). We have implemented MPI and OpenMP
parallelization (both can be used at the same time). As
each focus pedigree forms an independent instance of
the forward-backward algorithm, our approach can easily
scale to as many threads as there are individuals. While
we have only looked at it in proof-of-concept form, other
work also shows that HMM implementations generally
fare well in GPU parallelization [18].

Comparison against existing approaches

Among existing work, our overall goal and approach is
quite similar to Merlin. Merlin performs the full haplotype
resolution of the full pedigree in a single iteration, but at
the expense of an exponential state count explosion, which
is somewhat mitigated by the use of sparse gene flow trees.
Furthermore, the more efficient approximation mode in
Merlin assumes the absence of more than some constant
¢t recombinations taking place between any two adjacent
markers (generally in the range [1, 3]), with increasingly
deteriorating performance for higher values of ¢ (as the
number of occurring states increases accordingly).

The most significant difference to our method, how-
ever, lies in the specific application of the model in
order to determine haplotypes. Merlin uses a Viterbi
decoding [7] for this purpose. This use might seem
appropriate. The Viterbi algorithm gives the single most
likely sequence of states matching the observations. The
forward-backward algorithm we are using presents the
probabilities for each state in each marker separately,



Nettelblad BMC Genetics 2012, 13:85
http://www.biomedcentral.com/1471-2156/13/85

conditioning on all observations, but not on the occupied
states in other markers. If Viterbi training would be used
in our approach, rather than Baum-Welch, the problem
with local inversions could possibly be reduced, but at the
cost of heavier bias towards initial interpretations. We are
instead resolving that problem by the explicit inversion
testing already discussed.

In the case of Merlin, however, the disadvantage in using
the Viterbi algorithm is of a different nature, and lies in the
construction of the state space, when used for genotype
and haplotype inference. The state space distinguishes the
phase in all individuals, even in homozygotic markers. The
most likely sequence of ordered allele pairs for all indi-
viduals is thus different from the most likely sequence of
states, as a single pair in the first can be split across multi-
ple states (and individually thus be less likely) in the latter.
When we reconstruct haplotypes, we want the former, but
Viterbi will present a realization of the latter.

The sureness and skewness updates in our Baum-
Welch-based approach are computing the posterior prob-
abilities for precisely those variables. Hence, they do not
suffer from this issue, although the underlying state space
structure is similar.

Compared to our own earlier work, the main difference
is that we have added the treatment of sureness, while pre-
viously our implementations only supported genotypes
either being known (with a small constant allowing for
errors), or completely unknown. As our method relies
on information being transmitted between focus pedi-
grees through the iteratively updated parameters, the lack
of parametrization of allele identity not only meant that
parental genotypes could not be inferred, but also reduced
the quality of haplotype inference in offspring, as linkage
patterns between siblings could not be used directly.

Materials
The first chromosome of the common dataset pre-
pared for the 15th QTL-MAS workshop was used [19].
This dataset contains 3,220 individuals, containing 220
founders, 20 sires and 200 dams, with a uniform structure
of 10 dams per sire, 15 offspring in each mating. 1,998
SNP markers were uniformly spaced on the chromosome
with an intra-marker distance of 0.05 cM. The dataset
for the QTL-MAS workshop is also suitable as it is sup-
posed to reflect a situation of interest to animal and plant
breeders alike. By using an externally simulated dataset,
we avoid inadvertently tailoring our simulation approach
to our method. By choosing smaller subsets from this
dataset of relevant size, the data can approximate what
would be expected from a set of multiple closely related
case families for human disease association.

Comparisons were made against the Merlin package [4],
which has performed favorably in other method com-
parisons [20]. When Merlin made ambiguous genotype
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calls, the first option was always chosen. As Merlin also
tends to give uncertain calls for one of the two alleles at
very high rates when the true genotype is homozygous,
unknown alleles were replaced with the single identi-
fied allele in such loci. Preliminary studies showed that
the added genotype errors introduced by this assump-
tion were lower than the overall error rate. The version
used was a pre-compiled binary of Merlin 1.1.2 with flags
--best --horizontal --infer --bits 32.

Furthermore, to test parent genotype inference when
genotyping calls in offspring were tested by artificially
introducing an allele call error rate of 1.0% in offspring
(approximately 2.0% genotype errors).

Results

In all, we show that we can almost perfectly reconstruct
parental genotypes, even when only fuzzy offspring geno-
type data is provided, given enough offspring individuals.
General information on the experimental setting and our
codebase is found in [6]. The computational resources
used consisted of 8-core cluster nodes with Core i7 CPUs
and 24 GiB of RAM, one node per job.

Final convergence of the model was studied by com-
pleting 150 iterations. The method was specified with 2
generations (4 states), as the dataset was limited to two
generations.

Subsets of full-sib families

The case of reconstructing parental genotypes in full-sib
families was analyzed by pruning the pedigree to only the
first mating of each sire, with the first 2 — 15 offspring
available. For up to 10 offspring, identical runs were exe-
cuted using Merlin, after which we ran out of RAM for
that tool due to the exponential increase in size of the state
space, precluding analysis with larger subsets. The pro-
portion of correctly identified genotypes out of all markers
for the two tools is provided in Figure 3. Due to the inher-
ent symmetry in full-sib structures, flips were done if
necessary in order to align produced genotypes to origi-
nal data for Merlin as well as for our code. Runs consumed
between 60 and 110 minutes.

When both parents are homozygous with different alle-
les, phasing gives no additional information to aid geno-
type reconstruction (all offspring will be heterozygote).
Our code can detect this and refuse to assign any genotype
for those positions. Performance for correct genotype
identification of those markers assigned, and the propor-
tion of unidentified markers, can be found in Table 1.

Analysis of full dataset

A full analysis was also performed over the complete
dataset, where each sire participates in multiple matings,
improving the power of genotype inference. The precision
over all markers was 99.89%. For sires only, the precision
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Figure 3 Full-sib analysis. Proportion of correctly reconstructed genotypes out of all markers, comparing cnF2freq (solid) with Merlin (dashed) for

9 10 11 12 13 14 15

was correct genotype for 99.98% of markers. The job con-
sumed less than 450 minutes. Such an analysis over all
families would be far beyond what is possible with models
similar to the one used in Merlin, even if RAM would be
expanded by several orders of magnitude. Therefore, we
cannot compare this result to a suitable reference.

Analysis with artificial errors in input data
Another full analysis was performed over the complete
dataset, but with artificial genotyping errors at a rate

Table 1 Correctly reconstructed genotypes in full-sib
phasing for varying family size

# offspring Correctly phased Markers ignored
2 87.58% 14.49%
3 91.31% 9.53%
4 94.15% 6.93%
5 95.92% 6.36%
6 97.05% 5.83%
7 97.68% 5.75%
8 97.80% 537%
9 98.75% 5.14%
10 99.65% 5.14%
1 99.06% 5.14%
12 99.26% 5.14%
13 99.63% 5.14%
14 99.25% 5.14%
15 99.88% 5.14%

Proportion of incorrectly reconstructed genotypes out of those assigned,
proportion of markers left unassigned.

of approximately 2.0% in offspring, as described in the
Materials section. The current implementation does not
update sureness values for the offspring, so the intent of
the experiment was to verify to what extent the inferred
parental genotypes were affected by the errors. In total,
for all 220 founders, 99.51% of markers were inferred cor-
rectly. For the sires, the rate of correct genotypes was
99.97%. Runtimes were similar to the case with no intro-
duced error.

Discussion
The clear advantage of our approach is that much larger
and more complex structures of closely related individ-
uals can be analyzed simultaneously, allowing significant
improvements in the precision of individual results. In one
sense, our method is a decomposition of the full gene flow
analysis performed in Merlin and similar tools, replac-
ing the global analysis of all recombination events with
parameters treating phase and genotype as probabilities.
Despite this superficial limitation compared to Merlin,
our methods produce superior results. A potential rea-
son for this is that Merlin is using the Viterbi algorithm
on the state space. The Viterbi algorithm selects the most
probable state sequence, but as multiple states can map to
identical haplotypes and genotypes, that is not necessarily
the most likely genotype sequence. There are also numer-
ical concerns when considering the very high number of
states handled by Merlin, while our code has been explic-
itly designed to avoid or limit numerical inaccuracy. The
use of skewness rather than explicit modelling of the full
state hierarchy is one critical point in this regard.

We have also demonstrated that our approach to infer
parental genotypes is resilient to genotyping errors, unlike
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trivial heuristics-based approaches as well as statistical
approaches not modelling genotyping errors at all. For
sires with a high number of offspring, the results are
practically indistinguishable. Even when considering the
parental population as a whole, the error rate in statisti-
cally inferred parental genotypes is markedly lower than
the introduced error rate in offspring genotypes.

Our eventual goal is handling missing genotype data
in complex multi-generational dense pedigrees in a gen-
eral manner. For now, the codebase only updates sureness
values in ancestors. Updates of sureness values to rep-
resent imputed genotypes for missing or unreliable data
in offspring is a logical continuation of this work. Possi-
bly, the initial data could be treated as a prior distribution
for genotyping calls, rather than just initialization val-
ues. Otherwise, an optimization algorithm would prefer
changing all genotypes into non-recombining representa-
tions of the parental haplotypes. Another natural exten-
sion would be to handle multiple generations. For the
case of inferring haplotypes while treating genotypes as
fixed, we have in earlier work demonstrated excellent
results in complex pedigrees of 5 or more generations,
with thousands of individuals. Due to the similarities in
modelling, it is also reasonable to consider integration of
our approach for pedigree data with Markov-model based
phasing and imputation approaches for non-pedigreed
individuals, such as MaCH [21].

Such a hybrid approach including Markov modelling in
terms of non-related individuals would allow the model
to gain information from haplotypes shared from his-
toric ancestors beyond the known pedigree, thus handling
population-level linkage disequilibrium (LD). In the cur-
rent implementation, LD between unrelated individuals
is not modelled explicitly, while a proper representation
of recombination within families frequently makes this
drawback one of limited consequence.

It would also be possible to first infer a local phasing
for families with our method, followed by genotype impu-
tation based on reference haplotypes from a denser map.
Tools such as Minimac and some operation modes of
other tools [22,23] expect the population where imputa-
tion is to be performed to already be pre-phased.

Conclusion

We have presented an extension of our haplotyping
approach for datasets with pedigrees and genotype data,
to handle partially or completely missing ancestral geno-
type data efficiently. Haplotypes as well as genotypes can
be inferred with high performance by using an efficient
local Markov model, decomposing the pedigree into a set
of focus pedigrees considering the direct ancestors to each
individual. The decomposition is aided by iterative opti-
mization of parameters that we call skewness and sure-
ness, representing the unified information on phase and
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allele content from all focus pedigrees. We can analyze
150 closely related individuals with ease, providing near-
perfect genotype and haplotype reconstruction, even for
individuals where genotype was originally fully missing.
In this setting, the otherwise comparable Merlin package
tops out at 10 individuals.

Beyond the specific problem setting we have tested
and our specific current implementation code, our results
show that for phasing and genotype inference with Hidden
Markov Models, it can be efficient to parametrize phase
as well as allele content as scalars, allowing deterministic
optimization schemes. Most existing work implement-
ing some parametrization does this using simple binary
variables accompanied by Markov-Chain Monte Carlo
approaches (such as IMPUTE[13] and MaCH[14]). We are
not aware of other work consistently implementing such a
scalar parametrization for these types of problems.

Availability and requirements

Our methodology has been included in a prototype imple-
mentation in the cnF2freq codebase, which has been
extended to include the sureness parameter. The code is
written in platform-independent C++. It is available from
the project website, http://www.it.uu.se/research/project/
ctrait/cnF2freq. The code is shared under a BSD-style
license, meaning no restrictions regarding commercial
use. It requires recent versions of the boost library [24],
and has been tested with the Intel Compiler Collection
version 11 and later, as well as the Gnu Compiler Collec-
tion version 4.2 and later.

Assistance in building the code, as well as necessary
adaptations to handle specific requirements regarding
input or output file formats, is available on request. A
previous version of the base code is available with a
standardized input format integrating with R [25] from
https://r-forge.r- project.org/projects/cnf2freq/. The cur-
rent additions can be added to this R package, on request.
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