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for detecting genetic loci affecting phenotypic
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Abstract

A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic
variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose
allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great
potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could
represent a previously undetected interaction with other genes or environmental factors. The simultaneous
publication of these new methods in different journals has in many cases precluded opportunity for comparison. We
survey some of these methods, the respective trade-offs they imply, and the connections between them. The
methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage
approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For
each method, we identify important assumptions and limitations, including those of practical importance, such as
their scope for including covariates and random effects. We show in simulations that both parametric methods and
their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance
relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait
distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical
evaluation of how these fit with the assumptions of the statistical model.

Traditional approaches to mapping genes affecting quan-
titative traits have focused on identifying loci for which
an allelic substitution shifts the phenotype of interest in a
particular direction (eg, where substituting genotype AA
for AG causes the phenotype to increase on average by
a certain amount). Such quantitative trait loci (QTL) can
be described as mean-controlling, because they are pri-
marily observed to affect the expected, ie, average, value
of individuals’ phenotypes. It is also possible, however, to
detect genetic loci whose allelic substitutions are associ-
ated with an increase in variability of the phenotype about
its expected value.
Figure 1a illustrates the concept, plotting phenotypes

collected from a hypothetical population of 500 outbred
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individuals (eg, humans). When stratified by genotype at a
suitable locus, the apparent effect of allelic substitution is
to alter the spread of likely phenotype values: individuals
carrying the AA genotype are more phenotypically simi-
lar to each other, whereas those carrying the GG genotype
are more variable. To help distinguish common uses of the
term “phenotypic variance”, we describe such dispersion
of phenotype values around an apparent mean as “phe-
notypic variability”, and we denote genetic loci exhibiting
the pattern in Figure 1a as “vQTL” (QTL associated with
changes in phenotypic variability; [1]).
The biology that explains a vQTL signal can be pro-

found, although its nature will depend on context and
may require furthermodeling and/or experiments to char-
acterize even broadly. Simplistically: a vQTL alerts the
researcher to the presence of unmodeled statistical inter-
actions associated with the locus. These could include
interactions of potentially high order with other genes or
environmental factors, and may implicate a pivotal role
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Figure 1 Relation between a vQTL and an epistatic interaction. Panel (a) plots phenotype values in arbitrary units for a population of 500
outbred individuals stratified by genotype at a hypothetical vQTL. Panel (b) shows how the pattern in (a) could have arisen through a simple
(mean-controlling) epistatic interaction with a second locus, possibly on another chromosome, that segregates two genotypes (black and gray).

for the locus inmaintaining phenotypic robustness and/or
variability in the face of changing environment, back-
ground genetics, and temporal progression. Yet as deep as
the implications of such vQTL signals may be, a crucial
practical concern is how to detect them in a manner that
is powerful, reliable, and robust not only to assumptions
about statistical distributions but also to known features
of an experiment or population that could potentially
bias inference. Herein, we separate two issues: interpre-
tation of vQTL, and statistical detection of vQTL. Both
have received a recent surge of interest in the genetics
literature [1-10]. We discuss the first only in brief (with
references for further reading), and concentrate on the
second. By providing commentary on current statistical
approaches for identifying vQTL we aim to encourage
continued development and thought in this area, promote
the investigation of vQTL, and moderate any misalign-
ment of statistical with experimental strategies that might
lead to exotic interpretations of pedestrian results. Simply
put, our focus is on methods analyzing the variance of a
phenotype given a particular genotype.

What vQTL are and where to find them
A number of recent studies [1-10] have highlighted the
great potential value of identifying vQTL in humans, live-
stock, plants, and model organisms. One explanation for
a vQTL signal is that the detected locus is involved in
a gene-by-gene (ie, epistatic) interaction, as depicted in
Figure 1b. Biologically, such an interaction is consistent
with a variety of scenarios including the locus being a hub
component in a network of genetically influenced actors,
the locus being a key regulator that confers robustness
of the phenotype to changes in background genetics, or
a highly specific incompatibility between two QTL that

destabilizes physiology. Another explanation is that the
action of the locus is, under one genotype more than
another, strongly affected by an unmodeled environmen-
tal exposure, eg, different weather systems associated
with geography or (eg, in humans) smoking behavior, and
thereby corresponds to a gene by environment interaction
[3]. An explanation related to both of the above is that
the locus regulates sensitivity to general changes in the
environment, leading to increased variability that would
manifest either between congenic individuals or within
each individual at different timepoints (eg, [1,5,11]).
Although little is known about how common variance-

controlling genes are in the genome or the magnitude of
their contribution to trait variation in natural populations
[11], clear examples of vQTL effects have been found in
flies [12], humans [3], plants [10], and rats [9]. Mackay
and Lyman [12] found that the coefficient of variation
(CV; see later) of bristle numbers varied among chromo-
some substitution lines of Drosophila melanogaster. Paré
et al. [3] found vQTL single nucleotide polymorphisms
(SNPs) for levels of inflammatory biomarkers in a study of
20,000 women, which subsequent analysis showed could
be explained by interactions of one locus with body mass
index in the prediction of C-reactive protein (CRP) lev-
els, and another locus with smoking behavior for levels
of biomarker ICAM-1. Using publicly available GWAS
data [13], Shen et al. [10] detected a vQTL for cellu-
lar control of molybdenum concentration in Arabidopsis
thaliana located on the exon ofMOT1. Although the level
of molybdenum in Arabidopsis is known to be regulated
by the mitochondrial molybdenum transporter encoded
by the MOT1 gene [14,15], no significant effect on the
mean was found in the original GWAS [13]. Perry et al.
[9] found several vQTL for urinary calcium levels in an F2



Rönnegård and Valdar BMCGenetics 2012, 13:63 Page 3 of 7
http://www.biomedcentral.com/1471-2156/13/63

cross of genetically hypercalciuric (ie, kidney-stone form-
ing) Rattus norvegicus with normocalciuric Wistar-Kyoto
rats, with evidence of sex-specificity for the presence of
such effects.

Detecting vQTL is a shortcut for detecting interactions
One of the most exciting developments in this area is the
use of methods that identify vQTL as a means to detect
interactions. Hereby, epistasis can be detected using a fast
search algorithm in one-dimensional parameter space,
and G×E can be detected without the need to measure
the interacting environmental effect [3,4]. We [1] have
also described the close relationship between detection
of vQTL and epistasis in the context of QTL studies on
experimental populations. Although the scope of possi-
ble causes can be restricted through experimental design
[1], the detection of a vQTL need not directly imply either
the identity of the interacting factor or the nature of the
detected interaction. Moreover, the absence of a vQTL
effect does not imply absence of interaction effects [4].
Nonetheless, detecting vQTL can be valuable in priori-
tizing loci for further investigation [6], and can reduce
a multi-dimensional search for epistatic QTL to a single
search along the genome.
A current challenge is that statistical methods for

detecting vQTL are immature relative to those for detect-
ing mean-controlling QTL. This is in part because esti-
mating effects on the variance is more difficult than on the
mean [2], requiring greater sample sizes to obtain equiv-
alent precision (ie, standard errors of the same width)
while being more sensitive to confounding with mean
effects, improperly modeled sample heterogeneity, and
covariate uncertainty. The last two years have seen a
flourish of papers introducing statistical techniques for
detecting vQTL, and their simultaneous publication has
in many cases precluded the opportunity for comparison
across methods. Below we briefly survey some of these
new methods, the respective trade-offs they imply, and
the connections between them. We focus on methods
to detect vQTL as such, and less on strategies for fur-
ther characterizing interactions that might underly the
detected variance heterogeneity.

Classical non-parametric methods for detecting variance
heterogeneity
Conover et al. [16] provide a detailed survey of classi-
cal methods to identify heterogeneous variance between
groups. Letting each genotype class correspond to a
different group provides a natural way to apply such
methods to the detection of vQTL. Paré et al. [3],
Struchalin et al. [4], and Deng & Paré [6] (in their
GEWIST algorithm) describe procedures for detecting
vQTL based on Levene’s test [16,17], presenting these
as tools that help identify epistasis or G×E. Levene’s

test computes a test statistic based on absolute devi-
ations of trait values from the mean (or median [18])
within each genotype class. Significance is then judged
by a simple ANOVA-like test. Fraser & Schadt [5] use
the Fligner-Killeen test, which is like Levene’s test but
based on ranks, to perform in silico mapping of vQTL for
gene expression in 19 strains of mice. As non-parametric
methods, both tests makes few assumptions about the
sampling distribution of the data and so are robust to
model misspecification [16,19].
Nonetheless, both tests (and many other such classi-

cal tests of variance heterogeneity) require that the data
can be grouped into genotype classes, and they lack a
natural basis for inclusion of continuous covariates. It is
often necessary in GWAS and QTL studies to control
statistically for non-genetic covariates such as age, body
weight, and other continuous or ordered measurements,
including effects that control for uneven relatedness of
individuals. Indeed this can be essential to, for instance,
increase power or model confounder bias. Such concerns
are no less relevant in vQTL detection. The fact that meth-
ods based on Levene’s test [3,4] (or Fligner-Killeen) do not
naturally model continuous covariates thus represents a
limitation of their use, and in part motivates the develop-
ment of the more flexible parametric and semi-parametric
alternatives discussed below.

Full parametric modeling of mean and variance
Parametric approaches are rooted in the idea that detec-
tion and interpretation is best served through specifying
a generative model of the data, in this case one that
describes how effects on the mean and variance combine
to produce outcomes whose statistical properties approx-
imate those of the true sampling distribution. Sorensen
[20] was among the first to propose a parametric Bayesian
model to detect vQTL. His Markov chain Monte Carlo
(MCMC) method simultaneously fits the tested loci for
mean and variance effects. A linear predictor is spec-
ified for log(σ 2

i ), where σ 2
i is the residual variance for

observation i. Yang et al. [8] later assessed this method
in a study that included both simulations and analysis
of real data on back fat thickness in pigs. More or less
concurrently, we [1] developed a deterministic classical
estimation procedure using Double Generalized Linear
Models (DGLM [21]) that include a linear predictor for
log(σ 2

i ) in a similar manner to Yang et al. [8]. DGLM esti-
mation is fast because it merely iterates between weighted
least squares. For a normally distributed trait, the DGLM
iteratively fits the linear predictor for log(σ 2

i ) by taking
the estimated squared residuals from the fit of a weighted
linear model, using these as response variable in a second
GLM (Generalized Linear Model; [22]), and then using
this GLM fit to update the weights in the first stage linear
model, cycling until the algorithm converges. The fitted
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squared residuals are also corrected for their estimation
uncertainty in each iteration.

Two-stage approximations to parametric models
Visscher & Posthuma [2] derived expressions to detect
vQTL effects by working with the expectation of squared
observations given non-genetic effects, and fitted these to
a gamma distribution. This expectation was split into two
parts: variance due to additive genetic effects on themean,
and a residual variance with a multiplicative model for
the genetic effects. In terms of linear and generalized lin-
ear models, this is similar to fitting a linear model for the
mean-controlling QTL and subsequently fitting a gamma
GLM with log-link on the estimated squared residuals,
and so is akin to a DGLM. Their method is non-iterative,
however, and as such does not account for the uncertainty
in estimation of residuals.
A less parametrically justifiable but more computation-

ally convenient approach for incorporating an arbitrary
set of predictors into a test for effects both in themean and
variance is to fit first a linear model for mean effects, and
then fit a separate second linear model on some function
of the residuals. Recently, Perry et al. [9] did this in their
analysis of vQTL in a rat F2, fitting first a linear model
accounting for multiple covariates and single locus effects,
and then performing a separate regression on the absolute
values of residuals from the initial model. Months earlier,
Struchalin et al. [7] presented a method Squared resid-
ual Value Linear Modeling (SVLM), implemented in the
VariABEL package (www.genabel.org), which fits a linear
model to the squared residuals from an ordinary GWAS.
These approximations trade parametric justifications for
convenience and speed: when perfectly estimated, the
squared residuals from the initial fit will be gamma dis-
tributed (as in the model by Visscher & Posthuma) and
therefore violate the normality assumptions required by
the second fit. Moreover, like the model of Visscher &
Posthuma, these two methods do not account for the fact
that the residuals are themselves estimated with error.
Nonetheless, we find that when the data are sizable

enough to ensure that residuals are accurately estimated,
SVLM and DGLM give similar performance. To illus-
trate this, we performed 1,000 trials of the simulation
described in Struchalin et al. [7], whereby n = 10,000
observations are drawn from a phenotype model affected
by both a SNP and an interacting factor, which in combi-
nation manifest as a vQTL. Specifically, we simulated the
phenotype of individual i = 1, . . . , n as yi ∼ N(βFFi +
βgF · giFi, 1), drawing genotypes as gi ∼ Bin(2, 0.4), and
drawing the interacting factor as Fi ∼ N(0, 1), with main
effect βF = 0.85 and interaction βgF = 0.06 (using their
notation). In this setting, where the sample is large and the
genotypes are relatively well balanced, SVLM and DGLM
produced almost identical p-values (correlation 0.9996)

and the power at a 95% significance level was 0.82 for
both methods, whereas Levene’s test produced substan-
tially different p-values and reduced power (0.69). The
false positive rates (FPR) were also assessed for the differ-
ent methods for simulated standard normal trait values,
yi ∼ N(0, 1), showing very small or no inflated FPR
(Table 1).

The value of simultaneously estimating mean and variance
The fully parametric models mentioned above fit both
the mean and the variance simultaneously. Methods that
make use of a (non-iterative) two-step approach, such
as SVLM, have the disadvantage that they involve con-
ditioning on an unknown [11]. Effects on the mean will
be estimated without accounting for heteroscedasticity,
which will affect the p-values for this part of the model
(although in practice this may have minor consequence).
Errors in the residuals arise because these are a combi-

nation of true residuals and the under- or over-predictions
of the imperfectly estimated mean part of the model. The
accuracy of estimated squared residuals, that is, the cor-
relation between true and estimated squared residuals,
is given by the “hat matrix” [11,23]. Specifically, the hat
matrix H is the matrix of linear transformation between
the observed and fitted response vector (y and ŷ, resp.)
such that ŷ = Hy. The expected value of the estimated
squared residuals will be smaller than the squared true
residuals and should therefore be divided by 1−hii, where
hii are the diagonal elements of H, referred to as “hat val-
ues” (or “leverages” [23]). We suggest that the output from
simple two-step approaches should be assessed by com-
puting the hat values for the standard GWAS model (ie,
the linear model describing the SNP effect on the mean).
If all hat values are small, say < 0.05, there will be no
need for concern since the prediction errors will have little
influence on the estimates of the squared residuals.

Extensions: dealing with genotype uncertainty
Often the genotype at a marker is not known with cer-
tainty, but is available as a probability based on surround-
ing marker information. This is the general case in QTL

Table 1 Comparison of vQTLmethods
Estimation method Simulated distribution

Gaussian Poisson

Levene’s test 0.053 0.497

SVLM 0.063 0.389

DGLM-Gaussian 0.064 0.632

DGLM-Poisson n.a. 0.055

n.a. = not applicable.
False positive rates for simulations with no interaction effects (10,000 individuals
and 1,000 replicates).

www.genabel.org
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analysis (ie, linkage disequilibrium mapping), and is typ-
ical in GWAS where genotypes are imputed. In ordinary
QTL analysis and GWAS, genotype probabilities can be
used in place of the observed genotypes (possibly after
reformulation) as predictors in a linear model of the phe-
notype [24-26]. In such cases, the residual variance will
typically be inflated because uncertainty about the geno-
type will manifest as additional error in the residual part of
the model [27,28]. In regression-based methods for vQTL
detection, including DGLM and SVLM, genotype proba-
bilities can similarly be incorporated as predictors, which
is not possible in Levene’s test. An application highlighted
in [7] is imputation of genotype values in GWAS. There is
an obvious risk that the inflated residual variance caused
by genotype uncertainty might inflate the false discovery
rate for vQTL because the estimated squared residuals
are used as response variable. We evaluated this risk for
F2 and Collaborative Cross designs in QTL analysis (see
Figure 2 and Supplementary Theory part 3 in [1]) but
found no apparent inflation in false positives. For GWAS
using either DGLM or SVLM, however, no such thorough
assessment has been performed.

Extensions: incorporating population structure and
polygenic effects
A common problem in GWAS is accounting for effects of
population structure. We [1] have proposed an approach
where the polygenic random effects are fitted simulta-
neously with the rest of the model using hierarchical
generalized linear models (HGLM, [29,30]), implemented
in the R package hglm available on CRAN [31]. HGLM is a
direct extension of DGLM that includes random effects in
themean part of themodel and can be extended to include
random effects influencing the residual variance [11,32].
Struchalin et al. [7] propose an alternative two-step
approach, using SVLM after pre-correction for polygenic
random effects, with this pre-correction performed in a
similar way to that applied in their GRAMMAR approach
[33] whereby residuals from polygenic model are used as
the response for subsequent analysis. As with SVLM, this
extension comes at the expense of conditioning on fur-
ther unknowns (see also Discussion in [34]). Specifically, it
involves subtracting from the phenotype point estimates
of the polygenic effects, which themselves are known with
error. Such shortcuts can be extremely valuable because
they allow faster, more tractable analyses. But when using
them it is also important to consider under which circum-
stances their accumulated effects might bias results, by,
for instance, checking the values in the hat matrix.

Model misspecification, the scale of measurement, and the
coefficient of variation
One of the greatest challenges in the vQTL detection is
how to choose the scale of measurement on which to draw

conclusions about estimated effects. When we detect a
SNP whose alleles increase both the mean and the vari-
ance, should we interpret it as a vQTL with a significant
marginal effect, or a mean-controlling QTL for a trait that
was analyzed on the wrong scale? Suppose, for instance,
that we had a cylindrical organism (such as a snake or a
worm) whose body width increases with its body length,
and we have a gene with a strong additive effect on body
length, which is itself normally distributed. A GWAS on
the volume of this cylindrical organism is likely to detect a
QTL controlling both mean and the variance, despite the
fact that a simpler explanation is available.
To circumvent such ambiguities, some researchers have

used the coefficient of variation (CV; the standard devi-
ation divided by the mean) to detect genotypic effects
on the variance [12]. This approach is highly applicable
for a trait that is positive-valued, and for which (under
a null model) the standard deviation would be expected
to increase with the mean. A more flexible remedy is to
find a transformation of the trait for which the residuals
under a mean-effects model are approximately Gaussian
(and thereby symmetric), and estimate genotypic effects
on this transformed phenotype. This helps guard against
vQTL interpretations that could be otherwise explained
by a combination of mean effects and transformation. We
[1] and Yang et al. [35] promote the use of the Box-Cox
procedure to help guide such transformations, with Yang
et al. making this procedure an intrinsic and simultane-
ously estimated component of their Bayesian model. The
QTL and vQTL effects detected on a transformed scale
can be back-transformed to the original scale to study
their effects on the scale of interest.
In some cases, the trait is known to be well approxi-

mated by a distribution that has a known mean-variance
relationship, such as the Poisson or gamma distribution.
In such cases, it will often be preferable to model that dis-
tribution explicitly and define vQTL parameters as those
that alter the variance in a way not already anticipated
by concomitant effects on the mean. DGLMs provide a
natural basis for such models when the known sampling
distribution is member of the exponential family [1].
To illustrate the effect of a misspecified distribution

on vQTL detection, we consider the following simulation
study in which vQTL-detection methods are applied to
a non-normal phenotype. Let the phenotype Yi of indi-
vidual i be distributed as Yi ∼ Poisson(μi), where the
individual’s genotype gi affects the phenotype through
the relation E(Yi) = μi = exp(μ + βggi), with μ =
−1,βg = 0.05. This set up is similar to that used in
Struchalin et al. [7] with the difference that whereas
they use a normally distributed phenotype subject to
interactions (ie, a true vQTL signal), we use a Poisson
distribution with no interaction effect (ie, no vQTL sig-
nal). We performed 1000 simulation trials. In each, we
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generated 10,000 phenotypes and tested the significance
of a vQTL effect using three methods: SVLM, DGLMwith
a Gaussian response (DGLM-normal), and DGLM with
a Poisson response (DGLM-Poisson). At a 95% signifi-
cant level, Levene’s test, SVLM and DGLM-normal had
strongly inflated FPR, whereas DGLM-Poisson had amore
reasonable FPR of 5.5% (Table 1). Hence, SVLM or a mis-
specified DGLM are likely to produce a large proportion
of false positives for a trait whose variance is a function
of its mean. Further research is required to distinguish
trait values generated by a distribution where the variance
explicitly depends on the mean from a process where the
variance is controlled by a vQTL.

Connections to related literature: relationship QTL, and
breeding livestock for uniformity
One interesting possible cause of a vQTL signal arises
when a QTL affecting a primary trait of interest also
affects another (secondary) trait in a way that can restrict
variation of the primary trait (eg, in closely related mor-
phological phenotypes). Cheverud et al. [36] develop the
idea of a QTL affecting multiple traits in this and other
ways, referring to such QTL as relationship QTL (relQTL;
see also [37,38]). Their approach for detecting relQTL
requires that the interacting traits are known a priori. The
concepts of relQTL and vQTL overlap to a degree in that
a relQTL could manifest as a vQTL. A fundamental con-
ceptual difference between the two is that vQTL may also
arise through other means, and a fundamental practical
difference is that vQTL detection does not require prior
knowledge of the interacting factor.
We further note that several semi-parametric and fully

parameterized estimation methods have been developed
for animal breeding purposes over the last couple of
decades. These methods incorporate the additive rela-
tionships between individuals to assess the possibility
of reducing phenotypic variability in breeding programs.
They are not directly applicable in GWAS nor QTL anal-
ysis but the modeling approach is very similar to that of
vQTL detection. A future possibility is to perform stan-
dard GWAS using estimated breeding values for variabil-
ity as response. A deeper understanding of new methods
for vQTL detection could therefore be obtained by relat-
ing these to the already existing literature on genetic
heterogenity in animal breeding (see [11] and refs therein).

Conclusion
Studies that develop statistical methods for vQTL detec-
tion, as well as ones that exemplify their use, feed a
growing interest in a fascinating emerging area of com-
plex trait genetics. We have reviewed some of the new
methods for detecting vQTL, and provided commentary
on their respective trade-offs. Classical group-based non-
parametric methods such as Levene’s test can be robust to

model misspecification but lack flexibility and the scope
to include continuous covariates, genotype probabilities
(eg imputed genotypes) or randompolygenic effects. Para-
metric methods fully account for the uncertainty of fitted
parameters in both the mean and the variance parts of
the model, and also allow fitting of covariates and ran-
dom polygenic effects in both parts, but are more sensitive
to modeling assumptions. Semi-parametric or two-stage
approaches can be faster but come at the price of shortcuts
that in some cases can lead to bias. The choice of method
depends on the trait distribution, the need to include non-
genetic covariates, and the population size and structure.
We advise that the assumptions of the chosen model be
evaluated and compared with those of alternatives, and we
expect that if this is performed in a careful manner then
these methods could be of great use in both the analysis of
GWAS and QTL mapping data.
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Rönnegård and Valdar BMCGenetics 2012, 13:63 Page 7 of 7
http://www.biomedcentral.com/1471-2156/13/63
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