
BioMed CentralBMC Genetics

ss
Open AcceResearch article
Association between SNPs within candidate genes and compounds 
related to boar taint and reproduction
Maren Moe*1,2, Sigbjørn Lien2,3, Torunn Aasmundstad1, 
Theo HE Meuwissen2, Marianne HS Hansen1,3, Christian Bendixen4 and 
Eli Grindflek1

Address: 1The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway, 2Department of Animal and Aquacultural Sciences, Norwegian 
University of Life Sciences, Ås, Norway, 3Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway and 4Faculty 
of Agricultural Sciences, University of Aarhus, Tjele, Denmark

Email: Maren Moe* - maren.moe@umb.no; Sigbjørn Lien - sigbjorn.lien@umb.no; Torunn Aasmundstad - torunn.aasmundstad@norsvin.no; 
Theo HE Meuwissen - theo.meuwissen@umb.no; Marianne HS Hansen - marianne.hansen@umb.no; 
Christian Bendixen - christian.bendixen@agrsci.dk; Eli Grindflek - eli.grindflek@umb.no

* Corresponding author    

Abstract
Background: Boar taint is an unpleasant odour and flavour of the meat from some uncastrated male pigs
primarily caused by elevated levels of androstenone and skatole in adipose tissue. Androstenone is
produced in the same biochemical pathway as testosterone and estrogens, which represents a particular
challenge when selecting against high levels of androstenone in the breeding programme, without
simultaneously decreasing levels of other steroids. Detection of single nucleotide polymorphisms (SNPs)
associated with compounds affecting boar taint is important both for gaining a better understanding of the
complex regulation of the trait and for the purpose of identifying markers that can be used to improve the
gain of breeding. The beneficial SNPs to be used in breeding would have the combinational effects of
reducing levels of boar taint without affecting fertility of the animals. The aim of this study was to detect
SNPs in boar taint candidate genes and to perform association studies for both single SNPs and haplotypes
with levels of boar taint compounds and phenotypes related to reproduction.

Results: An association study involving 275 SNPs in 121 genes and compounds related to boar taint and
reproduction were carried out in Duroc and Norwegian Landrace boars. Phenotypes investigated were
levels of androstenone, skatole and indole in adipose tissue, levels of androstenone, testosterone, estrone
sulphate and 17β-estradiol in plasma, and length of bulbo urethralis gland. The SNPs were genotyped in
more than 2800 individuals and several SNPs were found to be significantly (LRT > 5.4) associated with
the different phenotypes. Genes with significant SNPs in either of the traits investigated include
cytochrome P450 members CYP2E1, CYP21, CYP2D6 and CYP2C49, steroid 5α-reductase SRD5A2, nuclear
receptor NGFIB, catenin CTNND1, BRCA1 associated protein BAP1 and hyaluronoglucosaminidase HYAL2.
Haplotype analysis provided additional evidence for an effect of CYP2E1 on levels of skatole and indole,
and for BAP1, HYAL2 and SRD5A2 on levels of androstenone.

Conclusion: The findings in this study indicate that polymorphisms in CYP2E1, CYP21, CYP2D6, CYP2C49,
NGFIB and CTNND1 might be used to reduce levels of boar taint without affecting levels of testosterone,
estrone sulphate, 17β-estradiol or length of bulbo urethralis gland.
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Background
Male pigs used for meat production are castrated at an
early age to avoid boar taint, which is an unpleasant
odour and flavour of the meat from some boars. Due to
animal welfare concerns, castration will be prohibited in
Norway, and possibly EU countries and others. Alterna-
tive methods are therefore needed to prevent tainted
meat. Because of available testicular steroids, entire male
pigs also have better feed conversion and carcass traits
compared to barrows and this makes them more advanta-
geous for the pig industry [1]. Reduction of boar taint lev-
els without castration is therefore of interest for pig
breeders worldwide. Identification of genetic factors con-
trolling boar taint may be implemented in breeding pro-
grammes to select animals that produce low levels of taint.
However, selection for low boar taint generally coincides
with selection for low androgen production [2]. Before
starting selection it is therefore important to understand
the complex genetic system controlling boar taint and to
take into account possible correlated effects on other traits
in the breeding goal.

Boar taint is mainly caused by elevated levels of the com-
pounds androstenone [3] and/or skatole [4] in adipose
tissue. Androstenone (5α-androst-16-en-3-one) is a 16-
androstene steroid metabolised from cholesterol through
the C21 steroids pregnenolone and progesterone in boar
testis [5]. It is further reduced to its alcohols α-androste-
nol and β-androstenol [6], which also, in a lesser degree,
contribute to tainted meat [7]. Skatole (3-methylindole)
is a metabolite of the amino acid tryptophan and is pro-
duced by intestinal bacteria in the gut [8,9]. Skatole is
only a problem in intact male pigs and not in gilts or bar-
rows, and its levels increase at sexual maturity [10,11].
Indole is another metabolite from tryptophan. It also con-
tributes to boar taint levels, although to less extent than
androstenone and skatole [12]. Both androstenone and
skatole are degraded in the liver and a relationship
between their metabolism has been found [13].

Pregnenolone and progesterone are not only precursors of
androstenone, but also of testosterone and estrogens [14].
The influence of other sex steroids on levels of androsten-
one and skatole has been studied with ambiguous results.
Most studies have found levels of testosterone in plasma
not to be correlated to levels of androstenone in adipose
tissue [13,15,16] or levels of skatole in adipose tissue
[13,15,17,18]. In some studies, however, levels of andros-
tenone in adipose tissue [18,19] have been found to be
correlated (0.26 – 0.64) to levels of testosterone. Results
for estrogens are more consistent, showing positive corre-
lations to levels of both androstenone (0.42 – 0.93)
[13,15,16,18-20] and skatole (0.29 – 0.53) [13,15,17,20]
in adipose tissue. No correlation between levels of skatole
and estrone sulphate was, however, found in one study

[18]. The correlations between levels of androstenone in
plasma and adipose tissue diverge from high (0.46–0.94)
[18,19,21-23] to not significant [24,25]. Levels of skatole
and indole in adipose tissue are shown to be highly corre-
lated (0.46–0.75) [26,10]. Studies on correlations
between levels of androstenone and skatole in adipose tis-
sue show inconsistent results, from medium correlations
around 0.3 [18,27,28] to higher correlations between
0.45 and 0.68 [15,23]. Levels of androstenone in plasma
has been found correlated (0.44) [13] and not correlated
[18,23] to levels of skatole, while levels of skatole in
plasma has been shown correlated (0.76) [23] and not
correlated [18] to levels of androstenone in adipose tissue.
Diverging results might be explained by breed effects,
which significantly affect levels of boar taint, e.g. [29].
Moreover, levels of androstenone, testosterone and estro-
gens in plasma can also be affected by diurnal variations
during the day, e.g. [30,25,31].

Detection of single nucleotide polymorphisms (SNPs)
associated with boar taint compounds may be applied in
practical breeding to reduce boar taint in intact boars.
However, before implementation, it is of importance to
examine associations of these SNPs with phenotypes
related to reproduction because of possible unfavourable
correlations. Breed specific variations has been observed
for both androstenone [29] and skatole [10] and it is
therefore of interest to include different breeds in such an
examination. The objective of this study was to genotype
candidate gene SNPs in Duroc and Norwegian Landrace
boars and to study associations with traits related to boar
taint and reproduction. The phenotypic traits included
were levels of androstenone, skatole and indole in adi-
pose tissue, levels androstenone, testosterone, 17β-estra-
diol and estrone sulphate in plasma, and the length of
bulbo urethralis gland. Estrogens and the length of bulbo
urethralis gland are also indicators of sexual maturity, e.g.
[32,17,33]. Moreover, haplotype analyses were carried out
in genes with several SNPs.

Methods
Animals
A total of 1102 Duroc and 1726 Norwegian Landrace
boars were included in this study. The boars were the sons
of 81 Duroc and 90 Norwegian Landrace sires. The boars
were raised at NORSVIN's boar test stations until 100 kg
live weight, on average 156 and 143 days for Duroc and
Norwegian Landrace, respectively, and slaughtered on
average 15 days later. The days between 100 kg live weight
and slaughter are due to the boar selection process, where
some animals wait for their destiny as elite boars. Blood
samples were taken three days before slaughter for plasma
suspension and DNA extraction. Samples from subcuta-
neous fat were taken at the slaughter line. All the samples
were stored at -20°C until chemical analyses or DNA
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extraction was performed. The length of bulbo urethralis
gland was measured at the slaughter line.

Chemical analyses
Levels of androstenone, skatole and indole in adipose tis-
sue and plasma were analysed at the hormone laboratory
at the Norwegian School of Veterinary Sciences (NVH).
Levels of androstenone were analysed by a modified time-
resolved fluoroimmunoassay [34], using an antibody pro-
duced at NVH [35], whereas levels of skatole and indole
in adipose tissue were analysed using high performance
liquid chromatography [26]. Levels of testosterone, 17β-
estradiol and estrone sulphate in plasma were analysed at
the hormone laboratory at Aker University Hospital.
Plasma levels of testosterone were measured by a radioim-
munoassay (Orion Diagnostica, Espoo, Finland). The
intra- and total assay coefficients of variation (CVs) were
7% and 9%, respectively. Plasma levels of estradiol were
measured by a fluoroimmunoassay (Perkin Elmer, Turku,
Finland). The intra- and total assay coefficients of varia-
tion (CVs) were 3% and 7%, respectively. Plasma levels of
estrone sulphate were measured by a radioimmunoassay
(Diagnostic System Laboratories, Inc., Webster, TX, USA).
The intra- and total assay coefficients of variation (CVs)
were 5% and 7%, respectively.

DNA extraction
DNA was isolated from leukocytes using the automated
DNA extractor Bio Robot M48 from Qiagen (CA, USA)
and the supplementary MagAttract DNA Blood Midi M48
protocol. Concentrations were measured on a 1420 Victor
plate reader (Turku, Finland) using PicoGreen fluores-
cence (Molecular Probes, OR, USA) or on a NanoDrop
ND-1000 Spectrophotometer (NanoDrop Technologies,
DE, USA). Normalisation of DNA samples was done using
the Biomek FX robot from Beckman (Beckman Coulter,
CA, USA).

SNP discovery and validation
On the basis of their known or putative role in boar taint,
candidate genes were chosen based on literature studies
and on results from our previously published microarray
results [36,37]. SNP discovery was performed by PCR rese-
quencing of genomic DNA and cDNA from Duroc and
Norwegian Landrace boars. Primers were designed using
Primer3 [38] or Oligo primer analysis software v.6
(Molecular Biology Insights, Inc., CO, USA). The pro-
grammes Phred, Phrap and PolyPhred (v.4.06) were used
to identify putative SNPs from the PCR resequencing
chromatograms [39,40] and the Consed programme was
used to visually confirm the putative SNPs [41]. Addition-
ally, SNPs were provided from alignment of EST
sequences produced in the Sino-Danish sequencing
project [42]. The genotyping was done in a two-step
approach. Before high throughput genotyping, all the
SNPs (a total of 275 SNPs in 121 genes) were validated on

380 animals from each breed using the genotyping proce-
dure described below (see additional file 1: Genotyped
SNPs). The SNPs that were significant in at least one of the
phenotypes using a non-stringent significance level (p <
0.1) were used for genotyping of all the boars. Of the
selected SNPs, 135 were in successful assays (see addi-
tional file 1: Genotyped SNPs).

Genotyping
SNPs were genotyped using matrix-assisted laser desorp-
tion/ionisation time-of-flight mass spectroscopy (MALDI-
TOF MS) assays. Multiplex assays for use in the Sequenom
MassARRAY system were designed using MassARRAY
Assay Design software (Sequenom, San Diego, USA) at
multiplexing levels between 7 and 35. Primers for the gen-
otyping can be found in additional file 2: Primer
sequences for genotyping. Genotyping was done by the
IPLEX protocol using manufacturer's instructions (Seque-
nom, San Diego, USA) [43]. The MassARRAY Typer soft-
ware was used for automated genotype calling.

Haplotype construction
Genes with more than one SNP were used for haplotype
analyses if one of the SNPs was significant for one of the
phenotypes. Haplotype construction and frequency esti-
mation were done using two programmes in combina-
tion. CRIMAP v2.4 [44] used pedigree information while
PHASE v2.1.1 [45,46] used linkage disequilibrium infor-
mation to determine haplotypes.

Statistical analyses
Statistical analyses were performed for the two breeds
Duroc and Norwegian Landrace separately. Association
studies were done using the likelihood ratio test [47] by
average information restricted maximum likelihood (AI-
REML) [48] combined with expectation maximisation
(EM-REML) if an update goes outside parameter space
[49]. The procedure is part of the package DMU, v.6
release 4.7 [47]. The fixed effects fitted were sire, herd-
year-season, waiting in boar test station before slaughter
or not, and pen. By having sire as a fixed effect we make
sure that the sire family effect does not affect the SNP esti-
mate. Covariates used were age at 25 kg (start of boar test),
days from 25 kg to 100 kg (days in boar test), days from
100 kg to slaughter (days in waiting station) and number
of live born in same litter. Number of live born was also
included as a squared term as this was shown to have a sig-
nificant effect in the model. Animal ID, sample date for
adipose tissue or plasma, and SNP-genotype or haplo-
type-genotype were fitted as random effects. The model
used was as follows

trait sire herd year season wait station

          pen ani

= + − − + −
+ + mmalID sample date SNP

age kg days days wait liveb

+ − +

+ + + − +_ _25 25 100 oorn liveborn e+ +( )2
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where trait is bulbo urethralis gland length (cm), ln(ppm
levels of androstenone in adipose tissue), ln(ppm levels of
skatole in adipose tissue), ln(ppm levels of indole in adi-
pose tissue), ln(ppm levels of androstenone in plasma),
ln(ppm levels of testosterone in plasma), ln(ppm levels of
estrone sulphate in plasma) or ln(ppm levels of 17β-estra-
diol in plasma). The linear model used assumes normal-
ity. The distributions were, however, skewed for all the
chemical compounds in the study and the data was log-
transformed to reduce this problem.

In the haplotype analyses, SNP was replaced by haplo-
type. SNPs with a genotyping success rate of less than 90%
were excluded from further analyses and missing data was
considered as a separate class in the random effect of SNP
or haplotype. For each trait the model was run without
SNPs or haplotypes for log likelihood comparison. A log
likelihood ratio (LRT) exceeding 5.4 units, corresponding
p < 0.001, was considered significant (assuming that
2*LRT is approximately chi-squared distributed with one
degree of freedom).

Results
A total of 135 SNPs from 57 candidate genes for boar taint
were included in this study. The SNPs were distributed in
exons, introns and untranslated regions of the genes and
were genotyped in the two breeds Duroc (D) and Norwe-
gian Landrace (NL). Out of these, 9 and 4 SNPs were mon-
omorphic in D and NL, respectively (Table 1). SNPs with
an estimated minor allele frequency (MAF) of less than
1% were excluded from further analyses. For the D breed,
19 SNPs were excluded due to low MAF while for NL this
number was 14 (Table 1). The resulting SNPs with a gen-
otyping success rate of more than 90% were used for asso-
ciation studies. A summary of these SNPs and their genes,
alleles and frequencies are presented for D in Table 2 and
for NL in Table 3. Descriptive statistics for the different
phenotypes used in association analyses are presented for
D in Table 4 and for NL in Table 5. Significant effects of
SNPs on these phenotypes are shown in Table 6.

In Duroc, 4 SNPs were associated with levels of androsten-
one in adipose tissue and they were found to explain 5.1%
(NGFIB_in4), 5.6% (CYP2D6_1276(ex7)), 12.3%
(CYP2C49_1083(ex7)) and 16.3% (CTNND1_3'UTRa) of
the total variation. In NL, none of the SNPs examined in
this study was significantly associated with levels of
androstenone in adipose tissue, but 4 SNPs were signifi-
cantly associated with levels of androstenone in plasma.
These SNPs explain 1.3% (BAP1_3'UTRb), 1.6%
(HYAL2_583(ex1)), 2% (BAP1_3'UTRa) and 2.1%
(SRD5A2_3'UTRd) of the total variation. Levels of skatole
in adipose tissue were significantly associated with 5 SNPs
within two different genes in D and 3 SNPs from one gene
in NL. In D, SNPs within CYP21 explained 12.4% and
13.4% of the total variation while SNPs within CYP2E1
explained between 2.5% and 3.1% of the total variation.
CYP2E1 SNPs in NL explained between 2.1% and 3% of
the total skatole variation. Association results for levels of
indole in adipose tissue show that 7 SNPs from two genes
(CYP21 and CYP2E1) explain between 6.3% and 7.5% of
the total variation in D and that 5 SNPs from CYP2E1
explain between 3.1% and 4.9% of the total variation in
NL. Some SNPs were also associated with levels of other
steroids but none of them were associated with the length
of bulbo urethral gland (Table 6).

Haplotypes were constructed for genes with more than
one SNP and an additional association analysis was per-
formed on the phenotypes found to be significant in the
single SNP analysis. This resulted in 5 significant genes for
D (Table 7) and 5 for NL (Table 8). Only haplotypes with
frequencies of more than 1% were included in the statisti-
cal analyses. Significant haplotype effects on the pheno-
types investigated are shown in Table 9. The haplotype
analyses of CYP2E1 were significant in both breeds for lev-
els of skatole and indole and analyses suggest that as
much as 12% of the total variation in indole and 6% of
the total variation in skatole can be explained by this gene
in D. In NL, 9.5% and 4.6% of the total variation in indole
and skatole, respectively, was explained by CYP2E1 haplo-

Table 1: SNPs excluded from further analysis due to low variation.

Breed Fixed SNPs

D ALB_1103(ex9), AKR1C3_in4d, CRSP9_504(ex1), FTH1_3'UTR, MMP1_in3a, RALBP1_3'UTR, HSP70_1748(ex1), HSP70_1258(ex1)

NL CYP21_in8c, HSD17B4_in18d, HSP70_939(ex1), HSP70_1476(ex1)

Estimated MAF < 0.01

D AKR1C3_in2a, AKR1C3_in4a, BAP1_3'UTRb, CYP21_in6a, CYP21_in8a, CYP2E1_1422(ex9), EGFR_3'UTRa, EGFR_in12, 
HBLD2_3'UTRa, HBLD2_3'UTRb, HSPCA_3'UTR, HSPCA_2175(ex9), HYAL1_75(ex1), HYAL2_in1b, MMP13_in2, MMP13_in3a, 
PAPSS2_3'UTRa, PIAS1_1863(ex14), SRD5A2_3'UTRc

NL ATP5F1_183(ex3), AKR1C3_in2a, FTH1_5'UTR, HBLD2_3'UTRb, HBS1L_1994(ex17), HYAL1_83(ex1), MMP1_279(ex2), 
NGFIB_1195(ex4), NGFIB_in4, NGFIB_1374(ex5), PAPS2_3'UTRb, UGT1A1_in3a, UGT1A1_in3b, UGT2B17_197(ex1)

Fixed SNPs and SNPs with an estimated minor allele frequency (MAF) of less than 1% were not included in the association study.
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Table 2: SNPs used for the final association analyses in Duroc.

SNP ID Alleles MAF Homozygote 1 Heterorozygote Homozygote 2

AK1_483(ex5) (C) T 0.176 C/C (n = 41) C/T (n = 290) T/T (n = 725)
AKR1C3_in4b C (T) 0.436 C/C (n = 331) C/T (n = 518) T/T (n = 198)
AKR1C3_in4c C (T) 0.449 C/C (n = 302) C/T (n = 501) T/T (n = 199)
ATP5F1_183(ex3) (A) G 0.104 A/A (n = 9) A/G (n = 204) G/G (n = 855)
Bap1_3'UTRa (A) T 0.055 A/A (n = 2) A/T (n = 112) T/T (n = 947)
CTNND1_3'UTRa (G) T 0.11 G/G (n = 13) G/T (n = 199) T/T (n = 811)
CTNND1_3'UTRb (A) G 0.104 A/A (n = 14) A/G (n = 186) G/G (n = 825)
CYB5_-8(prom) G (T) 0.028 G/G (n = 995) G/T (n = 60) -
CYP11B1_in1a (C) G 0.015 C/C (n = 2) C/G (n = 29) G/G (n = 1036)
CYP21_in9 (A) G 0.075 A/A (n = 11) A/G (n = 135) G/G (n = 905)
CYP21_in6b (C) T 0.075 C/C (n = 11) C/T (n = 137) T/T (n = 919)
CYP21_in8b A (G) 0.075 A/A (n = 893) A/G (n = 134) G/G (n = 11)
CYP21_in8c C (T) 0.276 C/C (n = 554) C/T (n = 438) T/T (n = 75)
CYP21_in8d (A) C 0.322 A/A (n = 122) A/C (n = 415) C/C (n = 485)
CYP2C49_1083(ex7) C (G) 0.499 C/C (n = 2) C/G (n = 1041) G/G (n = 1)
CYP2D6_1276(ex7) C (T) 0.228 C/C (n = 642) C/T (n = 382) T/T (n = 55)
CYP2D6_1287(ex7) (A) G 0.148 A/A (n = 21) A/G (n = 260) G/G (n = 739)
CYP2E1_1423(ex9) (A) G 0.48 A/A (n = 244) A/G (n = 489) G/G (n = 285)
CYP2E1_in1a (C) G 0.296 C/C (n = 98) C/G (n = 1420) G/G (n = 521)
CYP2E1_in1b C (DEL) 0.482 C/C (n = 287) C/D (n = 545) D/D (n = 248)
CYP2E1_in6 C (T) 0.482 C/C (n = 284) C/T (n = 536) T/T (n = 246)
CYP3A4_1498(ex13) (A) G 0.497 A/A (n = 232) A/G (n = 566) G/G (n = 238)
EGFR_3'UTRb (C) T 0.164 C/C (n = 28) C/T (n = 304) T/T (n = 763)
EGFR_3'UTRc A (C) 0.163 A/A (n = 761 A/C (n = 301) C/C (n = 27)
EGFR_in2a (C) T 0.097 C/C (n = 8) C/T (n = 185) T/T (n = 840)
EGFR_in2b C (T) 0.099 C/C (n = 843) C/T (n = 188) T/T (n = 9)
FDX1_3'UTR (C) T 0.056 C/C (n = 1) C/T (n = 109) T/T (n = 884)
HBS1L_1994(ex17) (A) G 0.235 A/A (n = 51) A/G (n = 399) G/G (n = 616)
HPGD_3'UTR G (T) 0.154 G/G (n = 756) G/T (n = 284) T/T (n = 21)
HSD11B1_793(ex6) C (T) 0.061 C/C (n = 942) C/T (n = 114) T/T (n = 8)
HSD17B1_3'UTRa A (C) 0.157 A/A (n = 751) A/C (n = 300) C/C (n = 18)
HSD17B4_in18d (A) T 0.273 A/A (n = 83) A/T (n = 412) T/T (n = 565)
HSD17B7_622(ex6) (A) G 0.374 A/A (n = 137) A/G (n = 498) G/G (n = 398)
HYAL1_83(ex1) C (T) 0.336 C/C (n = 464) C/T (n = 470) T/T (n = 118)
IQGAP2_3'UTR A (G) 0.231 A/A (n = 606) A/G (n = 389) G/G (n = 46)
MIS_in1 (C) T 0.05 C/C (n = 3) C/T (n = 96) T/T (n = 929)
MMP1_279(ex2) (A) G 0.237 A/A (n = 58) A/G (n = 374) G/G (n = 603)
NGFIB_in3 C (T) 0.298 C/C (n = 543) C/T (n = 428) T/T (n = 108)
NGFIB_1195(ex4) (A) G 0.243 A/A (n = 53) A/G (n = 401) G/G (n = 590)
NGFIB_in4 (A) G 0.245 A/A (n = 59) A/G (n = 397) G/G (n = 596)
NGFIB_1374(ex5) (C) T 0.249 C/C (n = 60) C/T (n = 421) T/T (n = 605)
PAPSS2_3'UTRb (A) G 0.231 A/A (n = 57) A/G (n = 387) G/G (n = 639)
PPP1R1A_291(ex5) (A) G 0.022 - A/G (n = 48) G/G (n = 1043)
PRKAB2_3'UTRa (A) T 0.203 A/A (n = 41) A/T (n = 342) T/T (n = 663)
RNF14_3'UTR C (G) 0.468 C/C (n = 300) C/G (n = 495) G/G (n = 234)
SARG_3'UTR (A) G 0.256 A/A (n = 70) A/G (n = 395) G/G (n = 580)
SOX9_in2c (C) G 0.266 C/C (n = 76) C/G (n = 386) G/G (n = 550)
SRD5A2_3'UTRd (C) T 0.223 C/C (n = 54) C/T (n = 353) T/T (n = 627)
STARD3_3'UTR C (T) 0.036 C/C (n = 983) C/T (n = 74) T/T (n = 1)
TSPYL4_3'UTR C (G) 0.373 C/C (n = 397) C/G (n = 508) G/G (n = 134)
UGT1A1_325(ex1) (C) T 0.081 C/C (n = 7) C/T (n = 156) T/T (n = 886)
UGT1A1_in3a (A) G 0.218 A/A (n = 54) A/G (n = 370) G/G (n = 670)
UGT1A1_in3b (C) T 0.141 C/C (n = 22) C/T (n = 252) T/T (n = 778)
UGT1A10_3'UTR A (G) 0.079 A/A (n = 894) A/G (n = 155) G/G (n = 6)
URB_2730(ex7) A (G) 0.16 A/A (n = 722) A/G (n = 296) G/G (n = 18)

SNP ID indicates gene name and basepair from ATG start codon, exon number is shown between brackets and if the SNP is in an intron, the intron 
number is indicated. MAF is the estimated minor allele frequency, and the minor allele is indicated between brackets. Number of animals (n) is 
shown between brackets after each genotype. DEL = deletion.
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Table 3: SNPs used for the final association analyses in Norwegian Landrace.

SNP ID Alleles MAF Homozygote 1 Heterorozygote Homozygote 2

AK1_483(ex5) (C) T 0.263 C/C (n = 109) C/T (n = 677) T/T (n = 914)
AKR1C3_in4b C (T) 0.37 C/C (n = 1349) C/T (n = 285) T/T (n = 20)
AKR1C3_in4c C (T) 0.095 C/C (n = 1324) C/T (n = 268) T/T (n = 19)
ALB_1103(ex9) (C) T 0.093 C/C (n = 10) C/T (n = 293) T/T (n = 1374)
Bap1_3'UTRa (A) T 0.415 A/A (n = 266) A/T (n = 851) T/T (n = 548)
Bap1_3'UTRb (A) G 0.336 A/A (n = 171) A/G (n = 751) G/G (n = 705)
CRSP9_504(ex1) (A) G 0.106 A/A (n = 17) A/G (n = 320) G/G (n = 1333)
CTNND1_3'UTRb A (G) 0.449 A/A (n = 512) A/G (n = 816) G/G (n = 342)
CYB5_-8(prom) G (T) 0.027 G/G (n = 1611) G/T (n = 92) -
CYP11B1_in1c C (T) 0.492 C/C (n = 435) C/T (n = 783) T/T (n = 409)
CYP11B1_in1a (C) G 0.49 C/C (n = 398) C/G (n = 842) G/G (n = 432)
CYP21_in6a C (G) 0.241 C/C (n = 946) C/G (n = 643) G/G (n = 81)
CYP21_in9 A (G) 0.231 A/A (n = 986) A/G (n = 608) G/G (n = 83)
CYP21_in8b (A) G 0.183 A/A (n = 50) A/G (n = 518) G/G (n = 1124)
CYP2C49_1251(ex8) (A) C 0.488 - A/C (n = 1560) C/C (n = 39)
CYP2D6_1276(ex7) C (T) 0.222 C/C (n = 1003) C/T (n = 604) T/T (n = 71)
CYP2D6_1287(ex7) (A) G 0.197 A/A (n = 21) A/G (n = 594) G/G (n = 1002)
CYP2E1_1422(ex9) (C) T 0.417 C/C (n = 286) C/T (n = 829) T/T (n = 565)
CYP2E1_1423(ex9) (A) G 0.183 A/A (n = 55) A/G (n = 493) G/G (n = 1103)
CYP2E1_in1a C (G) 0.416 C/C (n = 562) C/G (n = 798) G/G (n = 285)
CYP2E1_in1b C (DEL) 0.189 C/C (n = 1086) C/D (n = 519) D/D (n = 55)
CYP2E1_in6 C (T) 0.186 C/C (n = 1064) C/T (n = 497) T/T (n = 52)
CYP3A4_3'UTR (C) T 0.335 C/C (n = 168) C/T (n = 804) T/T (n = 728)
CYP3A4_1498(ex13) (A) G 0.331 A/A (n = 163) A/G (n = 786) G/G (n = 729)
DHRS6_3'UTR (C) T 0.333 C/C (n = 192) C/T (n = 720) T/T (n = 748)
EGFR_3'UTRa C (T) 0.447 C/C (n = 482) C/T (n = 795) T/T (n = 313)
EGFR_3'UTRb C (T) 0.439 C/C (n = 493) C/T (n = 817) T/T (n = 296)
EGFR_3'UTRc A (C) 0.131 A/A (n = 1262) A/G (n = 390) G/G (n = 24)
EGFR_in12 C (T) 0.449 C/C (n = 503) C/T (n = 858) T/T (n = 332)
EGFR_in2a (C) T 0.132 C/C (n = 26) C/T (n = 384) T/T (n = 1236)
EGFR_in2b (C) T 0.417 C/C (n = 298) C/T (n = 809) T/T (n = 578)
HBLD2_3'UTRa G (T) 0.488 G/G (n = 409) G/T (n = 783) T/T (n = 371)
HSD11B1_793(ex6) (C) T 0.306 C/C (n = 155) C/T (n = 710) T/T (n = 804)
HSD17B1_3'UTRb (G) T 0.101 G/G (n = 20) G/T (n = 293) T/T (n = 1335)
HSD17B1_3'UTRa (A) C 0.13 A/A (n = 19) A/C (n = 397) C/C (n = 1256)
HSD17B7_622(ex6) A (G) 0.276 A/A (n = 854) A/G (n = 593) G/G (n = 141)
HSPCA_3'UTR C (T) 0.429 C/C (n = 527) C/T (n = 811) T/T (n = 294)
HSPCA_2175(ex9) A (G) 0.433 A/A (n = 538) A/G (n = 833) G/G (n = 311)
HYAL1_748(ex1) (G) T 0.488 G/G (n = 429) G/T (n = 872) T/T (n = 390)
HYAL1_75(ex1) (C) T 0.489 C/C (n = 390) C/T (n = 863) T/T (n = 427)
HYAL2_583(ex1) (A) C 0.486 A/A (n = 380) A/C (n = 819) C/C (n = 424)
HYAL2_in1b A (G) 0.488 A/A (n = 428) A/G (n = 874) G/G (n = 389)
IQGAP2_3'UTR A (G) 0.27 A/A (n = 837) A/G (n = 640) G/G (n = 109)
MIS_in1 C (T) 0.13 C/C (n = 1288) C/T (n = 383) T/T (n = 30)
MMP1_in3a C (T) 0.253 C/C (n = 927) C/T (n = 633) T/T (n = 104)
MMP13_in2 (A) C 0.269 A/A (n = 113) A/C (n = 667) C/C (n = 881)
NGFIB_in3 C (T) 0.052 C/C (n = 1509) C/T (n = 167) T/T (n = 3)
PAPSS2_3'UTRa A (G) 0.269 A/A (n = 861) A/G (n = 620) G/G (n = 121)
PIAS1_1863(ex14) A (G) 0.266 A/A (n = 885) A/G (n = 679) G/G (n = 104)
PPP1R1A_291(ex5) (A) G 0.103 A/A (n = 16) A/G (n = 314) G/G (n = 1343)
RALBP1_3'UTR C (T) 0.025 C/C (n = 1585) C/T (n = 81) T/T (n = 2)
RNF14_3'UTR (C) G 0.433 C/C (n = 297) C/G (n = 843) G/G (n = 520)
SARG_3'UTR A (G) 0.192 A/A (n = 1113) A/G (n = 508) G/G (n = 71)
SOX9_in2c C (G) 0.406 C/C (n = 588) C/G (n = 750) G/G (n = 284)
SRD5A2_3'UTRd C (T) 0.478 C/C (n = 449) C/T (n = 826) T/T (n = 377)
SRD5A2_3'UTRa G (T) 0.176 G/G (n = 1122) G/T (n = 506) T/T (n = 41)
STARD3_3'UTR C (T) 0.133 C/C (n = 1279) C/T (n = 384) T/T (n = 33)
TSPYL4_3'UTR C (G) 0.408 C/C (n = 588) C/G (n = 830) G/G (n = 275)
UGT1A1_325(ex1) (C) T 0.105 C/C (n = 19) C/T (n = 301) T/T (n = 1296)
UGT1A10_3'UTR (A) G 0.115 A/A (n = 66) A/G (n = 241) G/G (n = 1310)
URB_2730(ex7) A (G) 0.166 A/A (n = 1139) A/G (n = 464) G/G (n = 40)

SNP ID indicates gene name and basepair from ATG start codon, exon number is shown between brackets and if the SNP is in an intron, the intron 
number is indicated. MAF is the estimated minor allele frequency, and the minor allele is indicated between brackets. Number of animals (n) is 
shown between brackets after each genotype. DEL = deletion.
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types. The effect of different CYP2E1 haplotypes is pre-
sented in Figure 1a for D and in Figure 1b for NL.
Significant effects were also found for BAP1, HYAL2 and
SRD5A2 and levels of androstenone in Norwegian Lan-
drace and these haplotypes are presented in Figure 1c, d
and 1e, respectively.

Discussion
Unfavourable correlations between boar taint com-
pounds and phenotypes related to reproduction make
selection against high levels of boar taint challenging.
Analysing the effect of candidate genes on androstenone,
skatole and sex steroids will give new information about
which genes that affect different compounds. It may also

reveal polymorphisms that can be used for breeding
against high levels of boar taint without simultaneously
affecting fertility and reproduction in the pigs. In this
study we report a larger set of SNPs in selected genes
involved in biosynthesis and metabolism of androsten-
one and skatole, in addition to regulatory factors likely
involved in boar taint. The SNPs were genotyped in boars
from Duroc (D) and Norwegian Landrace (NL) and tested
for associations to 8 different phenotypes related to boar
taint and reproduction.

One of the key enzymes in the metabolism of skatole is
cytochrome P450 family member CYP2E1 [15,50]. A total
of 7 metabolites have been identified for skatole [51] and

Table 4: Descriptive statistics for phenotypes in Duroc.

Phenotype Breed n Mean SD Min Max

Bulbo Urethralis length (cm) D 469 11.55 1.67 7.5 19.75
Skatole (ppm) D 934 0.06 0.11 0.00 1.51
ln(Skatole) D 934 -4.10 2.25 -9.21 0.41
Indole (ppm) D 934 0.04 0.05 0.00 0.61
ln(Indole) D 934 -3.63 0.77 -9.21 -0.50
Androstenone fat (ppm) D 950 3.27 2.79 0.01 20.5
ln(Androstenone fat) D 950 0.84 0.88 -4.60 3.02
Androstenone plasma (ppm) D 786 20.1 15.6 0.03 95.2
ln(Androstenone plasma) D 785 2.70 0.87 -3.5 4.56
Testosterone (ppm) D 934 12.9 9.85 0.00 107
ln(Testosterone) D 933 2.17 1.44 -9.21 4.67
Estrone sulphate (ppm) D 934 28.8 20.3 0.00 148
ln(Estrone sulphate) D 933 3.05 1.01 -9.21 5.00
17β-estradiol (ppm) D 935 0.24 0.14 0.03 1.10
ln(17β-estradiol) D 934 -1.57 0.52 -3.61 0.10

Mean, standard deviation (SD), minimum (min) and maximum (max) values are presented for all the phenotypes included in the association study. 
Number of animals (n) used in the SNP analyses for each trait is indicated. For all phenotypes except bulbo urethralis length, the data were ln-
transformed to get a normal distribution and both original and ln-transformed values are presented.

Table 5: Descriptive statistics for phenotypes in Norwegian Landrace.

Phenotype Breed n Mean SD Min Max

Bulbo Urethralis length (cm) NL 757 10.98 1.45 7.25 16.5
Skatole (ppm) NL 1488 0.10 0.15 0.00 1.87
ln(Skatole) NL 1488 -2.93 1.22 -9.21 0.63
Indole (ppm) NL 1488 0.04 0.07 0.00 1.19
ln(Indole) NL 1488 -3.51 0.76 -6.81 0.17
Androstenone fat (ppm) NL 1525 1.16 1.14 0.04 13.4
ln(Androstenone fat) NL 1525 -0.18 0.79 -3.22 2.60
Androstenone plasma (ppm) NL 1371 11.0 8.29 0.47 112
ln(Androstenone plasma) NL 1371 2.18 0.69 -0.75 4.72
Testosterone (ppm) NL 1509 7.04 6.79 0.00 161
ln(Testosterone) NL 1509 1.44 1.71 -9.21 5.08
Estrone sulphate (ppm) NL 1509 13.4 12.6 0.00 205
ln(Estrone sulphate) NL 1509 2.21 1.00 -9.21 5.32
17β-estradiol (ppm) NL 1509 0.14 0.08 0.03 1.67
ln(17β-estradiol) NL 1509 -2.04 0.43 -3.68 0.51

Mean, standard deviation (SD), minimum (min) and maximum (max) values are presented for all the phenotypes included in the association study. 
Number of animals (n) used in the SNP analyses for each trait is indicated. For all phenotypes except Bulbo Urethralis length, the data were ln-
transformed to get a normal distribution and both original and ln-transformed values are presented.
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5 of them were produced at decreased levels when a
CYP2E1 inhibitor was present [52]. Moreover, levels of
CYP2E1 mRNA [53], protein [15,53], and enzyme activity
[54] have been found negatively associated with levels of
skatole in adipose tissue of boars. It has also been shown
that CYP2E1 is induced by skatole [55] and inhibited by
androstenone and 17β-estradiol [56]. In our study we
found no association of CYP2E1 and androstenone. This
is in accordance with the results of Zamaratskaia et al.
[57]. We did, however, find significant associations
between SNPs and haplotypes within CYP2E1 and levels
of skatole and indole in both breeds. These results are in
agreement with associations previously found between
CYP2E1_1423(ex9) and levels of skatole [58], although in
another study there was no significant associations
detected in Large White × Meishan crossbreds [59]. Both
SNP and haplotype analyses showed that the extent of var-
iation in skatole and indole explained by CYP2E1 is
higher in D than NL. Breed specific differences for

CYP2E1 is in agreement with Doran et al. [53]. In both
breeds we identified a haplotype that was associated with
reduced levels of both skatole and indole, and this haplo-
type contains the favourable alleles from the SNP analysis.

Cytochrome P450 family member CYP21 is involved in
the steroid biosynthesis pathway [60]. It has previously
been suggested as a positional candidate gene for andros-
tenone [61]. We identified 7 SNPs in the introns of this
gene. None of these SNPs were found to be associated
with levels of any of the steroids included in this study.
On the contrary, 3 SNPs were significantly associated with
levels of skatole and indole in D, but not in NL. Two hap-
lotypes containing all the favourable alleles have an
advantageous effect on levels of indole and skatole in D.
This effect was, however, not significant (LRT of 3.4 (p <
0.01) for indole and 1.6 (p < 0.1) for skatole). The role of
CYP21 regarding to levels of skatole and indole needs to
be clarified.

Table 6: Significant results for SNP associations in Duroc and Norwegian Landrace.

Trait SNP LRT D LRT NL % of tot.var. D % of tot.var. NL Favourable allele

ln(Androstenone fat) NGFIB_in4 5.99 5.1 A
CTNND1_3'UTRa 6.02 16.3 T
CYP2D6_1276(ex7) 6.35 5.6 C
CYP2C49_1083(ex7) 7.33 12.3 C

ln(Androstenone plasma) BAP1_3'UTRb 5.40 1.3 A
HYAL2_583(ex1) 5.53 1.6 A
BAP1_3'UTRa 6.45 2.0 A
SRD5A2_3'UTRd 8.80 2.1 T

ln(Indole) CYP21_in9 8.52 6.3 A
CYP21_in6b 9.36 7.3 C
CYP21_in8b 10.4 6.4 G
CYP2E1_1422(ex9) 28.3 4.5 C
CYP2E1_1423(ex9) 25.4 39.5 6.5 4.9 A
CYP2E1_in1a 11.9 19.6 7.5 3.1 G
CYP2E1_in1b 24.8 35.4 7.0 4.8 DEL
CYP2E1_in6 26.4 31.8 7.4 4.5 A

ln(Skatole) CYP21_in9 7.86 12.4 A
CYP21_in6b 7.20 13.4 C
CYP2E1_1423(ex9) 6.81 12.0 2.5 3.0 A
CYP2E1_in1b 8.38 8.80 3.4 2.1 DEL
CYP2E1_in6 7.79 9.10 3.1 2.2 A

ln(Estrone sulphate) AKR1C3_in4b 5.92 1.5 T
AKR1C3_in4c 6.57 1.9 T
AK1_483(ex5) 13.8 16.2 T
SRD5A2_3'UTRd 6.30 1.3 C

ln(17β-estradiol) AKR1C3_in4c 5.60 2.0 T
PPP1R1A_291(ex5) 5.71 1.3 G

ln(Testosterone) HYAL2_583(ex1) 6.28 1.5 C
BAP1_3'UTRa 6.80 1.8 T

Significance level is presented (LRT) together with percentage of the total phenotypic variance explained by the SNP and the favourable allele. DEL 
= deletion.
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Cytochrome P450 porcine isoform CYP2C49 is a member
of the subfamily CYP2C, which metabolise drugs and ster-
oids [62]. We previously identified this isoform as the
most significant gene in a gene expression study including
pigs with extreme high and low levels of androstenone
[37] and in the current study we identified 4 SNPs in the
CYP2C49 gene. A significant association was shown
between CYP2C49_1083(ex7) and levels of androstenone
in adipose tissue in D, and this SNP explain 12.3% of the
total variation. This result suggests that the level of gene
expression is regulated within the gene. The SNP was not
significantly associated with any of the other phenotypes
in the study. A microsatellite linked to CYP2C18, which is
the human ortholog of CYP2C49, has previously been
tested for association with levels of skatole in adipose tis-
sue, in accordance with our results, no significant results
were obtained [63].

Cytochrome P450 member CYP2D6 is involved in drug
metabolism and has a broad substrate specificity [64].
Some studies have also suggested that CYP2D6 is regu-
lated by steroid hormones [65,66]. In this study we found
significant association between the SNP
CYP2D6_1276(ex7) and level of androstenone in adipose
tissue of D boars. SNPs in CYP2D6 showed no significant
associations to levels of skatole or indole. This result is
supported by the study of Diaz and Squires [52], showing
that inhibition of CYP2D6 do not to affect production of
skatole metabolites. Moreover, we found no associations
with levels of testosterone or estrogens.

Catenin delta, CTNND1, is part of the catenin family that
functions in intracellular signalling and transcriptional
regulation [67] and phosporylation of CTNND1 leads to
regulation of several transcription factors [67]. A SNP in

Significant effects of haplotypesFigure 1
Significant effects of haplotypes. Significant effects were found for CYP2E1 haplotypes in Duroc (a) and Norwegian Lan-
drace (b), BAP1 haplotypes (c), HYAL2 haplotypes (d) and SRD5A2 haplotypes (e) in Norwegian Landrace.
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CTNND1 was significantly associated with levels of
androstenone in adipose tissue of D boars. No associa-
tions were found for any of the other phenotypes ana-
lysed, which makes CTNND1 interesting for selection
against high levels of androstenone in D. Such regulators,

however, will likely affect several other biological proc-
esses and this need to be considered before implementa-
tion in the selection scheme.

Orphan nuclear receptor family member NGFI-B, also
known as Nurr77, is involved in transcriptional regula-
tion of several steroidogenic genes, including steroidog-
enic acute regulatory protein (StAR), 3β-hydroxysteroid
dehydrogenase (3β-HSD), cytochrome P450 c17
(CYP17), and CYP21 [68,69]. A SNP in NGFI-B was signif-
icantly associated with levels of androstenone in adipose
tissue of D boars. It was not associated with any of the
other phenotypes examined and is therefore also interest-
ing as a possible genetic marker for selection against
androstenone.

Short-chain dehydrogenase/reductase family members
SRD5A1 and SRD5A2 are enzymes that catabolise a
number of steroids into their 5α-reduced metabolites
[70]. SRD5A2 also catalyses the final step of androstenone
formation [71]. No relationship was found between
genetic variation of SRD5A2 and androstenone in a Large
White × Meishan crossbreed [61]. In our study, however,
6 SNPs were detected in the 3' UTR region of porcine
SRD5A2 and the SNP SRD5A2_3'UTRd was significantly
associated with levels of androstenone and estrone sul-
phate in plasma of NL boars. The haplotype analyses con-
firmed these associations. The haplotype associated with
reduced levels of androstenone, however, was also associ-
ated with reduced levels of estrone sulphate, which makes
it less desirable for selection purposes. Aldo-keto reduct-
ase AKR1C isoforms work together with SRD5As in liver
catabolism of steroids [72] and we previously found the
isoform AKR1C4 differentially expressed regarding to lev-
els of androstenone in pig testes [36]. SNPs in isoform
AKR1C3 were associated with levels of both estrone sul-
phate and estradiol in D boars, but no association with
levels of androstenone suggest different functions for the
two isoforms AKR1C3 and AKR1C4.

The breast/ovarian cancer susceptibility associated pro-
tein-1 (BAP1) has been implied to alter substrate function
through post-translational modifications [73]. It has the
same structure and functions as the ubiquitin carboxy-ter-
minal hydrolase (UCH) family, which are involved in
ubiquitin-mediated regulatory pathways [73]. Two SNPs
in BAP1 were significantly associated with levels of
androstenone in plasma of NL boars. Moreover, a BAP1
haplotye was associated with decreased levels of andros-
tenone. One of the SNPs in BAP1 was, however, also asso-
ciated with levels of testosterone in plasma in the same
breed. The favourable allele with respect to androstenone
was also associated with reduced levels of testosterone,
which suggest that this SNP is not appropriate for selec-
tion purposes.

Table 7: Haplotypes and their frequencies in Duroc.

Gene Haplotype no. Haplotype Frequency

CYP21 1 TATCG 0.27
2 TACCG 0.36
3 TACAG 0.30
4 CGCCA 0.06
5 CGCAA 0.01

CYP2D6 1 TG 0.08
2 TA 0.15
3 CG 0.77

CYP2E1 1 GDTT 0.47
2 GCCC 0.22
3 CCCC 0.29

CTNND1 1 TG 0.89
2 GA 0.11

NGFIB 1 CAAC 0.24
2 CGGT 0.45
3 TGGT 0.30

Haplotypes with frequencies less than 1% were excluded from 
analyses. D = deletion.

Table 8: Haplotypes and their frequencies in Norwegian 
Landrace.

Gene Haplotype no. Haplotype Frequency

BAP1 1 TG 0.58
2 AG 0.08
3 AA 0.33

CYP2D6 1 CG 0.76
2 CA 0.02
3 TG 0.03
4 TA 0.19

CYP2E1 1 CCCAC 0.55
2 GDTGT 0.16
3 GCCGC 0.22
4 GCCAC 0.02
5 CCCGC 0.01

HYAL2 1 AG 0.47
2 AA 0.02
3 CG 0.02
4 CA 0.5

SRD5A2 1 GT 0.47
2 TT 0.01
3 GC 0.36
4 TC 0.16

Haplotypes with frequencies less than 1% were excluded from 
analyses. D = deletion.
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Hyaluronoglucosaminidases are enzymes responsible for
hyaluronan metabolism. It has been shown that hyaluro-
nan metabolic products can induce expression of heat-
shock proteins [74], which are known to activate for
example steroid hormone receptors [75]. Metabolism of
hyaluronan has also been shown to change during testic-
ular development and is associated with testicular descent
[76]. We have identified SNPs in HYAL1, HYAL2 and
HYAL3. Among these a SNP in HAYL2 was associated with
levels of androstenone in plasma of NL boars, and a hap-
lotype with negative effect on the levels of androstenone
was also identified. This HYAL2 SNP and the haplotype
were also associated with levels of testosterone in NL. The
favourable haplotype for levels of androstenone is also
associated with reduced levels of testosterone, implying
that it is not so suitable for breeding purposes.

Except from the associations found for SNPs in CYP2E1
with levels of skatole and indole in adipose tissue, our
results show breed differences with respect to significantly
associated SNPs. The breed differences are in agreement
with results from our previous expression profiling for D
and NL breeds [36,37,77]. Different associations suggest
that D and NL have different linkage disequilibrium (LD)
with the causative mutation. It is therefore likely that there
is some distance between the SNP and the causative muta-
tion. Moreover, fixation or nearly fixation was observed
for many candidate gene SNPs and different SNPs were
monomorphic in D and NL. It emphasises the importance
of testing polymorphisms in the population in question
before using them for breeding purposes. When including
all the significant SNPs for a trait in the same model there
were some problems of convergence, which might indi-
cate that the SNP effects are correlated and partly explain
the same variation. Although a rather strict significance
threshold corresponding to p < 0.001 was used in this
study, the large number of tests performed suggests that
there might still be false positive results and the findings
should be confirmed in another study. Moreover, SNPs
that are significant for boar taint compounds and not for
phenotypes related to reproduction might still have a

small effect on reproduction even though this study was
not able to detect it.

Conclusion
This study reports significant associations between SNPs
within CYP21 and CYP2E1 and reduced levels of both ska-
tole and indole. Moreover, a number of SNPs within
CYP2C49, CYP2D6, NGFIB and CTNND1 were found sig-
nificantly associated with levels of androstenone in adi-
pose tissue. These SNPs did not reveal obvious
associations with levels of testosterone or estrogens,
which might indicate that they can be implemented in
practical breeding to reduce levels of androstenone and
skatole without causing simultaneous negative conse-
quences on phenotypes related to reproduction.
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