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Objective
The genus Pantoea includes 19 species and three uncer-
tain species (P. endophytica, P. latae, P. mediterraneen-
sis, and P. persica), which occurs in association with plant 
and animal hosts, and environmental samples, includ-
ing soil and rivers [1]. Moreover, Mergaert et al. (1993) 
proposed that P. stewartia (Ps) is constituted by two sub-
species, P. stewartii subsp. stewartii (Pss) and P. stewartii 
subsp. indologenes (Psi) [2]. The strains from P. stewar-
tia infect various Poaceae plants, including leek, onion, 
chive, Japanese bunching onion, rice, corn, common 
wheat, sugarcane, foxtail millet, pearl millet, oat, lucky 
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Abstract
Objectives  The pathogen of Pantoea stewartii (Ps) is the causal agent of bacterial disease in corn and various 
graminaceous plants. Ps has two subspecies, Pantoea stewartii subsp. stewartia (Pss) and Pantoea stewartii subsp. 
indologenes (Psi). This study presents two complete genomes of Ps strains including ATCC 8199 isolated from maize 
and PSCN1 causing bacterial wilt in sugarcane. The two bacterial genomes information will be helpful for taxonomy 
analysis in this genus Pantoea at whole-genome levels and accurately discriminated the two subspecies of Pss and Psi.

Data description  The reference strain ATCC 8199 isolated from maize was purchased from Beijing Biobw 
Biotechnology Co., Ltd. (China) and the strain of PSCN1 was isolated from sugarcane cultivar YZ08-1095 in Zhanjiang, 
Guangdong province of China. Two complete genomes were sequenced using Illumina Hiseq (second-generation) 
and Oxford Nanopore (third-generation) platforms. The genome of the strain ATCC 8199 comprised of 4.78 Mb with 
an average GC content of 54.03%, along with five plasmids, encoding a total of 4,846 gene with an average gene 
length of 827 bp. The genome of PSCN1 comprised of 5.03 Mb with an average GC content of 53.78%, along with two 
plasmids, encoding a total of 4,725 gene with an average gene length of 913 bp. The bacterial pan-genome analysis 
highlighted the strain ATCC 8199 was clustered into a subgroup with a Pss strain CCUG 26,359 from USA, while the 
strain PSCN1 was clustered into another subgroup with a Ps strain NRRLB-133 from USA. These findings will serve as a 
useful resource for further analyses of the evolution of Ps strains and corresponding disease epidemiology worldwide.
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bamboo, and so on. The Pss is the agent of Stewart’s vas-
cular wilt in corn and bacterial wilt in sugarcane [3, 4].

A PSCN1 strain was isolated from the cultivar YZ08-
1095 in 2017 and this strain forms yellow-colored colo-
nies on solid nutrient agar (NA) medium and straight 
rods and nonencapsulated cells were observed under 
transmission electron microscopy [3]. Additionally, the 
pathogenicity of this bacterial strain has been verified by 
the Koch’s postulate [3]. The strain PSCN1 was proposed 
as the Pss based on the phylogenetic analysis of bacterial 
16S rDNA sequences [3]. To further exploring taxonomic 
classification on PSCN1, complete genome sequences 
of this pathogen together with the reference strain of 
Pss ATCC 8199 (provided by Beijing Biobw Biotechnol-
ogy Co., Ltd., China) hosted in corn were sequenced 
and assembly based on the combination of the Illumina 
Hiseq and Oxford Nanopore platforms. Although the 
genome sequence derived from strain CCUG 26,359 
(= ATCC 8199) has been assembled at the contig level by 
the Illumina MiSeq platform, this contig-level genome 
assembly includes 352 contigs and no assembled chro-
mosomes (NCBI dataset: PRJNA563568). Thus, the two 
whole genome sequences will enable us to illustrate more 
accurate taxonomic classification of these pathogens at a 
pan-genome level. Additionally, our data provide some 
reference value for the prevention and control of bacte-
rial wilt in corn and sugarcane.

Data description
A pure culture of two strains (ATCC 8199 and PSCN1) 
were grown in liquid nutrient broth (NB) medium with 
constant shaking at 200  rpm and 28  °C for 24  h. After 
extraction of bacterial genomic DNA, the 10-Kb DNA 
library was constructed using the SQK-LSK109 linker kit 
according to the manufacturer’s instructions, and then 
sequenced by Oxford Nanopore PromethION (third-gen-
eration). Meanwhile, a 350-bp library was constructed 
using another sequence platform of Illumina Hiseq 
(second-generation). A total of 1,325  Mb and 1,915  Mb 
Nanopore clean data were generated in two strains 
ATCC 8199 and PSCN1 with an estimated 276.73× and 
380.43× average depth of sequencing coverage, respec-
tively (Table  1,  Data file1) [5]. After quality control of 
the sequencing data, subreads from the Nanopore plat-
form were assembled with Canu (version 1.5) [21]. The 
assembly results were further corrected with Illumina 
data using Pilon [22]. The genome of ATCC 8199 strain 
is 4.78 Mb in total with GC content of 54.03%, including 
one circular chromosome (4,526,106  bp) and five plas-
mids (P1–P5, with 25,199, 35,601, 62,815, 65,465, and 
73,276  bp, respectively). The genome PSCN1 strain is 
5.03 Mb in total with GC content of 53.78%, containing 
one circular chromosome (4,511,897  bp) and two plas-
mids (pCN101- pCN102 with 310,867 and 211,928  bp, 

respectively) (Data file1) [5]. Gene prediction identi-
fied 4,846 genes in ATCC 8199 strain and 4,725 genes in 
PSCN1 strain using Prodigal [23]. The genome of ATCC 
8199 strain includes 71 tRNAs, 21 rRNAs, 6 ncRNA, 11 
CRISPR numbers, 17 genomic islands, and 4 prophages. 
Genomic component analysis revealed that PSCN1 con-
tained 78 tRNAs, 22 rRNAs, 18 ncRNA, 8 CRISPR num-
bers, 17 genomic islands, and one prophage (Data file1) 
[5]. The complete genome sequences of PSCN1 and 
ATCC 8199 have been deposited in GenBank dataset 
under the accession numbers CP046585-CP046587 and 
CP046558-CP046563, respectively.

Gene annotation was determined with the BLAST 
program [24] and with 12 different databases. The over-
view of the two complete genomes were presented to the 
annotation information using Circos [25] (Data file2) [6]. 
For the ATCC 8199 strain, GO analysis [26] revealed that 
3,337 genes were assigned into 41 GO categories, with 
the most genes in catalytic activity (2,090 genes). KEGG 
analysis [27] revealed that 2,612 genes were significantly 
enriched in 106 pathways. A total of 559 putative viru-
lence factors, 797 pathogen–host interaction genes, 404 
transport proteins, 144 carbohydrate active enzymes, and 
3 antibiotic resistance proteins were annotated based on 
the VFDB database [28], PHI-base [29], TCDB database 
[30], CAZyme database [31] and ARDB database [32], 
respectively (Data file3) [7]. For the PSCN1 strain, 2,790 
genes were assigned into 41 GO categories. The largest 
category was assigned to catalytic activity (1,772 genes). 
A total of 2785 genes were significantly enriched in 107 
KEGG pathways. A total of 695 putative virulence fac-
tors, 911 pathogen–host interaction genes, 418 transport 
proteins, 164 carbohydrate active enzymes, and 3 antibi-
otic resistance proteins were annotated based on those 
above-mentioned datasets (Data file4) [8].

The two genome sequences obtained in this study 
along with 45 Ps strains retrieved from NCBI library 
were used for sequence analysis. A strain of P. agglo-
merans CFSAN047153 was used an outgroup (Data 
file5) [9]. The average nucleotide identities (ANI) were 
calculated by pairwise genome comparison based on 
BLAST+ and FastANI [33]. The 47 Ps strains worldwide 
shared 98.40–99.99% ANI indexes and shared 80.89–
81.38% ANI index with the strain CFSAN047153 of P. 
agglomerans. The two strains ATCC 8199 and PSCN1 
had 98.56% ANI index with each other and shared 98.41-
99.97% and 98.30-99.07% with other Ps strains, respec-
tively (Data file6) [10]. Notably, ATCC 8199 and PSCN1 
had highest ANI indexes with IPV-BO 2766 (NCBI 
dataset: PRJNA856801) and HR3-48 (NCBI dataset: 
PRJNA844595) strains, respectively.

To exploring the phylogenetic relationship between 
PSCN1 and ATCC 8199 with other strains, the gene fam-
ily clustering was carried out based on the alignment 
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of single copy genes identified with OrthoMCL [34]. 
The phylogenetic tree was constructed with core-gene 
sequence of 43 Pantoea strains using maximum likeli-
hood method and 1,000 bootstrap replications using 
PhyML [35]. Ten Ps strains including ATCC 8199 and 
PSCN1 were clustered into one subclade, which would 
be further separated into three groups. Furthermore, the 
strains HR3-48 (Ps) and LMG 2671 (Psi) were clustered 
together in the group (I) The strains PSCN1 and NRRLB-
133 (Ps) were clustered together in the group (II). Other 
six Pss strains including ATCC 8199 were clustered in the 
group III (Data file7) [11]. The PSCN1 was proposed as 
a Pss strain based on bacterial 16S rDNA sequences [3], 
but this pathogen might be a Psi strain at pan-genome 
level. However, an accurate classification of two subspe-
cies Pss and Psi within this genus Pantoea need be fur-
ther confirmed based on numerous complete genome 
sequences and biological experiments.

Limitations
This data note presented two complete genome 
sequences, one from reference strain ATCC 8199 hosted 
in corn and another strain PSCN1 isolated from infected 
sugarcane plants showing bacterial wilt symptoms. How-
ever, only a single strain genome sequence from sugar-
cane in China. More strains need be collected at a global 
context and used for the whole genome sequencing. 
Thus, taxonomic classification of this bacterial species 
would be further accurately illustrated.

Abbreviations
ANI	� Average Nucleotide Identity
Bp	� Base pair
BLAST	� Basic Local Alignment Search Tool
NCBI	� National Center for Biotechnology Information
NB	� Nutrient broth
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Table 1  Overview of data files/data sets
Label Name of datafile/data set File types (file 

extension)
Data repository and identifier (DOI or acces-
sion number)

Data file 1 General features of two genomes from PSCN1 and ATCC 
8199 strains

Word file (.docx) Figshare
(https://doi.org/10.6084/m9.figshare.26166673) [5]

Data file 2 Genome organization and gene distribution in two 
strain PSCN1(A) and ATCC 8199(B)

Word file (.docx) Figshare
(https://doi.org/10.6084/m9.figshare.26170231) [6]

Data file 3 Summary of gene annotation of the strain ATCC 8199 Excel file (.xlsx) Figshare
(https://doi.org/10.6084/m9.figshare.26170141) [7]

Data file 4 Summary of gene annotation of the strain PSCN1 Excel file (.xlsx) Figshare
(https://doi.org/10.6084/m9.figshare.26170150) [8]

Data file 5 Characteristics of strains used in this study Excel file (.xlsx) Figshare
(https://doi.org/10.6084/m9.figshare.26170171) [9]

Data file 6 Average nucleotide identity based on the entire ge-
nome sequence of 47 strains of Pantoea stewartia. and 
one strain of Pantoea agglomerans

Excel file (.xlsx) Figshare
(https://doi.org/10.6084/m9.figshare.26170210) 
[10]

Data file 7 Phylogeny tree analysised with core-gene sequence of 
42 strains of Pantoea stewartii and one strain of Pantoea 
agglomerans

Word file (.docx) Figshare
(https://doi.org/10.6084/m9.figshare.26170219) 
[11]

Dataset 8 Genome assembly of Pantoea stewartia subsp. stewartia 
strain ATCC 8199 chromosome.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046558) [12]

Dataset 9 Genome assembly of Pantoea stewartia subsp. stewartia 
strain ATCC 8199 plasmid p1.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046559) [13]

Dataset 10 Genome assembly of Pantoea stewartia subsp. stewartia 
strain ATCC 8199 plasmid p2.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046560) [14]

Dataset 11 Genome assembly of Pantoea stewartia subsp. stewartia 
strain ATCC 8199 plasmid p3.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046561) [15]

Dataset 12 Genome assembly of Pantoea stewartia subsp. stewartia 
strain ATCC 8199 plasmid p4.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046562) [16]

Dataset 13 Genome assembly of Pantoea stewartia subsp. stewartia 
strain ATCC 8199 plasmid p5.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046563) [17]

Dataset 14 Genome assembly of Pantoea stewartia strain PSCN1 
chromosome.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046585) [18]

Dataset 15 Genome assembly of Pantoea stewartia strain PSCN1 
plasmid pCN101.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046586) [19]

Dataset 16 Genome assembly of Pantoea stewartia strain PSCN1 
plasmid pCN102.

GenBank file (.bp) GenBank
(https://identifiers.org/ncbi/insdc:CP046587) [20]
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