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Abstract
Trait heritability and the response to selection depend on genetic variation, a prerequisite to developing sorghum 
varieties with desirable agronomic traits and high carbon sequestration for sustainable crop production and soil 
health. The present study aimed to assess the extent of genetic variability and associations among agronomic and 
carbon storage traits in selected sorghum genotypes to identify the best candidates for production or breeding. 
Fifty genotypes were evaluated at Ukulinga, Bethlehem and Silverton sites in South Africa during the 2022/23 
growing season. The following agronomic and carbon storage traits were collected: days to 50% heading (DTH), 
days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-
to-shoot biomass ratio (RS), grain yield (GY), harvest index (HI), shoot carbon content (SCc), root carbon content 
(RCc), grain carbon content (GCc), total plant carbon stock (PCs), shoot carbon stock (SCs), root carbon stock (RCs), 
and root-to-shoot carbon stock ratio (RCs/SCs), and grain carbon stock (GCs). Higher genotypic coefficient of 
variations (GCVs) were recorded for GY at 45.92%, RB (39.24%), RCs/SCs (38.45), and RCs (34.62). Higher phenotypic 
coefficient of variations (PCVs) were recorded for PH (68.91%), followed by GY (51.8%), RB (50.51%), RS (41.96%), 
RCs/SCs (44.90%), and GCs (41.90%). High broad-sense heritability and genetic advance were recorded for HI (83.76 
and 24.53%), GY (78.59 and 9.98%), PB (74.14 and 13.18%) and PCs (53.63 and 37.57%), respectively, suggesting a 
marked genetic contribution to the traits. Grain yield exhibited positive association with HI (r = 0.76; r = 0.79), DTH 
(r = 0.13; r = 0.31), PH (r = 0.1; r = 0.27), PB (r = 0.01; r = 0.02), RB (r = 0.05; r = 0.06) based on genotypic and phenotypic 
correlations, respectively. Further, the path analysis revealed significant positive direct effects of SB (0.607) and RB 
(0.456) on GY. The RS exerted a positive and significant indirect effect (0.229) on grain yield through SB. The study 
revealed that PB, SB, RB, RS, RCs, and RCs/SCs are the principal traits when selecting sorghum genotypes with high 
yield and carbon storage capacity.
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Introduction
Sorghum (Sorghum bicolor [L.] Moench) is a resilient 
crop adapted to grow in diverse agro-ecologies, including 
semi-arid, subtropical, tropical and temperate climates 
globally. It is a primary staple food crop for most of Afri-
ca’s semi-arid regions, including South Africa. It thrives 
under drought conditions where other major cereal 
crops fail [1–3]. Sorghum seeds are rich sources of nutri-
ents such as carbohydrates (65–76%), proteins (8–12%), 
dietary fibre (2%), vitamin B, and minerals (e.g. iron, 
magnesium, phosphorus, and potassium) [4]. Sorghum 
stover contains crude protein (8–12%), digestible organic 
matter and metabolizable energy (70–75%) [5]. Sor-
ghum’s nutritional content and resilience to grow under 
harsh growing conditions make it an ideal dual-purpose 
crop in a marginal and mixed livestock-cropping system.

Sorghum has a C4 photosynthetic pathway with high 
photosynthesis efficiency and biomass production which 
are vital under limited water and soil nutrients facilitated 
by its extended root length, density, and water-use effi-
ciency. It can reach a height of 4  m and produce fresh 
biomass yields ranging from 45 to 112 tons per hectare, 
depending on genotype and growing environments [6]. 
The high biomass production potential of sorghum con-
tributes to increased carbon sequestration by efficiently 
capturing and storing atmospheric carbon dioxide (CO2) 
through photosynthesis, reducing and compensating for 
emissions.

Druille et al. [7] reported that changes in plant car-
bon allocation patterns due to climate change can sig-
nificantly impact agricultural productivity and food 
security. Crop genetic resources with adequate genetic 
variation are vital to developing new cultivars with desir-
able agronomic traits and high carbon sequestration for 
sustainable crop production and soil health. Phenotypic 
variation depends on the test population’s genetic consti-
tution and the growing conditions.

Continued development of sorghum cultivars is crucial 
to mitigate future climate change impacts and sustainably 
feed a growing global population. This can be accom-
plished by effectively selecting genetically superior and 
resilient genotypes based on the degree of diversity in the 
source material. The success of any crop improvement 
relies on the extent of genetic variability present in the 
source material and the effectiveness of selection [8]. The 
genotypic coefficient of variation (GCV) and phenotypic 
coefficient of variation (PCV) provide information on the 
relative degree of phenotypic and genotypic variation in 
distinct traits of sampled populations [9]. Heritability 
is predictive in indicating the reliability of phenotypic 
value as a guide to breeding value [10]. High values of 
heritability indicate that the phenotypic expression of 
the genotype is a good indicator of its genetic poten-
tial. The degree of genetic gain acquired in an economic 

trait under a specific selection pressure is explained by 
genetic advance. Selection progress depends on genetic 
variability for yield and yield contributing traits and their 
heritability [11]. High genetic advance and heritability 
estimates demonstrate the genetic effects of condition-
ing economic trait, indicating the efficiency of selection 
in crop improvement programs [12].

Correlation analysis provides information on the degree 
of relationship between essential traits. It can facilitate 
the selection and improvement of complex polygenic 
traits, including grain yield in sorghum. Understanding 
the extent of relationship between yield and yield com-
ponents is crucial to improving selection efficiency for 
high yields [13]. Correlations between agronomic traits 
and high heritability simplify the selection process for 
complex traits like grain yield [14]. Consequently, opting 
for agronomic traits with strong correlations can increase 
genetic gains. Selection based on phenotypic perfor-
mance may not result in expected genetic advancement 
due to genotype-by-environment interactions. In this 
regard, A multi-location and -seasonal assessment of sor-
ghum genotypes is essential to develop the best-perform-
ing varieties for yield components and carbon storage. 
Path coefficient analysis is used to partition the correla-
tion between yield and component traits into direct and 
indirect effects, identify the cause-effect relationship, 
and devise effective selection strategies [15]. Genetically 
diverse sorghum accessions were collected from major 
producing countries, including Ethiopia, Tanzania, and 
South Africa, for selection under South African condi-
tions. From this gene pool, 50 accessions were sampled 
based on their high grain yield, biomass, and ethanol pro-
duction [16]. The objective of this study was to assess the 
extent of genetic variability and associations among agro-
nomic and carbon storage traits in selected genetically 
diverse sorghum genotypes to select contrasting traits for 
production or breeding.

Materials and methods
Plant material, trail design and management
Fifty sorghum genotypes obtained from South Africa 
(Agricultural Research Council, African Centre for Crop 
Improvement and Department of Agriculture), Zim-
babwe, Ethiopia, and Tanzania were used in this study 
(Table  1). The genotypes were primarily selected based 
on their high grain yield, biomass, and ethanol produc-
tion [16]. The 50 genotypes were evaluated in three envi-
ronments: Ukulinga research farm at the University of 
KwaZulu-Natal in Pietermaritzburg, Bethlehem in Free 
State, and Silverton in Pretoria during the 2022/23 grow-
ing season. The experiments were laid out in a 5 × 10 
alpha lattice design with two replications. The experi-
mental plot size was a row of 2-meter-long with inter-row 
and intra-row spacing of 90 cm and 25 cm, respectively. 
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Standard agronomic practices were carried out follow-
ing sorghum production guidelines in South Africa [17]. 
During the growing season, the trials were kept weed free 
and supplemented with irrigation.

Data collection
Agronomic traits
Data were collected on the following agronomic traits: 
days to 50% heading (DTH) measured as the number 
of days from planting to when 50% of the genotypes in 
each plot had fully exerted panicles; days to 50% maturity 
(DTM) measured as the number of days from planting to 
when 50% of the genotypes in each plot had dried pan-
icles; plant height (PH) was measured from the ground 
to the tip of the panicle at maturity and expressed in 
cm. Shoot biomass (SB) was measured as the total mass 
of the above-ground biomass cut from the base of the 
plant, excluding the grain (g plant− 1). The shoots were 
oven-dried at 70 °C for 48 h and weighed. Root biomass 

(RB) was measured as the total root dry matter harvested 
per genotype per plot (g plant− 1). Root samples for each 
genotype were harvested to a depth of 50 cm. The roots 
were separated from the soil by hand and washed under 
running water to remove all soil particles. The roots were 
oven-dried at 60 °C for 72 h and weighed. Total plant bio-
mass (PB) was the sum of all dry plant material for each 
genotype, including RB and SB harvested from the test 
plots (g plant− 1). Root-to-shoot biomass ratio (RS) was 
the ratio of the root and shoot biomass. Grain yield (GY) 
was the weight of harvested grain at 12.5% moisture con-
tent per genotype per plot (g plant− 1). Harvest index (HI) 
was computed as the proportion of grain production to 
above-ground plant biomass (%).

Carbon storage traits
Due to the high cost of sample transportation, prepara-
tion, and carbon analysis, among the 50 sorghum geno-
types, 25 were selected from the Silverton trials based 

Table 1 List of sorghum genotypes used in the study
Name Genotype 

designation
Source Seed 

colour
Country Name Genotype 

designation
Source Seed 

colour
Coun-
try

05-POTCH-138 50-POTCH-138 ARC-GCI White SA AS143 Red Swazi ACCI Brown SA
16MZ - - Brown - AS145 AWN98 ACCI Brown SA
AS106 Landrace ACCI Cream SA AS147 MRS94 ACCI Red SA
AS108 P9504B ACCI Cream SA AS148 SDS 3472 ACCI Brown SA
AS109 P9511B ACCI Cream SA AS152 01MN1589 ACCI Brown SA
AS111 P9539B ACCI Cream SA AS194 Mtentu Imphe D Vatcha Brown -
AS113 TX2737/91BE7414 ACCI Cream SA AS203 SA landrace 

LP 49
J M 
Donaldson

Brown SA

AS114 BTx3197 ACCI Cream SA AS205 SA landrace 
LP 51

J M 
Donaldson

Brown SA

AS115 BTx631 ACCI Cream SA AS251 AS97 OPV ACCI Red SA
AS116 01Aphid207 ACCI Cream SA AS391 SS27 OPV Mtentu Brown SA
AS117 01Aphid148 ACCI Cream SA AS449 #12 235,926 OC Ethiopia Red Ethiopia
AS121 Kat 369 x EX-1 

Chira
ACCI Brown SA AS560 IESV 92,028 DL ICRISAT Brown -

AS122 KSV 12 ACCI Cream SA AS563 IS 2331 ICRISAT Brown -
AS129 KARI Mtama

X ICS 3 − 1
ACCI Cream SA AS72 KAT-487 UK-SGVT 

07–49
Cream -

AS130 Gambella 1107 ACCI Cream SA AS74 ICSV 111 UK-SGVT 
07–51

Brown -

AS131 WK#1025 Sudan ACCI Cream SA G50 TZA 5557 Tanzania Brown Tanzania
AS132 Parc 1,260,793 ACCI Cream SA ICS634 - ICRISAT Brown -
AS133 Marimanti Co 1110 ACCI Cream SA ICSV92001 - ICRISAT Brown -
AS134 P6 NQ#23 Sudan ACCI Brown SA LP4403 LP4403 ARC-GCI Brown SA
AS135 Dinkmash ACCI Cream SA MAMOLOKWANE Mamolokwane ARC-GCI White SA
AS136 FLO (107) x GS 

3541
ACCI Cream SA NW5393 - ARC-GCI Brown SA

AS137 IESV 92,022 DL ACCI Grey SA NW5430 - ARC-GCI Brown SA
AS138 Mugeta ACCI White SA PAN8816 PAN8816 Pannar Red SA
AS140 Kaguru ACCI Red SA SS27 SS27 ARC Brown SA
AS141 Kiboko loca ACCI Red SA SV07002 - ICRISAT Brown -
ARC-GCI Agricultural Research Council – Grain Crops Institute; ACCI African Centre for Crop Improvement; UKZN University of KwaZulu-Natal; ICRISAT International 
Crops Research Institute for the Semi-Arid Tropics; SA South Africa; - = unknown
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on their grain yield performance. The 25 lines were sub-
jected to carbon analysis using two replications. Shoot, 
root, and grain samples were collected to determine 
shoot carbon content (SCc) (%), root carbon content 
(RCc) (%), and grain carbon content (GCc) (%), respec-
tively. These samples were oven-dried at 70  °C for 48  h 
and ground into a fine powder using a ZM 200 ultra cen-
trifugal mill [18], weighing five grams each sample. The 
samples were submitted to the South African Sugarcane 
Research Institute (SASRI) in Durban for carbon analy-
sis. The total carbon content of the samples was deter-
mined at SASRI by combustion using a LECO TruMac 
CNS Analyzer. The carbon content of the samples was 
subsequently converted to shoot carbon stock (SCs) (g 
plant− 1), root carbon stock (RCs) (g plant− 1), and grain 
carbon stock (GCs) (g plant− 1). The C stocks in the two 
parts (SCs and RCs) were summed up to derive total 
plant carbon stocks (PCs) (g plant− 1).

Data analysis
Data were subjected to analysis of variance using the Sta-
tistical Analysis System (SAS) software version 9.4 pro-
gram with the lattice procedure [19]. A combined analysis 
of variance was conducted after testing the homogeneity 
of variance using Levene’s test [20]. Variance components 
for agronomic and carbon storage traits were estimated 
based on combined and single environment analyses, 
respectively.

Estimation of genotypic and phenotypic variance
Genotypic and phenotypic variance for agronomic traits 
were calculated from the results of combined analysis of 
variance according to Rahimi and Hernandez [21]:

 σ 2
e = MSe

 
σ2
ge = (

MSge−MSe

r
)

 
σ 2

g = (
MSg −MSge

r∗ e )

 σ 2
p = σ 2

g + σ 2
ge + σ 2

e

Where; σ 2
e  is the environmental variance of a particular 

trait; σ 2
ge is the genotype x environment interaction vari-

ance of a particular trait; σ 2
g  is the genotypic variance of 

a particular trait; σ 2
p is the phenotypic variance of a par-

ticular trait; MSe is the mean square of the environment; 
MSge is the mean square of genotype x environment; 
MSg is the mean square of genotype; r = number of repli-
cations; and e = number of environments.

Genotypic and phenotypic variance for carbon stor-
age traits were calculated from the results of a single 

environment analysis of variance, as suggested by Burton 
and Devane [22].

 σ2
ε = MSε

 
σ 2

g =
MSg −MSε

r

 σ 2
p = σ 2

g + σ 2
ε

Where MSε  is the mean square error and σ 2
ε  is the 

error variance component.

Estimation of coefficient of variability
Genotypic coefficient of variation (GCV) and phenotypic 
coefficient of variation (PCV) were computed according 
to Burton and Devane [22]:

 
GCV =

(σ g

x̄

)
∗ 100

 
PCV =

(σ p

x̄

)
∗ 100

Where σ g  is the genotypic standard deviation of a par-
ticular trait; σp  is the phenotypic standard deviation of a 
particular trait; and x̅ is the mean performance of a par-
ticular trait.

Heritability and genetic advance
The broad-sense heritability of a given trait at a single 
environment was calculated according to Alvarado et al. 
[23]:

 
H2 =

σ 2
g

σ 2
g + σ 2

ε /r

Where σ 2
g  is the genotypic variance; σ 2

ε  is the error vari-
ance component; and r is the number of replications, 
whereas regarding combined analyses, broad-sense heri-
tability was calculated as:

 
H2 =

σ 2
g

σ 2
g + σ 2

ge/e + σ 2
ε / (r ∗ e)

Where σ 2
ge is the genotype x environment interaction 

and e is the number of environments.
Genetic advance (GA) and the genetic advance as a 

percent of the mean (GAM) were computed using the 
following formulae [24]:

 GA = KH2σ p
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GAM =

(
GA

x̄

)
∗ 100

Where K is 2.06 at 5% selection intensity.

Correlation and path coefficient analyses
The phenotypic and genotypic correlation coefficients 
for agronomic and carbon storage traits were computed 
based on the procedure of Dabholkar [25].

Genotypic correlation coefficients were estimated as 
follows:

 rg = COV g (xy)/ σg (x) ∗ σg (y)

While phenotypic correlation coefficients were estimated 
as follows:

 rph = COV ph (xy) / σ ph (x) ∗ σ ph (y)

Where, COVg (xy) and COVph (xy) are the genotypic and 
phenotypic covariances of two variables (x and y), respec-
tively; σg (x) and σg (y) are the genotypic standard devia-
tions for variables, x and y, respectively; and σph (x) and 
σph (y) are the phenotypic standard deviations of vari-
ables, x and y, respectively.

The significance of genotypic correlation coefficients 
were ascertained following Robertson [26]. The signifi-
cance of phenotypic correlation coefficients was tested 
using procedures proposed by Singh and Chaudhary [27]. 
Path coefficient analysis involved estimating the geno-
typic and phenotypic direct and indirect effects of inde-
pendent traits on the dependent trait (grain yield) using 
methods reported by Dewey and Lu [28].

 rij = Pij + rik Pkj

Where, rij is the association between the independent 
variable (i) and dependent variable (j) as measured by 
correlation coefficient; Pij is the component of the direct 
effect of the independent variable (i) on the dependent 
variable (j) as measured by path coefficient; and ∑rik Pkj 
is the summation of components of indirect effects of a 

given independent variable (i) on a given dependent vari-
able (j) via all other independent variables. The residual 
factor (P2R) was estimated as described in Dewey and Lu 
[28]:

 1 = P2R +
∑

Pij rij

Results
Combined analysis of variance for agronomic traits
A combined analysis of variance showing the mean 
square values and significant tests is presented in Table 2. 
Significant (p < 0.05) differences were calculated among 
genotypes for all the assessed agronomic traits except 
DTM while significant genotype by location interactions 
were recorded for PH and PB.

Analysis of variance for carbon storage traits
The analysis of variance revealed significant differences 
(p < 0.05) among genotypes for GCc, PCs, SCs, RCs, RCs/
SCs, and GCs (Table 3).

Genotype response for grain yield and component traits 
and carbon storage
The mean grain yield of the 50 genotypes observed for 
the genotypes was 11.9  g plant− 1 (Table  4). The follow-
ing high yielding genotypes were selected: AS115, AS251, 
AS134, AS145, and AS130 with mean yields of 25.08  g 
plant− 1, 21.83 g plant− 1, 21.42 g plant− 1, 19.43 g plant− 1, 
and 18.50 g plant− 1, respectively. DTM ranged from 128 
to 151 days. The study selected early maturing genotypes, 
such as AS115 and AS230 with 130 and 131 maturation 
days, respectively. Genotypes AS115 and AS111 had tall 
plant stature with a mean PH of 182.5 cm and 185.67 cm, 
respectively. The genotypes that had the highest SB and 
RB were among the top performing genotypes. Geno-
type SS27 had the highest PB and SB with mean values 
of 38.65  g plant− 1 and 24.87  g plant− 1, in that order. 
The highest RB was recorded for genotypes AS134 and 
AS130, with mean values of 15.16 g plant− 1 and 14.27 g 
plant− 1, respectively. Genotype AS130 had the highest 

Table 2 Combined analysis of variance showing mean squares and significance tests for agronomic traits of 50 sorghum genotypes 
across three locations in South Africa
Source of variation DF DTH DTM PH PB SB RB RS GY HI
Location 2 91.83 349.41 20546.17*** 20.14 18.49 22.83** 0.004 13.70** 50.34
Replication 3 479.85 519.62** 28833.24*** 9.61 7.93 0.37 0.01 7.43* 18.37
Block 24 167.77 111.44 2757.55 25.17 11.53 3.31 0.005 4.42* 21.91
Genotype 49 307.42* 130.78 3194.9** 349.57*** 151.72*** 129.22*** 0.26*** 181.77*** 1031.47***
Genotype x location 98 207.06 111.63 2257.43** 18.36* 14.44 4.5 0.004 2.57 15.34
Error 123 195.51 135.71 1826.3 15.99 14.52 5.06 0.004 2.73 17.83
*, ** and *** denote significance at p < 0.05, p < 0.01, and p < 0.001, respectively; DF degrees of freedom; DTH days to 50% heading; DTM days to 50% maturity; PH plant 
height (cm); PB total plant biomass (g plant− 1); SB shoot biomass (g plant− 1); RB root biomass (g plant− 1); RS root to shoot biomass ratio; GY grain yield (g plant− 1); HI 
harvest index (%)
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root-to-shoot biomass ratio (1.26) compared to all the 
genotypes.

The mean total plant carbon stock for the test geno-
types was 12.95 g plant− 1 (Table 5). The highest PCs were 
recorded for SS27, AS122, AS134, and AS203 with val-
ues of 24.64 g plant− 1, 18 g plant− 1, 16.48 g plant− 1, and 

15.55  g plant− 1, respectively. The four genotypes were 
also among the highest grain yield producers. The gen-
otypes that allocated the highest carbon in shoots were 
SS27, AS122, ICSV92001, and AS563 at19.04  g plant− 1, 
10.42 g plant− 1, 10.34 g plant− 1, 10.33 g plant− 1. Almost 
all the genotypes stored more carbon in the shoots than 

Table 3 Analysis of variance showing mean squares and significance tests for carbon storage of the 25 selected sorghum genotypes 
at Silverton during 2022 growing season
Source of variation DF SCc RCc GCc PCs SCs RCs RCs/SCs GCs
Replication 1 1.24 5.21 0.03 1.34 2.85 0.29 0.004 0.86
Block 8 0.28 7.45 0.01 10.88 13.41 0.38 0.05* 0.21
Genotype 24 0.65 12.77 0.49*** 29.02** 20.13* 5.47*** 0.13*** 8.44***
Error 16 0.32 8.03 0.01 8.76 7.61 0.42 0.02 0.34
*, ** and *** denote significance at p < 0.05, p < 0.01, and p < 0.001, respectively; DF degrees of freedom; SCc shoot carbon content (%); RCc root carbon content (%); GCc 
grain carbon content (%); PCs total plant carbon stocks (g plant− 1), SCs shoot carbon stock (g plant− 1); RCs root carbon stock (g plant− 1); RCs/SCs root to shoot carbon 
stock ratio; GCs grain carbon stock (g plant− 1)

Table 4 Mean performances among the ten best and five bottom sorghum genotypes ranked based on grain yield and genetic 
parameters for agronomic traits in 50 genotypes evaluated at three locations during the 2022/23 growing seasons in South Africa
Genotype DTH DTM PH PB SB RB RS GY HI
Top ten genotypes
AS115 88 130 182.50 21.39 12.54 8.85 0.71 25.08 66.66
AS251 85 142 131.39 27.60 14.63 12.97 0.89 21.83 59.88
AS134 78 135 162.72 35.52 20.37 15.16 0.74 21.42 51.26
AS145 86 141 157.67 32.20 21.95 10.25 0.47 19.43 46.95
AS130 77 145 163.33 25.56 11.29 14.27 1.26 18.50 62.09
SS27 79 142 135.92 38.65 24.87 13.77 0.55 17.58 41.41
AS138 78 140 146.17 28.54 15.03 13.51 0.90 17.45 53.73
AS132 94 133 171.06 25.90 15.61 10.29 0.66 16.89 51.98
AS563 84 135 173.94 33.02 21.31 11.71 0.55 16.83 44.12
AS203 82 131 174.50 38.19 23.45 14.74 0.63 16.63 41.49
Bottom five genotypes
AS147 80 138 145.22 16.20 7.51 8.69 1.16 4.63 38.13
AS116 77 138 142.11 21.52 14.89 6.63 0.45 4.35 22.62
PAN8816 75 140 107.06 33.58 17.47 16.12 0.92 3.75 17.68
AS129 84 143 132.28 26.89 17.41 9.49 0.54 3.28 15.87
AS111 84 144 185.67 23.22 13.97 9.25 0.66 2.53 15.34
Mean 81.23 138.7 155.8 31.74 17.44 11.25 0.59 10.69 30.39
SD 14.37 11.17 57.94 8.26 7.375 4.57 0.25 6.31 13.92
SE 1.52 1.18 6.11 0.87 0.78 0.48 0.03 0.66 1.47
Overall statistics of the 50 genotypes
Mean 79.52 138.01 156.01 27.94 16.31 11.62 0.8 11.9 41.47

σ 2
g

16.73 3.19 156.25 55.2 22.88 20.79 0.04 29.87 169.36

σ 2
p

166.17 233.71 11558.05 74.45 39.35 34.45 0.11 38 202.2

σ 2
e

91.83 349.41 20546.17 20.14 18.49 22.83 0.05 13.7 50.34

σ 2
ge

57.62 -118.89 -9144.37 -0.89 -2.03 -9.17 0.02 -5.57 -17.5

GCV (%) 5.14 1.29 8.01 26.59 29.33 39.24 25.82 45.92 31.38
PCV (%) 16.21 11.08 68.91 30.88 38.46 50.51 41.96 51.8 34.29
H2% 10.07 1.37 1.35 74.14 58.15 60.34 37.87 78.59 83.76
GA (%) 2.67 0.43 2.99 13.18 7.51 7.3 0.41 9.98 24.53
GAM 3.36 0.31 1.92 47.17 46.07 62.78 50.86 83.87 59.16
SD standard deviation; SE standard error; DTH days to 50% heading; DTM days to 50% maturity; PH plant height (cm); PB total plant biomass (g plant− 1); SB shoot 
biomass (g plant− 1); RB root biomass (g plant− 1); RS root to shoot biomass ratio; GY grain yield (g plant− 1); HI harvest index (%); σ2

p phenotypic variance; σ2
g genotypic 

variance; σ2
e environmental variance; σ2

ge genotype by environment interaction variance; PCV phenotypic coefficient of variation; GCV genotypic coefficient of 
variation; H2 heritability; GA genetic advance; GAM genetic advance as a percentage of the mean
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in the roots. The genotype that stored more carbon in the 
roots compared to shoots was AS108, with the RCs value 
of 8.87 g plant− 1 and the highest RCs/SCs of 1.56.

Variance components, heritability, and genetic advance for 
agronomic traits
Phenotypic coefficient of variation (PCV), genotypic 
coefficient of variation (GCV), heritability (H2), genetic 
advance (GA), and genetic advance as a percentage of 
the mean (GAM) for agronomic traits are presented in 
Table 4. PB varied from 14.07 to 43.75 g plant− 1, and GY 
ranged from 2.53 to 25.08 g plant− 1. HI and PH had the 
highest genotypic variance of 169.36 and 156.25, respec-
tively. The phenotypic variance was the highest for PH 
(1158.05), followed by DTM (233.71), and HI (202.2). 
The highest environmental variance was recorded for PH 
(20546.17) and DTM (349.41). The trait that exhibited 
the highest genotype by location interaction variance was 

DTH, with a value of 57.62, while PH exhibited the low-
est genotype by environment interaction of -9144.37. The 
highest GCV values were recorded for GY (45.92%), RB 
(39.24%), and HI (31.38%). The highest PCV values were 
recorded for PH (68.91%), followed by GY (51.8%), RB 
(50.51%), and RS (41.96%).

The highest heritability values were recorded for HI, 
GY, PB, and RB at 83.76%, 78.59%, 74.14%, and 60.34%, 
respectively. Moderate heritability values were computed 
for shoot biomass (58.15%) and RS (37.87%). The high-
est genetic advance values were recorded for HI (24.53 g 
plant− 1), followed by PB (13.18 g plant− 1), and GY (9.98 g 
plant− 1). The highest GAM values were computed for GY 
(83.87%) and RB (62.78%). Moderate GAM values were 
recorded for HI, RS, PB, and SB with values of 59.16%, 
50.86%, 47.17%, and 46.07%, respectively. The lowest 
GAM was recorded for DTH (3.36%), DTM (0.31%), and 
PH (1.92%).

Table 5 Mean performances among the ten best and five bottom sorghum genotypes ranked based on their total plant carbon stock 
and genetic parameters for carbon storage traits in 25 selected sorghum genotypes at Silverton during the 2022/23 growing season
Genotype SCc RCc GCc PCs SCs RCs RCs/SCs GCs
Top ten genotypes
SS27 45.48 39.92 43.27 24.64 19.04 5.61 0.29 7.61
AS122 43.62 40.39 43.43 18 10.42 7.58 0.73 3.69
AS134 44.41 39.34 43.25 16.48 9.34 7.13 0.76 11.38
AS203 44.56 43.41 43.47 15.55 9.15 6.4 0.7 7.23
AS563 44.7 40.26 44.49 14.99 10.33 4.66 0.45 5.91
AS251 43.51 43.26 42.89 14.97 8.48 6.49 0.76 4.57
16MZ 43.2 44.41 43.24 14.92 9.83 5.09 0.52 5.24
AS108 43.74 44.79 43.96 14.55 5.68 8.87 1.56 3.92
ICSV92001 44.55 39.94 44.65 14.33 10.34 3.99 0.39 3.35
LP4403 43.73 43.76 45.31 13.89 8.38 5.51 0.66 3.35
Bottom five genotypes
AS138 44.87 40.72 43.36 8.52 5.35 3.17 0.59 8.04
AS143 44.68 43.67 44.24 8.16 5.41 2.76 0.51 3.87
NW5393 45.09 39.4 44.07 7.96 5.2 2.75 0.53 5.73
AS116 43.78 40.12 43.34 7.69 6.33 1.37 0.22 1.78
AS115 43.44 45.34 43.56 7.52 3.25 4.27 1.31 12.92
Mean 44.25 41.86 43.78 12.95 8.32 4.63 0.62 5.23
SD 0.81 2.74 0.65 5.56 4.57 2.31 0.35 2.21
SE 0.15 0.5 0.12 1.02 0.83 0.42 0.06 0.40
Overall statistics of the 25 genotypes
Mean 44.18 41.1 43.65 12.65 7.98 4.67 0.65 5.84

σ 2
g

0.17 2.37 0.24 10.13 6.26 2.53 0.06 4.05

σ 2
p

0.49 10.4 0.25 18.89 13.87 2.95 0.08 4.39

GCV (%) 0.92 3.75 1.12 24.88 30.51 34.62 38.45 40.25
PCV (%) 1.58 7.85 1.15 33.98 45.42 37.39 44.9 41.9
H2 (%) 34.02 22.79 96 53.63 45.13 85.74 73.33 92.26
GA (%) 0.49 1.51 0.99 4.8 3.46 3.03 0.41 3.98
GAM (%) 1.1 3.68 2.27 37.54 42.23 66.03 67.82 79.64
SD standard deviation; SE standard error; SCc shoot carbon content (%); RCc root carbon content (%); GCc grain carbon content (%); PCs total plant carbon stocks 
(g plant− 1), SCs shoot carbon stock (g plant− 1); RCs root carbon stock (g plant− 1); RCs/SCs root to shoot carbon stock ratio; GCs grain carbon stock (g plant− 1); σ2

p 
phenotypic variance; σ2

g genotypic variance; PCV phenotypic coefficient of variation; GCV genotypic coefficient of variation; H2 heritability; GA genetic advance; GAM 
genetic advance as a percentage of the mean
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Variance components, heritability, and genetic advance for 
carbon storage traits
PCs, SCs and RCs values ranged from 7.52 to 24.64  g 
plant− 1, 3.25 to 19.04  g plant− 1, and 1.37 to 8.87  g 
plant− 1, respectively (Table  5). The highest genotypic 
variance was recorded for PCs, SCs, and GCs, with val-
ues of 10.13, 6.26, and 4.05, respectively. The same trend 
was observed for phenotypic variance. Higher GCV and 
PCV values were observed for PCs (24.88 and 33.98%), 
SCs (30.51 and 45.42%), RCs (34.62 and 37.39%), RCs/
SCs (38.45 and 44.90%), and GCs (40.25 and 41.90%) for 
both GCV and PCV, respectively. The SCc values had 
GCV of 1.58 and PCV of 34.02%, RCc (3.75 and 7.85%), 
and GCc (1.12 and 1.15%), respectively.

High heritability values were recorded for GCc, GCs, 
RCs, and RCs/SCs with 96%, 92.26%, 85.74%, and 73.33%, 
respectively (Table 5). PCs and SCs had moderate herita-
bility estimates of 53.63% and 45.13%, respectively. Low 
heritability (< 50%) estimates were computed for SCc and 
RCc with 34.02%, and 22.79%, respectively.

The highest GA estimates were calculated for PCs 
(4.8  g plant− 1), followed by GCs (3.98  g plant− 1), SCs 
(3.46 g plant− 1), and RCs (3.03 g plant− 1) (Table 5). SCc, 
RCc, GCc, and RCs/SCs had very low GA estimates with 
values of 0.49  g plant− 1, 1.51  g plant− 1, 0.99  g plant− 1, 
and 0.41 g plant− 1, respectively. The GAM estimates were 
the highest for GCs (79.64%), RCs/SCs (67.82%), and RCs 
(66.03%). PCs and SCs had GAM estimates of 37.54% 
and 42.23%, respectively. Very low GAM estimates were 
recorded for SCc, RCc, and GCc, with values of 1.1%, 
3.68%, and 2.27%, respectively.

Correlations among agronomic traits
Estimates of genotypic and phenotypic correlation coef-
ficients between each pair of agronomic traits are pre-
sented in Table  6. Grain yield had positive correlations 
with DTH, PH, and PB, while negative correlations with 
DTM, SB, and RS were observed using genotypic and 
phenotypic correlations. The phenotypic correlation of 
DTH and DTM was negative compared to the genotypic 

correlation, which was positive. Plant height had a posi-
tive correlation with DTH but had a negative correlation 
with DTM using genotypic and phenotypic correlations. 
Plant height also had a positive and significant correla-
tion with SB at the phenotypic level. Total plant biomass 
exhibited a positive and significant genotypic and pheno-
typic correlations with SB, RB, RS, and GY and a nega-
tively significant correlation with HI at both phenotypic 
and genotypic levels. Root biomass had a positive and 
highly significant correlation with PB using genotypic 
and phenotypic correlations. It had a positive and signifi-
cant correlation with RS using genotypic and phenotypic 
correlations. Harvest index exhibited a positive and sig-
nificant correlation with RS and GY; and had a negative 
and significant correlation with PB and SB using geno-
typic and phenotypic correlations.

Correlations among carbon storage variables
Genotypic and phenotypic correlation coefficients 
between carbon storage traits are shown in Table 7. The 
total plant carbon stock had a positive genotypic and 
phenotypic correlation with SCc; and exhibited positive 
and significant correlations with SCs, RCs, and GCs at 
both genotypic and phenotypic levels. Shoot carbon con-
tent had a negative and significant genotypic and phe-
notypic correlation with RCc, while exhibiting positive 
correlations with PCs, SCs, and GCs at both genotypic 
and phenotypic levels. Root carbon content exhibited a 
positive and significant genotypic and phenotypic cor-
relation with RCs/SCs. Grain carbon stock had a posi-
tive and significant correlation with all the assessed traits 
except for RCc for both genotypic and phenotypic levels.

Path coefficient analysis for agronomic traits
Positive and high direct effects on grain yield were 
recorded when using phenotypic correlations by HI 
(1.159), SB (0.607), RB (0.546), DTH (0.033), and DTM 
(0.003), while negative and high direct effects on grain 
yield were observed by plant height (-0.024), PB (-0.347), 
and RS (-0.5) (Table 9). The positive and high correlation 

Table 6 Genotypic (above diagonal) and phenotypic (below diagonal) correlation coefficients among agronomic traits in 50 sorghum 
genotypes
Trait DTH DTM PH PB SB RB RS GY HI
DTH 1 0.052 0.232*** 0.033 0.05061 -0.007 -0.049 0.127* 0.052
DTM -0.12 1 -0.161** -0.049 -0.02821 -0.046 -0.042 -0.054 -0.051
PH 0.543*** -0.435** 1 0.079 0.117* -0.01 -0.08 0.096*???? 0.026
PB 0.043 -0.152 0.182 1 0.796*** 0.685*** 0.013 0.01** -0.424***
SB 0.074 -0.036 0.174 0.771*** 1 0.105 -0.527*** -0.03 -0.586***
RB -0.014 -0.199 0.095 0.720*** 0.113 1 0.657*** 0.053*** 0.008
RS -0.078 -0.196 -0.073 0.048 -0.548*** 0.672*** 1 -0.021 0.383***
GY 0.306* -0.08 0.267** 0.015*** -0.033 0.06* -0.02 1 0.764***
HI 0.127 -0.118 0.114 -0.388** -0.579*** 0.026 0.37*** 0.786*** 1
*, ** and *** denote significance at P < 0.05, P < 0.01, and P < 0.001, respectively; DTH days to 50% heading; DTM days to 50% maturity; PH plant height; PB total plant 
biomass; SB shoot biomass; RB root biomass; RS root to shoot biomass ratio; GY grain yield; HI harvest index
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coefficients of HI and DTH with grain yield were due to 
the positive indirect effects of DTH (0.002), PB (0.147), 
and RB (0.005) through HI on grain yield. Similarly, DTH 
and RB had strong positive correlations and positive 
direct effects on grain yield, indicating they are more sig-
nificantly related to grain yield at phenotypic level. Total 
plant biomass (0.374) and RS (0.358) had the greatest 
positive indirect effects on grain yield through RB. Shoot 
biomass (-0.277)) and root biomass (-0.238) had the 
highest negative indirect effects on grain yield through 
PB. Root biomass (-0.328), HI (-0.192), and PB (-0.007) 
exhibited negative and high indirect effects on grain yield 
through RS. Harvest index (0.445) exerted the positive 
and highest indirect effect on grain yield through RS. The 
residual effect for the phenotypic path coefficient analysis 
was 0.095.

The genotypic direct and indirect effects of differ-
ent agronomic traits on grain yield are presented in 
Table  9. Positive and high direct effects on grain yield 
were recorded by HI (1.136), SB (0.393), RB (0.31), DTH 
(0.131), and DTM (0.04), while negative and high direct 
effect was recorded by PH (-0.037), PB (-0.043), and RS 
(-0.418). DTH had positive and indirect effects of 0.071 
and 0.017 on grain yield, which can be selected through 
PH and HI. Shoot biomass (0.303) and root biomass 
(0.224) had the highest positive indirect effects on grain 
yield through PB. Negative indirect effects on grain yield 
through RB were observed for DTH (-0.004) and DTM 
(-0.062). Root-to-shoot biomass ratio had negative indi-
rect effects on grain yield through PB (-0.02), RB (-0.281), 
and HI (-0.155). The residual effect for genotypic path 
coefficient analysis was 0.066.

Discussion
Estimation of genetic parameters for the agronomic and 
carbon storage traits
The results suggest that the test genotypes displayed 
adequate genetic variation for selection for enhanced 
biomass production, grain yield, and carbon alloca-
tion to roots and shoots. In agreement with the present 
results, Abraha et al. [29] reported high PCV and GCV 

for sorghum grain yield, biomass, and carbon storage 
traits. The highest PCV and GCV values were recorded 
for GY, followed by RB, RCs/SCs, and RCs supporting 
the agronomic traits (Tables 4 and 5). Narrow differences 
between PCV and GCV values were recorded for SB, 
RB, GY, HI, SCc, GCc, and GCs, indicating the minimal 
impact of the test locations on genotype selection [30]. 
These results are consistent with those of Haussmann 
et al. [31] and Ayele [32], who found the same trend for 
sorghum grain yield and those of Kishore and Singh [33] 
for biomass yield. Ayana et al. [34] and Munzbergova et 
al. [35] reported that genotypic variation is influenced 
by rainfall, temperature, and growing site gradients. 
McGuigan and Sgro [36] argued that phenotypic expres-
sion can reveal genetic heterogeneity and is subject to 
environmental influences.

Heritability refers to the proportion of phenotypic 
variance attributed to genetic variance. High to moder-
ate broad sense heritability values were computed for PB, 
GY, HI, RB, GCc, GCs, RCs, RCs/SCs, SB, RS, and PCs 
(Tables 4 and 5). The results suggest that these traits will 
have higher response to selection, being less influenced 
by environmental effects. Related results were observed 
in sorghum for grain yield and biomass [29]. Days to 
50% heading, days to 50% maturity, and plant height, 
shoot carbon content, and root carbon content showed 
low heritability. Phenotypic selection for low heritable 
traits can be less effective, needing indirect selection via 
traits with higher heritability or the use of complemen-
tary high throughput molecular markers. These results 
conform with the findings of Gebregergs and Mekbib 
[37] who reported low heritability in sorghum for days 
to 50% maturity. Low heritability traits can be selected 
using molecular markers linked to quantitative trait loci 
(QTLs) for the target traits, allowing individuals to be 
graded based on their genetic makeup rather than their 
phenotypic characteristics [38]. Previous findings have 
indicated a complex inheritance pattern for days to 50% 
heading and days to 50% maturity, conditioned by domi-
nant and recessive genes [39]. A putative dwarfing locus 
was found through genome-wide association studies 

Table 7 Genotypic (above diagonal) and phenotypic (below diagonal) correlation coefficients among carbon storage traits in 25 
selected sorghum genotypes
Traits SCc RCc GCc PCs SCs RCs RSC/SCs GCs
SCc 1 -0.303* 0.112 0.094** 0.154** -0.077 -0.105 0.113*
RCc -0.518** 1 0.102 -0.129 -0.257 0.196 0.354** -0.125
GCc 0.09 0.14 1 -0.077 -0.155 0.118 0.187 0.057***
PCs 0.185** -0.109 -0.086 1 0.910*** 0.593*** 0.021 0.077**
SCs 0.309* -0.273 -0.186 0.894*** 1 0.207 -0.364** 0.03**
RCs -0.106 0.211 0.117 0.687*** 0.289 1 0.758*** 0.122*
RCs/SCs -0.175 0.371 0.194 0.138 -0.295 0.773*** 1 0.057*
GCs 0.194** -0.089 0.056*** 0.086* 0.032** 0.132* 0.077* 1
*, ** and *** denote significance at P < 0.05, P < 0.01, and P < 0.001, respectively; SCc shoot carbon content; RCc root carbon content; GCc grain carbon content; PCs total 
plant carbon stocks, SCs shoot carbon stock; RCs root carbon stock; RCs/SCs root to shoot carbon stock ratio; GCs grain carbon stock
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(GWAS) [40], and the locus has been linked to higher 
total plant biomass and root biomass [41]. These findings 
indicate that the locus may have a pleiotropic effect on 
carbon storage and partitioning [42]. Heritability value 
helps determine the success of selection via phenotypic 
traits [43]. The high heritability estimate observed for 
RCs/SCs suggests the effectiveness of selection using the 
root-to-shoot ratio for enhancing carbon allocation and 
genetic gain in roots and shoots.

Characters with high heritability can easily be success-
fully selected, resulting in quick genetic progress. How-
ever, it has been accentuated that heritability alone has 
less practical importance without genetic advancement 
due to the reliance on genetic variability and the possi-
bility of unexpected environmental interactions altering 
characteristic expression over time [44]. Genetic advance 
(GA) refers to the degree of gain obtained in a trait under 
a particular selection pressure. High GA was recorded 
for PB, GY, and HI in this study (Table 4). Similar results 
were reported by Mofokeng et al. [12] in sorghum for 
grain yield and thousand seed weight. The highest heri-
tability and genetic advance as a percentage of the mean 
(GAM) was recorded for RB, followed by GY, HI, RCs, 
RCs/SCs, and GCs. High GAM is associated with effec-
tive selection of sorghum genotypes with high yield and 
carbon storage. High heritability and genetic advance val-
ues indicate the presence of additive gene action, which 
are highly heritable and suggesting that crop improve-
ment can be achieved by selecting such traits [45–48]. 
Estimates of heritability and genetic advance are more 
reliable and informative [49, 50]. Priority should be 
given to traits that displayed high heritability and genetic 
advances to develop accurate selection indices for devel-
oping sorghum genotypes with high grain yield and car-
bon sequestration potential.

Correlations among agronomic and carbon storage traits
Grain yield is a complex polygenic trait influenced by 
various yield component traits. Assessing the association 
between these traits and their correlation with grain yield 
helps establish effective selection strategies [51]. This 
study examined the trend and magnitude of relationships 
between sorghum agronomic and carbon storage traits 
to identify grain yield and carbon storage contributing 
traits. The results indicated a strong association among 
the assessed traits (Tables 6 and 7). Traits such as DTH, 
PH, PB, and HI had a positive and significant correla-
tion with grain yield (Table 6). These are proxy traits to 
be used for yield improvement in sorghum breeding pro-
grams. Plant height had a positive and significant corre-
lation with DTH but exhibited a significant and negative 
correlation with DTM using genotypic and phenotypic 
correlations (Table  6). PH positively correlated with SB 
when using both genotypic and phenotypic correlations. 

Hence, improving PH, PB, and SB will significantly 
increase grain yield and carbon storage in sorghum geno-
types. These results concord with the findings of Amare 
et al. [52], who reported a positive and significant asso-
ciation between HI and grain yield in sorghum when 
genotypic and phenotypic correlations were assessed. 
Traits such as SB, RB, RS, and GY exhibited a positive 
and significant genotypic and phenotypic correlations 
with PB, signifying their importance in improving this 
trait. Similarly, positive and significant correlations were 
reported among grain yield, spikelet per spike, and fresh 
biomass in wheat genotypes [53]. Therefore, increasing 
SB and RB can improve vegetative growth, resulting in 
increased plant biomass production and carbon storage, 
as increased plant biomass results in increased plant leaf 
area available for photosynthesis and thus increasing pro-
duction of photo-assimilates needed for grain filling [54]. 
Grain yield had positive and significant correlations with 
all measured traits except for DTM, SB, and RS at both 
genotypic and phenotypic levels (Table 6). These findings 
revealed that an increase in the performance of all these 
traits could increase grain yield and carbon sequestration 
potential. George-Jaeggli et al. [55] reported that reduced 
shoot biomass can affect grain yield by decreasing grain 
size, and variations in carbon allocation in the shoot 
biomass contribute to trade-offs between structural and 
non-structural carbohydrate content [56, 57]. Carbon 
allocation is also influenced by environmental factors, 
such as drought stress, which causes plants to transi-
tion between vegetative and reproductive periods [58]. 
There is a need to analyse carbon sinks in grain or bio-
mass yields to understand the associations and trade-offs 
among traits related to carbon allocation. This involves 
macro-scale phenotyping of traits like grain yield, above-
ground biomass and plant height and micro-scale evalu-
ation of compositional traits using techniques such as 
near-infrared spectroscopy [59].

Root-to-shoot biomass ratio had a positive and highly 
significant correlation with RB but exhibited a negative 
and significant correlation with SB at both genotypic and 
phenotypic levels (Table 6). In agreement with the pres-
ent results, Mathew et al. [60] and Shamuyarira et al. [61] 
reported that RS exhibited negative correlations with 
all agronomic traits except for RB in wheat. According 
to optimal partitioning theory, plants allocate resources 
between shoots and roots to promote plant growth [62]. 
In this regard, plants may exhibit a specific root-to-shoot 
ratio, balancing resource limitations and implying genetic 
plasticity or responsiveness [63]. Changes in the root-to-
shoot ratio occur during plant growth and development 
and in response to resource limitations both above and 
below ground. Thus, it is essential to carefully manage 
and account for plant size and ontology to draw accurate 
conclusions about root-to-shoot allocation [62]. Root 
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biomass had a positive and highly significant correla-
tion with PB using the phenotypic analysis and a positive 
and highly significant correlation with RS and GY at the 
genotypic level, indicating the importance of root system 
size in crop biomass and grain yield production (Table 6). 
The results are consistent with previous studies in sor-
ghum genotypes [64–66]. Ehdaie et al. [67] stated that a 
larger root biomass may benefit plants in water-limited 
conditions. Wasson et al. [68] indicated that bigger root 
systems limit the amount of assimilates available for 
grain production. Some studies have reported that a car-
bon imbalance between root and shoot biomass results 
in lower sorghum yields [69, 70]. Increasing RS alone in 
pursuit of larger carbon inputs may negatively affect grain 
production. Therefore, considering the balance between 
root and shoot biomass is essential to optimize biomass 
production, grain yield, and carbon sequestration poten-
tial. There is a need to resolve the negative relationship 
between below-ground root characteristics and grain 
yield. This is feasible if contrasting genotypes with below-
ground (e.g. deep and large roots) and above-ground (e.g. 
tall stature and increased leaf area) characteristics are 
inter-crossed, followed by a selection of best-recombined 
individuals [71].

Path coefficient analysis of agronomic traits
The present findings found that GY had positive and 
significant correlations with DTH, PB, RB, and HI using 
path analysis through phenotypic and genotypic corre-
lations (Tables 8 and 9). This revealed the actual contri-
bution of agronomic traits to improving grain yield. The 
study found it crucial to partition the correlation between 
grain yield and component traits into direct and indirect 
effects. This allowed to dissect the intricate relationships 
between grain yield and its component traits to under-
stand whether the influences reflect directly on yield or 
take some other pathway that ultimately impacts yield 
and use the most yield-contributing traits for direct and 
indirect selection. In the current study, positive and high 
direct effects were exerted on grain yield by DTH, DTM, 
SB, RB, and HI while negative and high direct effect was 
exerted by PH, PB, and RS using both phenotypic and 
genotypic pathways (Tables  8 and 9). The slightly high 
and positive correlation coefficient between grain yield 
and DTH was due to its high indirect effects through PH 
and HI on grain yield (Table 9). These results are consis-
tent with Shivaprasad et al. [72], who reported a slightly 
high positive correlation coefficient between grain yield 
and days to 50% flowering among mutants of sorghum. 
The residual factors of the genotypic (0.095) and (0.066) 
phenotypic path coefficient analysis indicate that traits 
included in the path analysis explained 90.5% and 93.4% 

Table 9 Phenotypic direct effect (bold diagonal) and indirect effect (off-diagonal) of eight agronomic traits on grain yield of 50 
sorghum genotypes
Trait DTH DTM PH PB SB RB RS HI rph
DTH 0.131 -0.005 -0.020 -0.002 0.029 -0.004 0.033 0.144 0.306
DTM -0.015 0.040 0.016 0.007 -0.014 -0.062 0.082 -0.134 -0.080
PH 0.071 -0.017 -0.037 -0.008 0.068 0.029 0.031 0.130 0.267
PB 0.006 -0.006 -0.007 -0.043 0.303 0.224 -0.020 -0.440 0.015
SB 0.010 -0.001 -0.006 -0.033 0.393 0.035 0.229 -0.658 -0.033
RB -0.002 -0.008 -0.003 -0.031 0.045 0.310 -0.281 0.030 0.060
RS -0.010 -0.008 0.003 -0.002 -0.215 0.209 -0.418 0.421 -0.021
HI 0.017 -0.005 -0.004 0.017 -0.228 0.008 -0.155 1.136 0.786
DTH days to 50% heading; DTM days to 50% maturity; PH plant height; PB total plant biomass; SB shoot biomass; RB root biomass; RS root to shoot biomass ratio; GY 
grain yield; HI harvest index; rph phenotypic correlation for grain yield

Table 8 Genotypic direct effect (bold-faced diagonal values) and indirect effect (off-diagonal) of eight agronomic traits on grain yield 
of 50 sorghum genotypes
Traits DTH DTM PH PB SB RB RS HI rg
DTH 0.0327 0.0002 -0.0055 -0.0114 0.0307 -0.0039 0.0243 0.0602 0.1273
DTM 0.0017 0.0030 0.0038 0.0169 -0.0171 -0.0251 0.0210 -0.0587 -0.0545
PH 0.0076 -0.0005 -0.0239 -0.0276 0.0707 -0.0055 0.0450 0.0299 0.0958
PB 0.0011 -0.0001 -0.0019 -0.3474 0.4830 0.3738 -0.0066 -0.4915 0.0102
SB 0.0017 -0.0001 -0.0028 -0.2767 0.6065 0.0572 0.2635 -0.6790 -0.0297
RB -0.0002 -0.0001 0.0002 -0.2380 0.0636 0.5456 -0.3282 0.0098 0.0526
RS -0.0016 -0.0001 0.0022 -0.0046 -0.3197 0.3583 -0.4999 0.4449 -0.0206
HI 0.0017 -0.0002 -0.0006 0.1473 -0.3554 0.0046 -0.1919 1.1589 0.7645
DTH days to 50% heading; DTM days to 50% maturity; PH plant height; PB total plant biomass; SB shoot biomass; RB root biomass; RS root to shoot biomass ratio; GY 
grain yield; HI harvest index; rg genotypic correlation for grain yield
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of the total variability in grain yield at genotypic and phe-
notypic levels, respectively. This suggests the repeatabil-
ity of selection in the present study.

Conclusion
The current study examined the genetic variation and 
associations among agronomic and carbon storage 
traits in sorghum genotypes and revealed a considerable 
genetic variation among the test genotypes. The find-
ings suggest the opportunity for selection and breeding 
programs to develop improved sorghum cultivars for 
enhanced yield production and carbon sequestration. The 
following traits were highly heritable with higher genetic 
advance values: PB, RB, GY, HI, RS, GCs, RCs, and RCs/
SCs, making them ideal traits for selection. The path 
coefficient analysis revealed that most traits included in 
the path analysis displayed a positive genotypic and phe-
notypic direct effect, suggesting direct selection through 
these traits would be effective for improving grain yield. 
The study revealed that PB, SB, RB, RS, RCs, and RCs/
SCs are the principal traits when selecting sorghum gen-
otypes with high yield and carbon storage capacity.
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