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Abstract
Objectives The sweet chestnut Castanea sativa Mill. is the only native Castanea species in Europe, and it is a tree of 
high economic value that provides appreciated fruits and valuable wood. In this study, we assembled a high-quality 
nuclear genome of the ancient Italian chestnut variety ‘Marrone di Chiusa Pesio’ using a combination of Oxford 
Nanopore Technologies long reads, whole-genome and Omni-C Illumina short reads.

Data description The genome was assembled into 238 scaffolds with an N50 size of 21.8 Mb and an N80 size 
of 7.1 Mb for a total assembled sequence of 750 Mb. The BUSCO assessment revealed that 98.6% of the genome 
matched the embryophyte dataset, highlighting good completeness of the genetic space. After chromosome-
level scaffolding, 12 chromosomes with a total length of 715.8 and 713.0 Mb were constructed for haplotype 1 and 
haplotype 2, respectively. The repetitive elements represented 37.3% and 37.4% of the total assembled genome in 
haplotype 1 and haplotype 2, respectively. A total of 57,653 and 58,146 genes were predicted in the two haplotypes, 
and approximately 73% of the genes were functionally annotated using the EggNOG-mapper. The assembled 
genome will be a valuable resource and reference for future chestnut breeding and genetic improvement.
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Objective
Castanea Mill. (2n = 2x = 24) is a genus of broadleaved 
trees and shrubs of the Fagaceae family that includes 
seven species (although the taxonomic identity of some 
entities is still debated [1, 2]) that are native to temperate 
deciduous forests of the Northern Hemisphere. Among 
these, three species are cultivated for fruit: Japanese 
chestnut (C. crenata Sieb. et Zucc), Chinese chestnut (C. 
mollissima Bl.), and European chestnut (C. sativa Mill.). 
European chestnut, also known as sweet chestnut, is 
the only European species of the genus and is native to 
central-southern Europe (northern Iberian Peninsula, 
southern France, central-northern Italy, southern Balkan 
Peninsula) and Asia Minor (western and northern Tur-
key, Caucasus); however, it has been widely planted and 
cultivated outside its natural range in temperate regions 
worldwide (e.g., South and North America and Austra-
lia). Sweet chestnut is a species of remarkable ecological 
and economic importance. In addition to being the domi-
nant tree in its native range, mesophilous, broad-leaved 
forests have been cultivated for millennia for timber pro-
duction (coppice and high forest) and fruit production 
(traditional orchards), providing a broad range of second-
ary products and ecosystem services [3].

The sweet chestnut Marrone genotype was selected 
for its exceptional qualities, such as its above-average 
fruit weight (maximum 70 fruits/kg), mono-embryonic 
nuts, and thin and easy-to-remove episperm (cuticle), 
which is not deep in the cotyledons and their floury paste 
or sugary and is consistent [4, 5]. Reference genomes 
have been published for three Castanea species so far. 
In 2020, a scaffold-level genome assembly of C. mollis-
sima cultivar N11-1, generated using PacBio sequenc-
ing technology, was published (GenBank assembly 
accession: GCA_014183005.1), and in the same year 
the scaffold-level genome for C. mollissima cultivar 
“Vanuxem” was assembled [6]. In 2021, contig- and scaf-
fold-level genomes were generated from PacBio sequenc-
ing also for C. crenata (GenBank: GCA_019972055.1 
and GCA_020976635.1). In 2022, a chromosome-level 
genome assembly was published for C. crenata by com-
bining Nanopore long reads and Hi-C sequencing [7]. 
Two chromosome-scale and haplotype-resolved refer-
ence genome assemblies were then recently generated for 
C. mollissima, “Mahogany” and “Nanking” cultivar (Hud-
sonAlpha Institute for Biotechnology; http://phytozome.
jgi.doe.gov/info/CmollissimaMahoganyHAP2_v1_1).

Here, we describe a chromosome-scale de novo 
genome assembly of Castanea sativa Mill., cv. “Mar-
rone di Chiusa Pesio”, which, to our knowledge, is the 
first reported C. sativa genome assembly. We believe 
this study will provide important resources for better 
investigating the evolutionary history and domestication 

process of this species and elucidating the genetic basis of 
resistance to diseases and environmental stressors.

Data description
Fresh, young leaves were collected from a single true-to-
type plant, ‘Marrone di Chiusa Pesio’, which was provided 
by the Chestnut R&D Center Piemonte (https://centro-
castanicoltura.org/en/). DNA extraction was performed 
using Macherey Nagel’s NucleoSpin Plant II Midi follow-
ing the manufacturer’s protocol.

Illumina libraries were constructed from the genomic 
DNA following the Illumina TruSeq kit protocol and 
sequenced (PE150) by Novogene, yielding 89 Gb of data. 
Genomic DNA was also sequenced using the ONT Min-
ion device with Flowcell version R9.4.1. Additionally, 
a Hi-C library was prepared with the Omni-C Kit from 
Dovetail Genomics following the manufacturer’s proto-
col with minor adjustments (Supplementary Appendix 
and Table 1).

K-mer analysis of the Illumina reads with a kmer size 
of 23 using GenomeScope [8] indicated an estimated 
genome size of 654 Mbps.

The ONT reads were assembled using the NextDe-
novo assembler v2.5.0 [9], and the assembled sequence 
was polished with NextPolish v1.4.0 [10], resulting in 
238 scaffolds with an N50 value of 21.8 Mbps and an N80 
value of 7.1 Mbps, for a total of 750 Mbps. The scaffold-
to-chromosome ratio was 19.83. Chromosome-level scaf-
folding was performed with Omni-C data with standard 
parameters (https://omni-c.readthedocs.io/en/latest). A 
manual inspection of the contact maps was conducted 
without highlighting any issues.

The genome was anchored using two published genetic 
maps for Castanea sativa: ‘Bouche de Betizac’ and 
‘Madonna’ [11]. ALLMAPS [12] was used with standard 
parameters after the SNPs were mapped to the assembled 
genome and the alignments were filtered (98% iden-
tity and coverage of the probe sequence and uniqueness 
of each haplotype). The marey plots are reported in the 
Supplementary materials.

The two haplotypes were reconstructed by phasing 
(with ONT reads) the structural variants identified by 
Illumina reads with WhatsHap software v.1.0 [13] and 
the BCFtools v.1.7 consensus command [14].

The final anchored sequence contained 715 Mbps 
(Haplotype 1) and 713 Mbps (Haplotype 2) (Sup. Table 
2).

BUSCO (v. 5.2.2) [15] analysis indicated high genome 
assembly completeness (98.6%). Furthermore, 97% of 
the filtered Illumina reads were aligned to the genome 
assembly using BWA v.0.7.17 [16], with 93% being prop-
erly paired (see Supplementary materials).

The LTR assembly index (LAI) was computed with 
LTR_Retriever v2.9.7 [17] for both haplotypes, with 
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scores of 17.87 for Haplotype 1 and 16.85 for Haplotype 
2, indicating good completeness. Repetitive elements in 
the genome were first identified using EDTA v2.0 [18]; 
then, RepeatMasker v4.1.2 [19] was used to identify and 
annotate the repetitive sequences.

Gene prediction was carried out separately for each 
haplotype. The dataset of mature miRNAs and the cor-
responding hairpin sequences of Quercus robur, which 
is the genetically nearest species, were retrieved from 
the PmiREN data repository [20]. These sequences were 
independently aligned to the two haplotypes using bow-
tie [21] (version 1.3.1) for the short miRNA reads and 
Blastn [22] for the hairpin sequences. The tRNAs were 
predicted by tRNAscan-SE v2.0.6 [23]. The coding genes 
prediction was carried out using Augustus v3.4 [24] and 
Maker v3.01 [25] (GeneMark-ES [26], Augustus and EVi-
denceModeler v1.1.1 [27]), trained with RNA-Seq data 
(downloaded from SRA: SRR8305473 and SRR15058346) 
and proteins from NCBI RefSeq (belonging to the Faga-
ceae family), respectively. The two predictions were 
merged according to the results of the GeneValidator 
v2.1.12 [28] tool, which retained only the best predictions 
for every gene site.

The genes masked by RepeatMasker were searched 
for domains associated with resistance genes using 
hmmsearch [29] and the PFAM domains reported in 
[30]. The two predictions were merged according to the 
results of the GeneValidator v2.1.12 tool, which retained 
only the best predictions for every gene site. The pre-
dicted proteins were functionally annotated using Egg-
NOG-mapper [31] and the results were filtered using Fun 
TaxIS-lite [32].

Limitations
Although the gene space is quite complete, this assembly 
lacks resolution of the two haplotypes. The sequences 
of the two haplotypes were reconstructed based on the 
phasing of short-read sequencing enhanced with the use 
of long reads. A better resolution of the two haplotypes 
might be reached in the future by producing PacBio HiFi 
reads and integrating them with the data produced in this 
work.
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Table 1 Overview of the data files and datasets
Label Name of data file/dataset File types

(file extension)
Data repository and identifier (DOI or accession 
number)

Data file 1 Genome Haplotype1 Fasta file (.fasta) https://treegenesdb.org/FTP/Genomes/.Cast/v1.0/
genome/Cast.1_0.hap1.fa [33]

Data file 2 Genome Haplotype2 Fasta file (.fasta) https://treegenesdb.org/FTP/Genomes/.Cast/v1.0/
genome/Cast.1_0.hap2.fa [34]

Data file 3 Gene prediction on Haplotype1 GFF3 file (.gff ) https://treegenesdb.org/FTP/Genomes/.Cast/v1.0/
annotation/Cast.1_0.hap1.gff [35]

Data file 4 Gene prediction on Haplotype2 GFF3 file (.gff ) https://treegenesdb.org/FTP/Genomes/.Cast/v1.0/
annotation/Cast.1_0.hap2.gff [36]

Data file 5 K-mer spectrum of the Illumina reads Image file (.png) https://doi.org/10.6084/m9.figshare.25568154 [37]
Data file 6 Omni-C contact maps Image file (.svg) https://doi.org/10.6084/m9.figshare.25568163 [38]
Data file 7 Busco scores of the assembled 

sequence
Image file (.png) https://doi.org/10.6084/m9.figshare.25568139 [39]

Data file 8 miRNA analysis Spreadsheet(.xlsx) https://doi.org/10.6084/m9.figshare.25568064 [40]
Accession identifier Bioproject identifier Website (Html) http://identifiers.org/ncbi/bioproject:PRJNA1096137 

[41]
DataSet 1 ONT reads of C. sativa SRA file (.sra) http://identifiers.org/ncbi/insdc.sra:SRR28552917 [42]
DataSet 2 Illumina PE-150 reads of C. sativa SRA file (.sra) http://identifiers.org/ncbi/insdc.sra:SRR28552918 [43]
DataSet3 Dovetail Omni-C of C. sativa SRA file (.sra) http://identifiers.org/ncbi/insdc.sra:SRR28552916 [44]
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