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Objective
The emergence and rapid spread of drug resistance, espe-
cially multidrug-resistant (MDR) and extensively drug-
resistant (XDR), poses a great challenge to the clinical 
control for pathogenic mycobacteria, particularly Myco-
bacterium tuberculosis (M. tuberculosis) infection [1]. 
In recent years, phage treatment has undergone a revi-
talization as a promising strategy against antimicrobial 
resistance. Phages, formerly bacteriophages, are natu-
ral enemies of bacteria and are believed to be the most 
abundant organisms on the planet [2]. Unlike antibiot-
ics, phages are characterized by self-replication, high 
host specificity, biofilm degradation, and low toxicity 
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Abstract
Objectives  The rising of antibiotic resistance has sparked a renewed interest in mycobacteriophage as alternative 
therapeutic strategies against mycobacterial infections. So far, the vast majority of mycobacteriophages have 
been isolated using the model species Mycobacterium smegmatis, implying an overwhelming majority of 
mycobacteriophages in the environment remain uncultured, unclassified, and their specific hosts and infection 
strategies are still unknown. This study was undertaken to isolate and characterize novel mycobacteriophages 
targeting Mycobacterium septicum.

Data description  Here a novel mycobacteriophage WXIN against M. septicum was isolated from soil samples in 
Wuhan, China. Whole genome analysis indicates that the phage genome consists of 115,158 bp with a GC content 
of 61.9%. Of the 260 putative open reading frames, 46 may be associated with phage packaging, structure, lysis, 
lysogeny, genome modification/replication, and other functional roles. The limited genome-wide similarity, along 
with phylogenetic trees constructed based on viral proteome and orthologous genes show that phage WXIN 
represents a novel cluster distantly related to cluster J mycobacteriophages (genus Omegavirus). Overall, these results 
provide novel insights into the genomic properties of mycobacteriophages, highlighting the great genetic diversity of 
mycobacteriophages in relation to their hosts.
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to humans [3, 4]. Several successful clinical trials have 
been reported to treat patients with disseminated drug-
resistant M. chelonae and M. abscessus infections using 
naturally occurring phages and/or their genetically engi-
neered derivatives [3, 5, 6].

Since the first mycobacteriophage was identified in 
1947 from soil [7], more than 12,000 mycobacterio-
phages have been isolated from different sources, of 
which approximately 2,000 have their complete genomes 
sequenced (https://phagesdb.org). These mycobacterio-
phages are categorized into 30 different types of clusters 
and at least 10 singletons. Due to the non-pathogenicity, 
rapid growth, and similarities with other mycobacte-
ria, M. smegmatis has been used as a suitable model for 
studying the pathogenesis of mycobacteria and for initial 
screening for mycobacteriophages [8]. Hence, almost all 
known mycobacteriophages were isolated using the M. 
smegmatis mc2155 as host. Further isolation and char-
acterization of mycobacteriophages against different 
mycobacterial species in different environments will not 
only enrich our knowledge of phage genetics, ecology, 
and evolution, but also provide rich phage resources for 
genetic engineering. M. septicum is a rapidly growing 
non-tuberculosis mycobacteria associated with Mycobac-
terium fortuitum group (MFG) [9]. In this study, a novel 
mycobacteriophage WXIN against M. septicum was iso-
lated from soil samples in Wuhan, China. The results 
provide some new insights into genomic characteristics 
of mycobacteriophage.

Data description
The mycobacteriophage WXIN was originally isolated 
from soils collected in Wuhan, China, using M. septicum 
as host. Phage genomic DNA was extracted using the λ 
Phage genomic DNA extraction kit (Beijing Baiaola-
ibo Biotechnology Co., Ltd, Beijing, China). Sequenc-
ing libraries were prepared using the NEBNext Ultra 
DNA library prep kit (New England Biolabs, USA) and 
sequencing was performed on the Illumina NovaSeq 
6000 platform to generate 4,191,323 paired-end reads 
(2 × 150  bp). The quality of the sequencing reads was 
evaluated using FastQC v0.12.1 (https://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/) and was assem-
bled de novo using Megahit v1.2.9 [10]. Genome termini 
were identified by PCR using primers (WT: 5’-​C​A​C​A​T​
G​T​C​G​G​C​G​T​G​A​C​G​T-3’ and WW: 5’-​C​G​T​C​A​T​T​A​A​T​G​
T​C​C​C​C​C​T​C​G-3’) facing off the contig ends to produce 
an approximately 400 bp product, and the PCR product 
was submitted for Sanger sequencing by Sangon Bio-
tech (Shanghai, China). In total, the complete genome 
of mycobacteriophage WXIN was 115,158 bp with a GC 
content of 61.9%. Genome was annotated using the RAST 
server (https://rast.nmpdr.org/). The predicted proteins 
were assigned putative functions by HHpred [11] and 

BLASTp-searching against the NCBI non-redundant 
(nr) database (https://www.ncbi.nlm.nih.gov). A total of 
260 putative open reading frames (ORFs) were identified 
in the genome, with 184 on the sense strand and 76 on 
the antisense (Data file 1) [12]. Among them, 46 ORFs 
could be functionally annotated and classified into mod-
ules involving in the packaging, structure, virion release, 
lysogeny, genome modification and replication (Data file 
2) [12]. Two tRNA genes were identified by tRNAscan SE 
1.21 (http://lowelab.ucsc.edu/tRNAscan-SE/). No viru-
lence or drug resistance-related gene was found using 
the Virulence Factor Database (VFDB, http://www.mgc.
ac.cn/VFs/) and the Comprehensive Antibiotic Resis-
tance Database (CARD, https://card.mcmaster.ca/).

Proteomic trees generated by ViPTree [13] indicates 
that WXIN is mostly related to cluster J mycobacterio-
phages (genus Omegavirus) and likely represents a novel 
mycobacteriophage cluster (Data file 3) [12]. Genome-
wide comparisons by VIRIDIC (https://rhea.icbm.uni-
oldenburg.de/viridic/) reveals extremely low sequence 
similarity between WXIN and cluster J mycobacterio-
phages (Data file 4, 21.2–24.0% nt identity) [12]. In addi-
tion, 15 single-copy orthologous genes are shared by 
WXIN and the related cluster J, X and E mycobacterio-
phages, as indicated by Orthofinder v2.2.7 through all-to-
all BLASTp analysis [14], including the terminase large 
subunit (ORF7), tape measure protein (ORF29), minor 
tail proteins (ORF31 and ORF33) and lysine protein A & 
B (ORF43 and ORF45) and several hypothetical proteins 
(ORF53, ORF82, ORF128, ORF130, ORF146, ORF175, 
ORF184, ORF193 and ORF194). The average amino acid 
identity (AAI) of the 15 orthologous genes range from 
40.7 to 64.1% between WXIN and other related myco-
bacteriophages (Data file 5) [12]. Phylogenetic analysis 
based on the concatenated protein sequences of the 15 
orthologous genes also revealed similar tree topology 
with that of ViPTree analysis using IQ-TREE v1.6.5 (Data 
file 6) [12, 15].

Limitations
This data note was limited to the description of mycobac-
teriophage WXIN. A larger collection is needed to help 
us better understand the genetic characteristics of myco-
bacteriophages for Mycobacterium septicum.
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Portable Document Format 
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Data file 2 Predicted genes of mycobacteriophage WXIN MS Excel file (.xlsx) Science data bank (https://doi.
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Data file 3 Proteomic tree by ViPTree Portable Document Format 
file (.pdf )
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Data file 4 Intergenomic similarities between WXIN and 10 
Cluster J mycobacteriophages
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file (.pdf )
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Data file 5 AAI values of 15 orthologous genes Portable Document Format 
file (.pdf )
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Data set 1 Mycobacteriophage WXIN, complete genome Genbank file (.gbk) NCBI Nucleotide, https://identifiers.
org/nucleotide:OR813930 [16]

Data set 2 Raw sequencing reads of Mycobacteriophage WXIN SRA file (.sra) Sequence Read Archive (https://identi-
fiers.org/ncbi/insdc.sra:SRP492847) [17]
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