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Objective
Crocodiles (Crocodylidae) are large semi-aquatic preda-
tors found throughout the tropics of Asia, Australia, 
Africa, and the Americas. Of the three extant genera 
(Crocodylus, Osteolaemus, and Mecistops) within Cro-
codylidae, Crocodylus is the largest, comprising 13 
currently recognized species. The Cuban crocodile (Cro-
codylus rhombifer) is a Critically Endangered [1] island 
endemic, currently restricted to the smallest range of any 
extant member of the genus [2]. Fossil evidence suggests 
that it may be a Pleistocene relict formerly much more 
widespread in the Caribbean and Bahama islands [3, 4]. 
Now only found naturally in the Zapata Swamp in south-
ern Matanzas Province, Cuba, C. rhombifer is restricted 
to the unique freshwater ecosystem characteristic of 
the Zapata peninsula. A long history of over-harvesting 
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Abstract
Objectives The new data provide an important genomic resource for the Critically Endangered Cuban crocodile 
(Crocodylus rhombifer). Cuban crocodiles are restricted to the Zapata Swamp in southern Matanzas Province, Cuba, 
and readily hybridize with the widespread American crocodile (Crocodylus acutus) in areas of sympatry. The reported 
de novo assembly will contribute to studies of crocodylian evolutionary history and provide a resource for informing 
Cuban crocodile conservation.

Data description The final 2.2 Gb draft genome for C. rhombifer consists of 41,387 scaffolds (contigs: N50 = 104.67 
Kb; scaffold: N50-518.55 Kb). Benchmarking Universal Single-Copy Orthologs (BUSCO) identified 92.3% of the 
3,354 genes in the vertebrata_odb10 database. Approximately 42% of the genome (960Mbp) comprises repeat 
elements. We predicted 30,138 unique protein-coding sequences (17,737 unique genes) in the genome assembly. 
Functional annotation found the top Gene Ontology annotations for Biological Processes, Molecular Function, 
and Cellular Component were regulation, protein, and intracellular, respectively. This assembly will support future 
macroevolutionary, conservation, and molecular studies of the Cuban crocodile.
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and land conversion continues to threaten this declin-
ing population. In addition, hybridization with the wide-
spread American crocodile (Crocodylus acutus) in areas 
of sympatry may be an additional anthropogenic threat 
exacerbated by freshwater management and habitat mod-
ification activities [2].

A number of distinguishing morphological and behav-
ioral traits have been described for this species [5, 6]. 
These include prominent cranial ‘horns’, heavy-scaled 
and colorful skin, robust skull structures, adaptations 
for a more terrestrial lifestyle, and aggressive, intel-
ligent hunting strategies [5, 7]. Previous phylogenetic 
and phylogenomic studies are ambiguous about the 
exact phylogenetic placement of C. rhombifer within 
the monophyletic Neotropical Crocodylus radiation [2, 
8–10]. Sequencing of whole genomes provides the best 
opportunity to test hypotheses concerning the biogeo-
graphic history and the evolution of novel morphological 
and behavioral traits. Such information may further offer 
insights into conservation threats and opportunities for 
this enigmatic species. Presented here is the first genome 
assembly for the Cuban crocodile.

Data description
For a detailed description of all methods see Table  1, 
Data file 1. High molecular weight DNA was extracted 
from a non-hybrid Cuban crocodile ( [2]; Table  1, Data 
file 2) using the QIAGEN® MagAttract HMW DNA Kit. 
10X Genomics Chromium Genome library preparation 
and sequencing was performed at the New York Genome 
Center. The libraries were 150 bp paired-end sequenced 
on an Illumina HiSeqX machine (1,717.59 million reads 
at ~ 65X coverage; mean read length of 138.5 bp; Table 1, 
Data file 3).

Two assemblies were performed. First, the linked 
reads were assembled into 41,387 scaffolds (contigs: 
N50 = 104.67 Kb; scaffolds: N50 = 518.55 Kb) using the 
Supernova assembler (v 2.1.1; [11]). The estimated 
genome size was 2.61 GB, and the assembly size was 
2.20 Gb. The Supernova scaffolds were screened for 
contaminants via the NCBI Foreign Contamination 
Screen (https://github.com/ncbi/fcs), resulting in 39,474 
scaffolds. For the second build, the Supernova assem-
bly was run through RagTag [12] with the Crocody-
lus porosus genome (Cpor 3.0; [13]) as a reference. The 

Table 1 Overview of data files/data sets
Label Name of data file/data set File types

(file extension)
Data repository and identifier (DOI or accession 
number)

Data file 1 Table 1, Data file 1 Detailed description of the methodology Microsoft Word 
(.docx)

Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 2 Table 1, Data file 2 Photos of Cuban crocodiles Microsoft Word 
(.docx)

Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 3 Table 1, Data file 3_C.rhombifer10X_Assembly_statistics Spreadsheet (.xlsx) Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 4 Table 1, Data file 4 BUSCO Comparisons Microsoft Word 
(.docx)

Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 5 Table 1, Data file 5 Interspersed Repeat landscape Microsoft Word 
(.docx)

Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 6 Table 1, Data file 6 Percentages of repeat elements Microsoft Word 
(.docx)

Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 7 Table 1, Data file 7 C.rhombifer10X_Pannzer Portable document 
format (.pdf )

Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 8 Table 1, Data file 8 Venn diagram Microsoft Word 
(.docx)

Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 9 Table 1, Data file 9 GO_counts_Table Spreadsheet (.xlsx) Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 10 Table 1, Data file 10_Orthofinder_Results_Crocs_Only Spreadsheet (.xlsx) Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 11 Table 1, Data file 11_Statistics_PerSpecies Spreadsheet (.xlsx) Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 12 Table 1, Data file 12 Concordance factor statistics Spreadsheet (.xlsx) Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data file 13 Table 1, Data file 13 Phylogeny Microsoft Word 
(.docx)

Figshare: https://doi.org/10.6084/
m9.figshare.25388386 [32]

Data set 1 Sequencing reads of C. rhombifer genomic DNA Fastq files (.fq.gz) NCBI SRA Database: SAMN36978604 https://identi-
fiers.org/ncbi/bioproject:PRJNA1005273 [33]

Data set 2 Genomic Assembly of C. rhombifer Fasta file (.fa) NCBI GenBank Database: JAVSML000000000 https://
identifiers.org/nucleotide:JAVSML000000000 [34]
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RagTag assembly placed 19,264 contigs (25,753 scaffolds; 
N50 = 6,528.07 Kb: Table 1, Data file 3).

Completeness and quality of the two C. rhombifer 
genomic builds were assessed by Benchmarking Univer-
sal Single-Copy Orthologs (BUSCO v5.1.2; [14]) using 
the vertebrata_odb10 database (3,354 markers) and com-
pared to published Crocodylia genomes (Table  1, Data 
file 4). The Supernova build had 91.3% of the BUSCO 
genes complete (single and duplicate), 5.1% fragmented 
(171 genes), and 2.6% missing (85 genes). The RagTag 
build had 95% of the BUSCO genes complete (single and 
duplicate), 3.0% fragmented (102 genes), and 2.0% miss-
ing (67 genes) (Table 1, Data file 4).

RepeatModeler and RepeatMasker [15] and Earl Gray 
[16, 17] identified ~ 1000Mbp of the builds as inter-
spersed repeat elements. Retroelements (17–18%) and 
Unclassified (16–18%) were the most common (Table 1, 
Data file 5, 6). Protein sequences were predicted using 
two ab initio methodologies BRAKER2 [18–23] and 
MetaEuk [24]. This resulted in 30,138 unique protein-
coding sequences (17,737 unique genes) (Table  1, Data 
file 7). PANNZER2 [25] was used for functional annota-
tion. The top gene ontology annotations for biological 
processes, molecular function, and cellular component 
were regulation, protein, and intracellular, respectively 
(Table  1, Data files 8, 9). Orthofinder [26, 27] was used 
to perform comparative genomic analyses between all 
published crocodylian genomes. A total of 175,928 genes 
were compared among the five species. Of these, 93.5% 
were placed into 26,551 orthogroups, with 0.6% of genes 
in species-specific orthogroups (Table  1, Data files 10, 
11).

BUSCO Phylogenomics [28] identified and aligned 
1,912 single-copy BUSCO genes present in 12 taxa (five 
Crocodylia; seven outgroups). IQ-TREE inferred the 
maximum-likelihood concatenated protein tree with 
bootstrap support [29–31]. All recovered nodes had 
100% bootstrap support (Table 1, Data file 12, 13).

Limitations
The draft genome was generated using short-read shot-
gun sequencing via 10X genomics for a scale sample. 
As a result, the assembly is somewhat fragmented and 
smaller than the genome size estimate. The Cuban croco-
dile is naturally restricted to a developing country (Cuba) 
with limited research resources and access to sequencing 
technology. Consequently, obtaining genomic data from 
a non-hybrid wild caught specimen was limited to the 
most accessible sequencing technology available at the 
time of collection. If and when more funds become avail-
able, the completeness and accuracy of the genome will 
be built upon using long-read sequencing technologies.
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Kb  kilobases
Gb  gigabases
Mbp  million base pairs
bp  basepair
BUSCO  Benchmarking Universal Single-Copy Orthologs
IUCN  International Union for the Conservation of Nature
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