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Abstract
Background  Johne’s disease is a chronic wasting disease caused by the bacterium Mycobacterium avium subspecies 
paratuberculosis (MAP). Johne’s disease is highly contagious and MAP infection in dairy cattle can eventually lead 
to death. With no available treatment for Johne’s disease, genetic selection and improvements in management 
practices could help reduce its prevalence. In a previous study, the gene coding interleukin-10 receptor subunit alpha 
(IL10Rα) was associated with Johne’s disease in dairy cattle. Our objective was to determine how IL10Rα affects the 
pathogenesis of MAP by examining the effect of a live MAP challenge on a mammary epithelial cell line (MAC-T) that 
had IL10Rα knocked out using CRISPR/cas9. The wild type and the IL10Rα knockout MAC-T cell lines were exposed to 
live MAP bacteria for 72 h. Thereafter, mRNA was extracted from infected and uninfected cells. Differentially expressed 
genes were compared between the wild type and the IL10Rα knockout cell lines. Gene ontology was performed 
based on the differentially expressed genes to determine which biological pathways were involved.

Results  Immune system processes pathways were targeted to determine the effect of IL10Rα on the response 
to MAP infection. There was a difference in immune response between the wild type and IL10Rα knockout MAC-T 
cell lines, and less difference in immune response between infected and not infected IL10Rα knockout MAC-T cells, 
indicating IL10Rα plays an important role in the progression of MAP infection. Additionally, these comparisons 
allowed us to identify other genes involved in inflammation-mediated chemokine and cytokine signalling, interleukin 
signalling and toll-like receptor pathways.

Conclusions  Identifying differentially expressed genes in wild type and ILR10α knockout MAC-T cells infected with 
live MAP bacteria provided further evidence that IL10Rα contributes to mounting an immune response to MAP 
infection and allowed us to identify additional potential candidate genes involved in this process. We found there was 
a complex immune response during MAP infection that is controlled by many genes.
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Background
Johne’s disease is a highly contagious chronic wasting 
condition caused by Mycobacterium avium subspecies 
paratuberculosis (MAP). Infection with MAP causes 
thickening of the intestines, which leads to decreased 
nutrient absorption, diarrhea and weight loss [1]. There 
is no cure, and infections eventually lead to death. A long 
incubation period means there is the potential for sub-
clinical signs to be missed, such as reduced milk, pro-
tein and fat yield [2]. The disease is clinical when there 
is diarrhea, reduced milk production and absorption of 
nutrients, emaciation and death [3]. MAP is transmitted 
feco-orally and the most common route of transmission 
is contaminated colostrum and milk given to a neo-
natal calf; there is evidence that MAP can even survive 
extended pasteurization [4]. MAP can survive in the barn 
for up to 16 months, and both calves and cows are at risk 
when feces builds up from infected animals [5]. Manage-
ment practices are crucial to preventing spread of MAP 
because they are currently the only means of control.

Dairy cattle herd-level prevalence of Johne’s disease in 
Ontario, Canada is an estimated 26.2–27.2%, and within-
herd prevalence is an estimated 2.3–4.2% [6]. Diagnosis 
of Johne’s disease for dairy cattle is most commonly done 
with a milk ELISA test in Canada. This non-invasive test 
is low-cost, has a quick turn-around time, and is practical 
to use on-farm to get real-time results. However, the low 
sensitivity (30.4%) of this test leads to many false negative 
results [7]. These false negative results, combined with a 
long incubation period, create the potential for subclini-
cal signs to be missed. Vaccines are being developed, or 
are in development [8–10], however, none are currently 
available to Canadian producers. Breeding for increased 
resistance to Johne’s disease could contribute to reducing 
its effect on individual animals and the industry.

Though low (6%), the heritability estimate for resis-
tance to Johne’s disease indicates that selection against 
the disease could be an effective long-term strategy 
[11]. Breeding for increased resistance to Johne’s dis-
ease could contribute to the control of this disease [12], 
however, due to an unreliable phenotype, low sensitivity 
of tests and the long incubation period, it is challenging 
to incorporate Johne’s disease resistance into breeding 
programs. Despite these challenges, studies show there is 
genetic variation in disease susceptibility, as well as sin-
gle nucleotide polymorphisms (SNPs) associated with a 
positive Johne’s disease test [12–25]. By knowing which 
genes and genetic variants are involved in resistance, they 
can be better represented in SNP arrays used for geno-
typing animals for genomic selection. By including causal 

variants in genomic selection, the most informative vari-
ants are used in a routine evaluation [26].

Interleukin-10 (IL10) is a cytokine that can regulate 
the antimicrobial activity of macrophages, resulting in 
an anti-inflammatory effect and tissue repair [27]. Dur-
ing an infection of murine macrophages with MAP, the 
IL10 receptor (IL10R) has been shown to be upregulated 
in response [28]. Interleukin-10 receptor alpha (IL10Rα) 
is one dimer making up the IL10R that binds IL10. When 
exposed to MAP, IL10Rα is upregulated, which contrib-
utes to decreasing inflammation and is thought to aid 
survival of MAP [29]. Four tightly linked SNPs that were 
discovered in IL10Rα were found to have an additive 
and dominant effect on MAP infection status [30], thus, 
IL10Rα plays a role in the progression of Johne’s disease. 
Precise mechanisms of this association, however, are cur-
rently not yet fully understood.

One way to learn more about the role of IL10Rα in the 
pathogenesis of Johne’s disease and MAP infection is by 
knocking out IL10Rα in a cell line and carrying out in 
vitro functional studies. An IL10Rα knockout cell line 
was created using bovine mammary epithelial (MAC-
T) cells [15], and a functional study was performed by 
stimulating cells with MAP lysate. When comparing 
wild-type and knock-out MAC-T cells stimulated with 
MAP lysate, researchers observed increased expres-
sion of pro-inflammatory cytokines IL1α, IL1β, IL6 and 
TNFα in knock-out cells providing evidence that IL10Rα 
is involved in response to MAP infection [15]. This 
supports that genetic variation within this gene could 
facilitate breeding for an increased resistance to Johne’s 
disease. However, by infecting IL10Rα knockout MAC-T 
cells with live MAP, a response that better represents 
what happens in vivo will likely be observed. Therefore, 
the objective of this study was to examine the effect of 
live MAP on IL10Rα knockout MAC-T cells by exam-
ining differentially expressed genes between wild type 
MAC-T cells without exposure to MAP (WT), wild type 
MAC-T cells with exposure to MAP (WT-MAP), IL10Rα 
knockout MAC-T cells without exposure to MAP (KO), 
and IL10Rα knockout MAC-T cells with exposure to 
MAP (KO-MAP).

Results
Differentially expressed (DE) genes
In total, there were 1388 DE genes between WT and 
WT-MAP (Additional file 1: Table S1), 1738 DE genes 
between WT and KO (Additional file 1: Table S2), 1613 
DE genes between WT-MAP and KO-MAP (Additional 
file 1: Table S3), and 561 DE genes between KO and 
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KO-MAP (Additional file 1: Table S4). Number of shared 
and exclusive DE genes from the four comparisons is 
available in the additional materials (Additional file 2: 
Figure S1). We identified the 20 DE genes with the high-
est absolute fold change among each of the comparison 
groups (Additional file 3: Tables S5 to S8). None of the 
top 20 DE genes were identified by the PANTHER clas-
sification system as being immune system processes. The 
top three biological processes within all of the compari-
son groups were biological regulation, cellular processes, 
and metabolic processes (Fig. 1).

Metabolic processes and immune response
Metabolic processes was one of the most significant gene 
ontology (GO) biological processes enriched by genes 
among all four comparisons identified in PANTHER 
enrichment analysis [31, 32]. The protein-protein inter-
action enrichment analyses were statistically significant 
(p-value < 1.0e− 16) for all comparison groups. A total of 
46 Kyoto encyclopedia of genes and genomes (KEGG) 
pathways related to metabolic processes were enriched 
for DE genes identified through the WT versus WT-
MAP contrast, 32 KEGG pathways through the WT 
versus KO contrast, 23 KEGG pathways through the WT-
MAP versus KO-MAP contrast, and 24 KEGG pathways 
through the KO versus KO-MAP contrast (Additional file 
4: Tables S9 to S12).

Many genes involved in immune system processes were 
also differentially expressed within all comparison groups 
even though they did not fall within the top 20 DE genes. 
There were six identified KEGG pathways from DE 
genes for the WT versus WT-MAP contrast, 11 KEGG 

pathways for the WT versus KO contrast, and 13 KEGG 
pathways for the WT-MAP versus KO-MAP contrast 
(Additional file 5: Tables S13 to S15). While there were 
21 total DE genes relating to immune system processes 
for KO versus KO-MAP (Additional file 5: Table S16), 
no KEGG pathways were identified, possibly due to the 
small number of known interactions between each of the 
genes.

There were 213 KEGG pathways related to inflam-
mation mediated by chemokine and cytokine signal-
ling pathways in the four contrasts. Of these, 13 KEGG 
pathways were identified from the WT versus WT-MAP 
contrast, 98 KEGG pathways were identified from the 
WT versus KO contrast, and 38 were identified from the 
WT-MAP versus KO-MAP, and 64 KEGG pathways were 
identified from the KO versus KO-MAP contrast (Addi-
tional file 6: S17 to S20).

There were 132 KEGG pathways involved in interleu-
kin signalling and toll-like receptor signalling in the four 
contrasts identified. Of these, 18 KEGG pathways related 
to interleukin signalling were identified from the WT 
versus WT-MAP contrast, 42 KEGG pathways from the 
WT versus KO contrast, 52 KEGG pathways from the 
WT-MAP versus KO-MAP contrast, and three KEGG 
pathways from the KO versus KO-MAP contrast (Addi-
tional file 7: S21 to S24). Additionally, 17 KEGG pathways 
related to toll-like receptor signalling were identified 
from the WT versus WT-MAP contrast (Additional file 
8: 25). No other contrasts identified the toll-like receptor 
signalling KEGG pathway.

Overall, there was little difference in immune response 
in the KO versus KO-MAP contrast. There were 21 DE 

Fig. 1  PANTHER biological processes for differentially expressed genes from the four contrasts: wildtype MAC-T cells (WT) versus the wildtype MAC-T 
cells infected with Mycobacterium avium subsp. Paratuberculosis (WT-MAP), WT versus the IL10Rα-knockout MAC-T cells (KO), WT-MAP versus the IL10Rα-
knockout MAC-T cells infected with Mycobacterium avium subsp. Paratuberculosis (KO-MAP), and KO versus KO-MAP
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genes related to immune system processes (Additional 
file 5: Table S16), 9 DE genes related to inflammation 
(Additional file 9: Table S26), and 2 DE genes related 
to the interleukin signalling pathway (Additional file 
9: Table S27). Protein-Protein interaction analyses was 
performed in STRING [33] which revealed significant 
enrichment for the genes related to immune system pro-
cesses (Additional file 10). However, there was no enrich-
ment for DE genes involved in toll-like receptor and 
interleukin signalling pathways. Figure  2 shows all DE 
genes from the KO versus KO-MAP contrast involved in 
inflammation mediated by chemokine and cytokine sig-
nalling, interleukin signalling, toll-like receptor signal-
ling, B cell activation, and T cell activation pathways. The 
majority of these genes were downregulated in the KO-
MAP treatment, and most are exclusive to inflammation 
and no other immune system function.

Discussion
In this knockout study, we investigated the MAC-T cell 
response to MAP infection in the absence of IL10Rα. Our 
results highlighted the roles of metabolic and immune 
responses to MAP infection, specifically identifying genes 
involved in inflammation mediated chemokine and cyto-
kine signalling, interleukin signalling and toll-like recep-
tor pathways. This study has provided further evidence of 
the role of IL10Rα during MAP infection and has iden-
tified many other involved genes. The top three biologi-
cal processes for all four comparisons were biological 

regulation, cellular processes, and metabolic processes 
(Fig. 1). These results were consistent with the literature 
because differences in the regulation of biological pro-
cesses and cellular processes are typically observed and 
metabolic processes are affected in knockout gene stud-
ies [20, 34, 35], and infection with MAP bacteria has been 
shown to alter the metabolism of cells [36–38].

Metabolic response
Several studies have shown lipid metabolism and choles-
terol pathways were affected by MAP infection, which 
was likely in order to facilitate MAP survival [36–38], 
however, we did not specifically assess MAP viability. For 
macrophages, alteration of these pathways is believed to 
help establish infection and its persistence within intra-
cellular compartments [36, 38]. In our study, enrichments 
were found in DE genes in non-infected and infected cell 
line comparisons, which included the KEGG pathways: 
cholesterol metabolism; retinol metabolism; fat diges-
tion and absorption; and peroxisome proliferator-acti-
vated receptors (PPAR) signalling. In this study we have 
used MAC-T cells and not macrophages, so DE genes 
related to metabolism may not be due to MAP infection, 
but could be simply because a gene (IL10Rα) has been 
knocked-out. Additionally, enrichment analyses can be 
biased towards well studied genes and pathways, so our 
results may not convey the entirety of what is occurring.

When further examining metabolic processes among 
all comparisons, common genes were found in WT 

Fig. 2  PANTHER immune system processes for differentially expressed genes from the contrast of the IL10Rα-knockout MAC-T cells (KO) versus the 
IL10Rα-knockout MAC-T cells infected with Mycobacterium avium subsp. Paratuberculosis (KO-MAP)
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versus WT-MAP, WT versus KO, and WT-MAP versus 
KO-MAP contrasts. This shows that gene editing had an 
effect on MAC-T cell metabolism, because these genes 
were only absent in the comparison where both cell lines 
had IL10Rα knocked out, the KO versus KO-MAP com-
parison. Many pathways relating to adipose cells were 
found, such as fat digestion and absorption, cholesterol 
metabolism, and the adipocytokine signalling pathway 
(Additional file 4). Cells in the current study were mam-
mary epithelial cells and because the mammary gland 
is composed of fatty tissue, and mobilization of fat is 
needed in the mammary gland to produce milk, the pres-
ence of pathways relating to adipose tissue is expected.

Immune response
Immune system processes related to both innate and 
acquired immunity were also examined to gain a greater 
understanding of how IL10Rα affects the pathogenesis 
of MAP bacteria (Additional file 5). DE genes involved 
in the interleukin signalling pathway and the toll-like 
receptor signalling pathway were inspected as they play 
a crucial role in pathogen recognition, cell signalling and 
immune system activation (Additional files 7 and 8). As 
IL10Rα is a dimer making up the IL10 receptor for an 
anti-inflammatory cytokine IL10, the inflammation path-
way regulated by chemokine and cytokine signalling was 
also examined as this pathway was expected to be signifi-
cantly enriched (Additional file 6). Collectively examin-
ing DE genes involved in these pathways, as well as the 
B cell activation and T cell activation pathways, showed 
that there was an immune response due to MAP infec-
tion (Additional file 11).

In the comparison of WT versus WT-MAP, we identi-
fied DE genes involved in the immune system, including 
transcription factor Jun (Jun), which was downregulated 
in WT-MAP. The Jun pathway has been implicated in 
the activation of transcription of IL10 in T helper 2 cells, 
which are a major source of IL10 [39], and MAC-T cells 
are also capable of producing IL10 [40]. Another identi-
fied DE gene was interleukin 6 (IL6), which was upregu-
lated in WT-MAP. Amongst IL6’s pleiotropic properties, 
IL6 can act as a pro-inflammatory cytokine [41–43], and 
has been found in previous studies to be associated with 
IL10 and Johne’s disease [19], chronic human inflam-
matory lung disease [44], and bovine respiratory disease 
[45].

In the WT versus KO contrast, we identified DE genes 
involved in the immune system, such as interleukin 36 
alpha (IL36α). IL36α was downregulated in the KO and 
encodes for a pro-inflammatory cytokine, and is a mem-
ber of the interleukin 1 (IL1) family of cytokines that 
plays a major role in initiating inflammation in response 
to infection, or tissue injury [46–50]. In this comparison, 
mitogen activated protein kinases (MAPK) 12 (MAPK12) 

and MAPK13 were downregulated in the KO. These are 
stress-activated protein kinases that play an important 
role in the innate immune system signalling and inflam-
mation [51]. Toll-like receptor 6 (TLR6) was upregulated 
in the KO, and can also activate the nuclear factor kappa 
beta (NF-κβ) signalling pathway to generate a pro-inflam-
matory response [52]. In contrast, the bovine major his-
tocompatibility complex class II DR alpha (BoLA-DRα) 
was downregulated in the KO and DRα is required for 
antigen presentation to initiate adaptive immunity [27]. 
IL6 was upregulated in the WT versus KO contrast, and 
all other contrasts (i.e. WT versus WT-MAP, WT-MAP 
versus KO-MAP, and KO versus KO-MAP).

In the comparison of WT-MAP versus KO-MAP, 
IL10Rα was downregulated in the KO-MAP, as expected, 
due to gene editing. Interleukin 20 receptor alpha 
(IL20Rα) was also downregulated, and it regulates 
the JAK-STAT signalling pathway [53, 54]. IL20Rα is 
expressed in the epidermis, which could explain its pres-
ence in MAC-T cells, however, the JAK-STAT signalling 
pathway is also important for immune cell development. 
Related to this signalling pathway, Janus kinase 3 (JAK3) 
was upregulated in the KO-MAP, and signal transducer 
and activator of transcription 3 (STAT3) was downregu-
lated; JAK3 is involved in cytokine receptor-mediated 
intracellular signal transduction, and STAT3 acts as a 
transcription factor in response to cytokines and growth 
factors [54].

Response to infection
Of the four comparisons, there were fewer DE genes 
identified that are associated with immune response 
between KO versus KO-MAP, providing evidence that 
IL10Rα is a major gene of interest when examining MAP 
infection. When looking at DE genes relating to inflam-
mation, only IL6 and chemokine (C-C motif ) ligand 20 
(CCL20) were upregulated in the KO-MAP, whereas the 
other seven inflammation-related genes were downregu-
lated. CCL20 has been shown to have increased expres-
sion in human inflammatory bowel disease [55], and is 
involved in the trafficking of various immune cell types 
[27]. Two DE genes relating to the interleukin signal-
ling pathway were present, and these were interleukin 
12 receptor beta 2 (IL12Rβ2), which was downregulated 
in the KO-MAP, and IL6, which was upregulated. The 
IL12R is involved in the activation of T cells and natural 
killer (NK) cells [56]. Collectively, these findings indicate 
that upon MAP infection, IL10Rα knockout cells do still 
respond to MAP infection, however, the response is far 
less than what it would be in unedited cells.
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Polygenic nature of immune response to MAP bacteria and 
application of results
Our results support that immune response to MAP bac-
teria is highly polygenic, which is expected, as genetic 
variation of disease-related traits is usually explained by 
a large number of genetic variants with small effects. An 
example of the highly polygenic nature of disease-related 
traits is chronic human inflammatory bowel disease 
(IBD), which has been associated with MAP infection 
[57, 58], where researchers have implicated more than 
130 candidate genes [59–61]. Studies have shown that 
many genes are thought to contribute to MAP infection 
status [13], and incorporating resistance to Johne’s dis-
ease into genomic evaluations will involve taking into 
account variants in multiple genes and not just IL10Rα. 
Further research into causal variants is needed because 
this information could be useful in pharmaceutical devel-
opment to treat Johne’s disease, and including causal 
variants in genotyping arrays may improve accuracy of 
genomic selection [26] for selecting animals more resis-
tant to MAP infection.

Conclusions
Johne’s disease is devastating for the dairy cattle indus-
try, with serious animal welfare implications and sub-
stantial economic loss. Prior research identified IL10Rα 
to be involved in the immune response in MAC-T cells 
to MAP cell lysate, however, this may not necessarily 
reflect the response to a live pathogen challenge. Target-
ing genes involved in immune system processes allowed 
us to identify specific pathways that were related to DE 
genes between wild type and IL10Rα knockout MAC-T 
cells, such as inflammation mediated by the chemokine 
and cytokine signalling pathway, the interleukin signal-
ling pathway, and the toll-like receptor signalling path-
way. This study provided further information on IL10Rα’s 
role in MAP infection and pathogenesis, offering fur-
ther support that IL10Rα is a good candidate gene, and 
presenting results that could help with development of 
therapeutics. The immune response to Johne’s disease 
and progression of MAP infection is complex, and this 
in vitro study gives further insight into other genes and 
pathways involved that require further study.

Methods
Knockout cell line development, infection, and extraction 
of mRNA
The MAC-T cell cultures (Nexia Biotechnologies, Que-
bec, Canada) were developed by Huynh et al. [62], 
while IL10Rα knockout and confirmation of knockout 
were performed using the same methods as Mallikarju-
nappa et al. [15]. MAP infections were performed using 
the method of Lamont et al. [63] using MAP (Madonna 
strain) gifted from Dr. Lucy Mutharia (University of 
Guelph). All the experiments were carried out in quadru-
plicate at four independent times. Bacteria was cultured 
using the methods described by Shandilya et al. [40], and 
the bacterial load was added to each infected treatment 
group to form a 10:1 multiplicity of infection [40, 64]. 
There were four treatment groups, described in Table 1, 
with unedited and IL10Rα knockout cells infected with 
MAP bacteria or not. As described in Shandilya et al. 
[40], MAC-T cells had MAP bacteria added (for 72  h), 
or for uninfected cells, MAP carrier solution media was 
added. Extraction of mRNA was performed using the 
same method as Shandilya et al. [65] using the RNeasy 
Mini Kit (Quiagen, Germany). Before outsourcing 
(Genewiz, Azenta Life Sciences, US) the samples for 
RNA-Sequencing, the purity of the RNA samples was 
determined using the Cytation 5 Spectrophotometer 
(Biotek, USA) at A260/280 nm ratio. The integrity of the 
RNA samples was assessed by bioanalyzer, and the RNA 
concentration was determined using the Qubit® 2.0 Fluo-
rometer. Paired-end (2 × 150  bp) reads were generated 
using the Illumina HiSeq 2500 sequencer.

The data in this study have been deposited in NCBI’s 
Gene Expression Omnibus [66] and are accessible 
through GEO series accession number GSE247921 
(https : //w w w.ncbi .n lm.nih .gov/ge o/quer y/acc .
cgi?&acc=GSE247921).

RNA-Sequencing analysis
To analyze the RNA-Sequencing data, the CLC Genom-
ics Workbench software 20.0.4 (QIAGEN, Aarhus, 
Denmark) was used. FastQ files were imported into the 
software, and quality control was done following the 
parameters described in [67]. A Phred score measures 
the probability that a nucleobase was identified correctly 
during the sequencing process, with low scores indicating 
incorrect identification. A score of at least 20 is a stan-
dard quality control cut-off as that indicates a 99% accu-
racy [67]. In this study all Phred scores were above 35, 
and the accuracy was 99.97%. The data was then trimmed 
based on quality scores which included a maximum error 
probability of 0.05 and a maximum number of ambigu-
ous nucleotides of 2.

For RNA-Sequencing analysis, the CLC Genom-
ics Workbench 20.0.4 (QIAGEN, Aarhus, Denmark) 

Table 1  Experimental design: MAC-T cells and IL10Rα knockout 
MAC-T cells were infected with Mycobacterium avium subspecies 
paratuberculosis (MAP) for 72 h, after which mRNA was extracted 
for sequencing
Cell type Treatment Group Number 

of samples
Wild type MAC-T 
cells

Not infected WT 4
Infected with MAP WT-MAP 4

IL10Rα knockout 
MAC-T cells

Not infected KO 4
Infected with MAP KO-MAP 4

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE247921
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE247921
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environment, was used to align pair-end sequence reads 
of each sample against the bovine reference genome, 
ARS-UCD1.2 imported from Ensembl [68]. The param-
eters used for global alignments were 0.6 for length frac-
tion and 0.6 for similarity fraction, which represents the 
minimum percentage of total alignment that must match 
the reference sequence with a minimum percentage iden-
tity between the aligned region of the read and the refer-
ence. In addition, two mismatches, three insertions and 
three deletions per read were allowed. To facilitate group 
comparisons, the gene levels were quantified in reads per 
kilobase per million mapped reads (RPKM) and trans-
formed to log 2 [69].

Differentially expressed (DE) genes analyses for WT 
versus WT-MAP, WT versus KO, WT-MAP versus KO-
MAP, and KO versus KO-MAP contrasts were performed 
using the CLC Genomics Workbench 20.0.4 (QIAGEN, 
Aarhus, Denmark). The two-group comparisons were 
carried out using samples obtained after 72 h of infection 
from the four groups, WT (n=3), WT-MAP (n=4), KO 
(n=4) and KO-MAP (n=4). The WT group only included 
three samples because one sample was removed due to 
failing the quality control. Empirical analysis was done 
using the DGE tool in CLC workbench and performed 
for each contrast, using the following parameter to keep 
data: total count ≥ 5.0. Transcript levels were quantified 
in reads per kilobase per million mapped reads (RPKM). 
DE genes between each contrast were defined by a 
p-value ≤0.01, FDR ≤0.05, and |fold change|≥2.

Gene ontology
After DE genes were identified, GO enrichment analy-
sis was performed for each analysed contrast, using 
PANTHER [31, 32]. Genes specifically related to meta-
bolic processes, as well as the immune system processes 
of inflammation mediated by chemokine and cytokine 
signalling pathways, the Toll-like receptor signalling 
pathway, the interleukin signalling pathway, the B cell 
activation pathway, and the T cell activation pathway 
were targeted. Venn diagrams were created to determine 
overlap between each of the comparison groups [70]. 
Knowledge about specific targeted genes of interest was 
gained from GeneCards [27], and protein-protein inter-
action network analysis was performed using STRING 
[33].
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