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Objective
Brasenia schreberi is an aquatic and perennial herb in the 
Cabombaceae family. It is a monotypic species with oval-
shaped leaves that can submerge or float on the water’s 
surface, similar to water lilies. Except for Europe and Ant-
arctica, it is currently distributed on all continents of the 
world [1]. However, palaeobotanical records indicate that 
B. schreberi was a frequent element in Europe before the 
last glacial period [1]. Its habitats include ponds, lakes, 
and sluggish streams, but they must be clean and acidic 
and have nutrient-enriched sediment [1, 2]. Due to the 
deterioration of water quality and habitat loss, it is listed 
at the second level of national key protected wild plants 
in China and is endangered in other countries [2, 3]. Its 
edible young leaves and stems are coated with a thick 

BMC Genomic Data

*Correspondence:
Hong-Lin Cao
caohl@scib.ac.cn
Zheng-Feng Wang
wzf@scib.ac.cn
1Guangzhou Linfang Ecological Technology Co., Ltd, 510000 Guangzhou, 
China
2Key Laboratory of Vegetation Restoration and Management of Degraded 
Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 
510650 Guangzhou, China
3Key Laboratory of National Forestry and Grassland Administration 
on Plant Conservation and Utilization in Southern China, South China 
Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, 
China
4Guangdong Provincial Key Laboratory of Applied Botany, South China 
Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, 
China
5South China National Botanical Garden, 510650 Guangzhou, China
6University of Chinese Academy of Sciences, 100049 Beijing, China

Abstract
Objectives Brasenia is a monotypic genus in the family of Cabombaceae. The only species, B. schreberi, is a 
macrophyte distributed worldwide. Because it requires good water quality, it is endangered in China and other 
countries due to the deterioration of aquatic habitats. The young leaves and stems of B. schreberi are covered by thick 
mucilage, which has high medical value. As an allelopathic aquatic plant, it can also be used in the management of 
aquatic weeds. Here, we present its assembled and annotated genome to help shed light on medial and allelopathic 
substrates and facilitate their conservation.

Data description Genomic DNA and RNA extracted from B. schreberi leaf tissues were used for whole genome and 
RNA sequencing using a Nanopore and/or MGI sequencer. The assembly was 1,055,148,839 bp in length, with 92 
contigs and an N50 of 22,379,495 bp. The repetitive elements in the assembly were 555,442,205 bp. A completeness 
assessment of the assembly with BUSCO and compleasm indicated 88.4 and 90.9% completeness in the Eudicots 
database and 95.4 and 96.6% completeness in the Embryphyta database. Gene annotation revealed 67,747 genes 
that coded for 73,344 proteins.
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mucilage that is mainly composed of polysaccharides and 
has high medical value [2, 4, 5]. Mucilage has been con-
firmed to be a defense against herbivores and bacteria [3, 
6]. Brasenia schreberi contains allelopathic components 
that can be used in the management of aquatic weeds [7]. 
As important values in taxonomy, ecology, and economy 
and in its endangered situation, a genome assembly was 
published previously [8] for its better conservation and 
breeding. However, given its wide distribution world-
wide and existing substantial genetic diversities [3, 9], 
we present an alternative B. schreberi genome to better 
understand its evolution and adaptation and to enhance 
its conservation, management, and utility in the future.

Data description
Leaf samples of B. schreberi were collected from an indi-
vidual planted in the South China Botanical Garden, 
Guangzhou, China. The DNA or RNA extracted from 
its leaf tissues was used to construct three sequencing 
libraries, including long read whole genome sequencing 
(WGS) using a Nanopore PromethION sequencer, short 
read WGS using an MGI DNBSEQ-T7 sequencer, and 
RNA sequencing (RNA-seq) using an MGI DNBSEQ-T7 
sequencer. Under the MGI platforms, a 150  bp paired-
end mode was applied for both short WGS and RNA-
seq.  The long-read WGS generated about 113.0 GB of 
data (Data file 1) [10], short-read WGS generated about 
130.6 GB data (Data file 2) [11], and RNA-seq generated 
about 27.6 GB data (Data file 3) [12].

After sequencing, short WGS reads were trimmed 
by Sickle v1.33 [13] using the parameter “-q 30 -l 80”. 
KmerGenie v1.7044 [14] (under the parameter of “-k 141 
--diploid”) was then used to estimate the genome size of 
B. schreberi with trimmed short WGS reads. The esti-
mated genome size was 963,304,542  bp. Porchop v0.2.4 
[15] and ontbc v1.1 [16] were used to remove adapter 
and low-quality reads (scores < 7 and lengths < 5000  bp) 
in long WGS reads. NextDenovo v2.3.1 [17] was then 
used to assemble the genome with the filtered long reads. 
Pseudohaploid [18] and Purge_Dups v1.2.6 [19] were 
applied to remove redundant contigs. Subsequently, 
Racon v1.5.0 [20], hapo-G v1.3.2 [21], and polypolish 
v0.5.0 [22] were used to polish the assembly. The final 
assembly was 1,055,148,839  bp in length, with 92 con-
tigs and a contig N50 of 22,379,495 bp (Data file 4) [23]. 
BUSCO v5.5.0 [24] and compleasm v0.2.5 [25] were used 
to assess the completeness of the assembly with Eudicots 
odb10-2020-09-10 and Embryphyta odb10 2020-09-10 
databases. BUSCO revealed 88.4 and 95.4% complete-
ness in the Eudicots and Embryphyta databases, respec-
tively (Data files 5–6) [26, 27]. Compleasm revealed 90.9 
and 96.7% completeness in the Eudicots and Embryphyta 
databases, respectively (Data files 7–8) [28, 29].

Repetitive elements in the B. schreberi assembly were 
estimated by RED v2.0 [30] and EDTA v2.1.3 [31], which 
revealed 452,408,938 (Data file 8) [32] and 521,424,853 bp 
(Data file 9) [33] of sequences, respectively. Combining 
the RED and EDTA results revealed 555,442,205  bp of 
repetitive sequences (Data file 10) [34], which were used 
to soft-mask the assembly. Braker3 v.3.0.6 [35] was used 
to predict the primary gene structures using transcrip-
tome data and reference protein sequences (Data file 11) 
[36]. The Braker results were then incorporated into the 
Funannotate pipeline v1.8.16 [37] to obtain integrated 
gene sets. The pipeline included four steps: “train”, “pre-
dict”, “update”, and “annotate”. For the former three steps, 
the parameter “--max_intronlen 1000000” was used, 
while in the “predict” step, the parameters “--busco_
seed_species arabidopsis --organism other --busco_db 
embryophyta” were added. The fourth “annotate” step 
was used for gene function annotation. The final gene 
prediction obtained 67,747 protein-coding genes and 
813 tRNA genes (Data files 12–14) [38–40]. Functional 
annotation of protein-coding genes is shown in Data files 
15–16 [41, 42].

Limitations
The current B. schreberi assembly in this study is frag-
mented. Future sequencing technologies, including 
Hi-C, Nanopore ultra-long sequencing, PacBio HiFi, 10X 
Genomics linked sequencing, and Bionano optical maps, 
are needed for complete and gapless genome assembly.

However, our assembly displayed a completeness com-
parable to the previously reported B. schreberi assembly 
[8], which showed 89.0 and 95.9% completeness using 
BUSCO in the Eudicots and Embryphyta databases, 
respectively, and 91.3% and 97.0% completeness using 
compleasm in the Eudicots and Embryphyta databases, 
respectively. Nevertheless, because this previous assem-
bly did not remove duplications from the assembly [43], 
some assembly errors may exist for gene prediction. For 
the completed BUSCOs, our assembly revealed 39.7% 
and 46.8% higher complete and single-copy BUSCOs 
using BUSCO in the Eudicots and Embryphyta database, 
while it was 37.4 and 44.0% complete and single-copy 
BUSCOs in Eudicots and Embryphyta for the previously 
reported assembly. Using compleasm, our assembly was 
shown to have 47.9 and 54.7% complete and single-copy 
BUSCOs in the Eudicots and Embryphyta database, while 
it was 44.54 and 50.9% complete and single-copy BUS-
COs in the Eudicots and Embryphyta database for the 
previously reported assembly. Therefore, our assembly 
contained a few duplication errors in the assembly for 
better gene prediction.
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