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Objective
Castanopsis is the third largest genus in the Fagaceae 
family [1]. It includes about 120–130 species in the genus 
[1–3]. Fossil evidence indicates that Castanopsis is widely 
distributed in both the Northern and Southern Hemi-
sphere through the Eocene to the Pliocene in history [2, 
4], but currently, it is mainly distributed in the subtropics 
and tropics of East and Southeast Asia [2, 4]. Castanopsis 
species are mainly canopy-dominant trees and can grow 
up to 25–40 m in height [5]. Therefore, they are the main 
components of evergreen broadleaved forests, safeguard-
ing local biodiversity [2, 6]. Castanopsis species are good 
timber trees, and their seeds are edible [2, 3, 7]. They 
also contain many polyphenols and are used in tradi-
tional medicines [3]. Climate change is the main threat to 
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Abstract
Objectives Castanopsis is the third largest genus in the Fagaceae family and is essentially tropical or subtropical 
in origin. The species in this genus are mainly canopy-dominant trees, and the key components of evergreen 
broadleaved forests play a crucial role in the maintenance of local biodiversity. Castanopsis chinensis, distributed from 
South China to Vietnam, is a representative species. It currently suffers from a high disturbance of human activity and 
climate change. Here, we present its assembled genome to facilitate its preliminary conservation and breeding on the 
genome level.

Data description The C. chinensis genome was assembled and annotated by Nanopore and MGI whole-genome 
sequencing and RNA-seq reads using leaf tissues. The assembly was 888,699,661 bp in length, consisting of 133 
contigs and a contig N50 of 23,395,510 bp. A completeness assessment of the assembly with Benchmarking 
Universal Single-Copy Orthologs (BUSCO) indicated a score of 98.3%. Repetitive elements comprised 471,006,885 bp, 
accounting for 55.9% of the assembled sequences. A total of 51,406 genes that coded for 54,310 proteins were 
predicted. Multiple databases were used to functionally annotate the protein sequences.
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Castanopsis species due to its restricted migration abil-
ity [3, 7]. By studying 32 dominant Castanopsis species 
in East Asia that grow from 5°N to 38°N, it has been pre-
dicted that their present high richness distribution range 
will be reduced by 94.5%, on average, by 2070 [3].

China is a central region of the Castanopsis distribu-
tion and includes approximately 60 species [3], half of 
which are endemic to China [1]. Castanopsis chinensis is 
distributed from South China to Vietnam. It is a pioneer-
dominant canopy tree in evergreen broad-leaved forests 
and plays a key role in ecosystems [3, 8]. As a fast-grow-
ing and soil erosion-controlling species, it is also widely 
used in reforestation [7]. Because the C. chinensis dis-
tribution area suffers from disturbances of high human 
activity, most forests have been converted or degraded. 
Therefore, we present here the C. chinensis genome 
to better understand its evolution and adaptation and 
enhance its conservation, management and utility in the 
future.

Data description
We collected leaf samples of C. chinensis from a indi-
vidual planted in the South China Botanical Garden, 
Guangzhou China. To perform genome assembly and 
annotation, three sequencing libraries were constructed 
from genomic DNA or RNA extracted from the leaf tis-
sues. The first library was constructed by long read whole 
genome sequencing using a Nanopore PromethION 
sequencer, which generated about 139.5 GB of data (Data 
files 1–3) [9–11]. The second was generated by short read 
whole genome sequencing using an MGI DNBSEQ-T7 
sequencer, which generated about 149.6 GB data (Data 
file 4) [12], and the third was generated by RNA sequenc-
ing (RNA-seq) using an MGI DNBSEQ-T7 sequencer, 
which generated about 29.7 GB data (Data file 5) [13]. All 
sequencing using the MGI platform was applied using 
150 bp paired-end mode.

The genome size of C. chinensis was estimated by 
KmerGenie v1.7044 [14] (under the parameter of “-k 
141 --diploid”) and GenomeScope 2.0 [15] (under the k-
mer of 21) with short whole genome reads, which were 
trimmed using Sickle v1.33 [16] with the parameter “-q 
30 -l 80”. The genome sizes estimated by KmerGenie and 
GenomeScope were 1,143,475,699 and 744,772,109  bp, 
respectively. Nanopore long reads were quality trimmed 
by Porchop v0.2.4 [17] and ontbc v1.1 [18] to remove 
adapters, and the reads had quality scores < 7 and 
lengths < 5000 bp. NextDenovo v2.3.1 [19] was then used 
to assemble the genome with the filtered reads. Pseudo-
haploid [20] and Purge_Dups v1.2.6 [21] (running twice) 
were used to remove duplicated contigs. Racon v1.5.0 
[22], hapo-G v1.3.2 [23] and polypolish v0.5.0 [24] were 
further used to improve the assembly, in which racon 
and hapo-G were each run twice. The final assembly 

consisted of 133 contigs of 888,699,661 bp in length and 
a contig N50 of 23,395,510 bp (Data file 6) [25]. BUSCO 
v5.4.6 [26] assessed 98.3% completeness using the Eudi-
cots odb10-2020-09-10 database (Data file 7) [27].

RED v2.0 [28] and EDTA v2.1.0 [29] were used to pre-
dict repetitive elements in the assembly, which revealed 
400,198,509 (Data file 8) [30] and 410,582,904  bp (Data 
file 9) [31] of the sequences, respectively. Combining 
the RED and EDTA results resulted in 496,557,194  bp 
sequences (Data file 10) [32], accounting for 55.9% of 
the genome assembly. After soft-masking the repeti-
tive elements in the assembly, braker v.2.0 [33] was used 
to predict the gene structures. Braker is an automated 
gene annotation pipeline that uses transcriptome data 
and reference protein sequences (Data file 11) [34]. The 
braker results were then inputted into Funannotate pipe-
line v1.8.16 [35] to obtain integrated gene sets. The pipe-
line included “train”, “predict” and “update” steps. In all 
steps, the parameter of “--max_intronlen 1000000” was 
used. In the “predict” step, the parameters of “--busco_
seed_species arabidopsis --organism other --busco_db 
embryophyta” were added. The Funannotate pipeline 
finally produced 51,406 genes that coded 54,310 protein 
sequences (Data files 12–14) [36–38]. After gene struc-
ture prediction, functional annotation of the genes was 
performed using the “funannotate annotate” command in 
the Funannotate pipeline (Data files 15–16) [39, 40].

Limitations
Although the genome size estimators of KmerGenie 
and GenomeScope were highly discrepant, yielding 
1,143,475,699 and 744,772,109  bp, the final assembly 
size of 888,699,661  bp was comparable to previously 
reported genome sizes for Castanopsis species, including 
878.6 Mb for C. tibetana [1] and 882.6 Mb for C. hystrix 
[41], and higher than 785.5 Mb for C. mollissima [42]. It 
has been reported that accurate genome size estimation 
with short reads is challenging [43, 44]. Therefore, long 
HiFi sequencing data may be further needed to obtain 
an accurate size estimation [44]. Due to their long length 
and high accuracy, HiFi date could character genome size 
reliably both in small and large k-mers [43, 45–48], which 
help determining the true result when the discrepancy 
happening in genome size estimation by short reads [43].

Currently, the assembled genome in this report is 
still fragmented. Therefore, it is not suitable for com-
plete genome structure analysis, hindering the complex 
regions digging in its conservation and breeding [49–51]. 
Further high-quality genome assemblies (preferably com-
plete and gapless) using ultra-long read, Hi-C, and other 
sequencing technologies are needed [52].
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