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Abstract
Background Genomewide prediction estimates the genomic breeding values of selection candidates which 
can be utilized for population improvement and cultivar development. Ridge regression and deep learning-based 
selection models were implemented for yield and agronomic traits of 204 chile pepper genotypes evaluated in multi-
environment trials in New Mexico, USA.

Results Accuracy of prediction differed across different models under ten-fold cross-validations, where high 
prediction accuracy was observed for highly heritable traits such as plant height and plant width. No model was 
superior across traits using 14,922 SNP markers for genomewide selection. Bayesian ridge regression had the 
highest average accuracy for first pod date (0.77) and total yield per plant (0.33). Multilayer perceptron (MLP) was 
the most superior for flowering time (0.76) and plant height (0.73), whereas the genomic BLUP model had the 
highest accuracy for plant width (0.62). Using a subset of 7,690 SNP loci resulting from grouping markers based on 
linkage disequilibrium coefficients resulted in improved accuracy for first pod date, ten pod weight, and total yield 
per plant, even under a relatively small training population size for MLP and random forest models. Genomic and 
ridge regression BLUP models were sufficient for optimal prediction accuracies for small training population size. 
Combining phenotypic selection and genomewide selection resulted in improved selection response for yield-related 
traits, indicating that integrated approaches can result in improved gains achieved through selection.

Conclusions Accuracy values for ridge regression and deep learning prediction models demonstrate the potential 
of implementing genomewide selection for genetic improvement in chile pepper breeding programs. Ultimately, a 
large training data is relevant for improved genomic selection accuracy for the deep learning models.
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Introduction
Advances in next-generation sequencing technologies 
in recent years have revolutionized plant breeding for 
genetic improvement. The availability of whole genome 
sequences for major staple crops and specialty vegetables 
has driven molecular marker discovery and the imple-
mentation of marker-assisted selection (MAS) in breed-
ing programs and have catalyzed the development of 
genetically improved crops [1]. Chile pepper (Capsicum 
spp.) is a widely used spice in many areas of the world 
and is a major cultural and economic crop in the state of 
New Mexico, USA. The use of novel genomics-assisted 
breeding approaches can drive genetic improvement and 
increase the total production in chile pepper growing 
areas. Integrating different ‘-omics’ tools will be a key to 
develop genetically improved cultivars of chile peppers 
for growers and consumers [2].

The identification of genotype-phenotype associations 
is a key step for MAS [3]. A major approach to determine 
significant marker-trait associations is genomewide asso-
ciation study (GWAS), which implements a linkage dis-
equilibrium (LD)-based mapping approach to discover 
quantitative trait loci (QTL) in natural populations [4, 
5]. Nonetheless, GWAS can suffer from the presence of 
population structure, effect of “missing heritability”, and 
detection of only major effect QTLs, hence imposes sev-
eral disadvantages [6–8]. Another MAS tool, genomic 
prediction or genomewide selection, can complement 
GWAS through the estimation of genomic breeding val-
ues of selection candidates.

First proposed by Meuwissen et al. [9], genomic predic-
tion uses genomewide marker data to predict the breed-
ing values (genomic estimated breeding values, GEBVs) 
of selection candidates by using phenotypic and genotype 
information from a training population and genotype 
information from a test (validation) population [10]. In 
contrast to GWAS, genomic prediction estimates effects 
of markers across the whole genome based on the pre-
diction model developed in the training population and 
eliminates the need to identify individual significant 
associations [11]. The correlation between the observed 
phenotypes and the GEBVs represent the accuracy of 
genomic prediction and is affected by several factors 
including the size of the training population, marker 
number, genetic relatedness between the training and 
validation populations, trait heritability, and the presence 
of fixed effects in the selection model, among others, 
across different crops [12–18].

Only a few studies have applied genomic prediction to 
estimate accuracy of quantitative traits in chile peppers. 
Hong et al. [19] performed predictions for fruit traits in 
351 accessions of a Capsicum core collection, where it 
was observed that Reproducing Kernel Hilbert Space 
models have the highest accuracies of 0.75, 0.73, 0.84, 

0.83, and 0.82 for fruit length, shape, width, weight, and 
thickness of pericarp, respectively. In another study, Tong 
et al. [8] combined a high-throughput phenotyping tool, 
Tomato Analyzer [20, 21], with genomic prediction to 
characterize a population of chile peppers from the Bal-
kan region of Europe based on morphometric and colo-
rimetric descriptors and observed a predictability value 
of 0.89 for fruit weight. Improvement on the genomic 
prediction accuracies from up to 10% was observed when 
markers were included as fixed effects in ridge regression 
and Kernel-based prediction models for capsaicinoid 
content [22].

While various BLUP-based and Bayesian models have 
been widely used to predict complex traits in crops, some 
of them only model the additive component of the vari-
ance [23, 24]. Machine learning and deep learning-based 
models can include the non-genetic effects with appro-
priate parameterization where the whole genetic merit 
can be predicted without the need of partitioning these 
non-genetic effects [25]. Deep learning is a sub-branch 
of machine learning which consists of a heterogeneous 
collection of machine learning algorithms that excelled 
at many prediction tasks and is currently an active area 
of research in most of the science fields [26]. These mod-
els use a combination of neurons and layers, where data 
is transformed multiple times to find the best fit. Imple-
mentation of deep learning models is straightforward 
with free access to the ‘Keras’ and ‘Scikit’ libraries; how-
ever, optimum model performance depends upon the 
hyperparameter used, which is not a trivial task, and 
requires huge computational resources and iterations 
[27]. Sandhu et al. [28] and Sirsat et al. [29] have shown 
that machine and deep learning-based models result in 
higher prediction accuracies for complex traits in wheat 
using different feature selection parameters and cross-
validation approaches.

To date, genomic prediction studies in chile peppers, 
particularly on yield related and plant phenology and 
morphology-traits remain limited, and hence there is a 
need to explore different prediction approaches to char-
acterize these quantitative traits in chile pepper. The 
objectives of the current study were to: (1) determine the 
accuracy of genomic prediction for yield and agronomic 
traits including plant morphology and phenology-related 
traits in Capsicum spp. using various ridge regression 
and deep learning models; (2) identify the effects of using 
marker subsets on the accuracy of genomic prediction; 
and (3) calculate the selection response of various selec-
tion strategies for yield and related traits. Six different 
models were used for genomewide selection: Bayesian 
ridge regression (BRR), genomic best linear unbiased 
prediction (GBLUP), ridge regression best linear unbi-
ased prediction (RRBLUP); and deep learning models, 
viz., convolutional neural network (CNN), multilayer 
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perceptron (MLP), and random forest (RF) for a tested 
genotypes in tested environment genomic prediction 
approach.

Results
Accuracy of genomic prediction and genomic heritability
Mean genomic prediction accuracy varied across traits 
and models ranging between 0.02 (green yield per plant; 
RRBLUP) and 0.77 (first pod date; BRR) using whole 
marker data (14,922 SNP markers; Additional file 1, 
Tables S1 and S2). Average accuracies across the six 
models were highest for the phenology-related traits, 
first pod date and flowering time (r = 0.76), followed by 
plant height (0.71) and ten pod weight (0.69) using whole 
marker dataset for genomic prediction (Additional file 2, 
Tables S1-S8). In contrast, the traits with the least aver-
age prediction accuracies were the yield and yield com-
ponents, viz., mature green yield (0.04), total yield per 
plant (0.29), and mature red yield (0.31). All deep learn-
ing models (CNN, MLP, and RF) had higher prediction 
accuracy values compared to RRBLUP for mature green 
yield and plant height. The CNN and MLP showed a 6% 
(0.33 vs. 0.31) and 19% (0.37 vs. 0.31) merit, respectively, 

for mature red yield, relative to the RRBLUP model. In 
contrast, the RRBLUP model was more advantageous 
(mean of 0.74) for yield components such as ten pod 
weight showing 8% (RF; 0.68), 10% (MLP; 0.67), and 13% 
(CNN; 0.65) increase in accuracy compared to the deep 
learning models. The deep learning models and RRB-
LUP have similar accuracies for plant width (0.60). There 
was no model that was superior across all traits using 
the whole SNP marker dataset for predictions. However, 
it was observed that BRR had the highest mean accu-
racy for first pod date (0.77), mature green yield (0.06), 
and total yield per plant (0.33). The MLP model was the 
most superior for flowering time (0.76) and plant height 
(0.73). CNN had the highest average accuracy for mature 
red yield (0.37), whereas RRBLUP had the highest mean 
accuracy for ten pod weight (0.74). GBLUP was the most 
superior for predicting plant width (0.62).

Using an LD-based approach, marker pairs with LD 
coefficient, r2 > 0.25, were excluded for analyses result-
ing in 7,690 SNP markers (Additional File 3, Table S1) 
used in performing genomewide predictions (Table  1). 
Using a subset of markers resulted in a significant dif-
ference relative to using whole marker data for the MLP 

Table 1 Mean prediction accuracies across the different Bayesian ridge regression and BLUP and deep learning models for yield and 
agronomic traits in chile pepper using whole marker and a subset (s) of SNP loci for genomic selection
Bayesian and BLUP models
Trait1 BRR BRR_s GBLUP GBLUP_s RRBLUP RRBLUP_s Mean 

(across 
traits)

Mean Mean (s)

FPD 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

FT 0.75 0.76 0.76 0.76 0.75 0.76 0.76 0.75 0.76

GRN 0.06 0.102 0.05 0.03 0.02 0.02 0.05 0.04 0.05

PHT 0.70 0.72 0.69 0.70 0.69 0.71 0.70 0.69 0.71

PWDTH 0.61 0.61 0.62 0.61 0.60 0.62 0.61 0.61 0.61

RED 0.31 0.33 0.29 0.30 0.31 0.29 0.31 0.30 0.31

TPW 0.68 0.69 0.71 0.71 0.74 0.72 0.71 0.71 0.71

TYP 0.33 0.32 0.31 0.32 0.29 0.31 0.31 0.31 0.32

Deep learning models
CNN CNN_s MLP MLP_s RF RF_s Mean 

(across 
traits)

Mean Mean (s)

FPD 0.75 0.75 0.74 0.773 0.76 0.76 0.75 0.75 0.76

FT 0.75 0.76 0.76 0.76 0.75 0.75 0.76 0.75 0.76

GRN 0.02 0.03 0.05 0.05 0.04 0.07 0.04 0.04 0.05

PHT 0.72 0.72 0.73 0.73 0.72 0.72 0.72 0.72 0.72

PWDTH 0.61 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

RED 0.37 0.35 0.33 0.34 0.30 0.30 0.33 0.33 0.33

TPW 0.65 0.67 0.67 0.70 0.68 0.725 0.67 0.67 0.70

TYP 0.30 0.30 0.25 0.324 0.29 0.32 0.30 0.28 0.31
1FPD- First pod date (0.73); FT- Flowering time (0.73); GRN- Mature green yield (0.58); PHT- Plant height (0.61); PWDTH- Plant width (0.41); RED- Mature red yield (0.20); 
TPW- Ten pod weight (0.88); TYP- Total yield per plant (0.20). Values in parentheses are broad-sense heritability (H2) for the traits as reported by Lozada et al. [30].
2 Mean prediction accuracy significantly different with the accuracy for whole genome marker data at P < 0.05 (P = 0.045; Student t-test).
3 Mean prediction accuracy significantly different with the accuracy for whole genome marker data at P < 0. 05 (P = 0.0115; Student t-test).
4 Mean prediction accuracy significantly different with the accuracy for whole genome marker data at P < 0. 001 (P = 0.0006; Student t-test).
5 Mean prediction accuracy significantly different with the accuracy for whole genome marker data at P < 0. 05 (P = 0.009; Student t-test).
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model for predicting total yield per plant (0.32 vs. 0.25) 
using Student t-test (P = 0.0006) (Additional File 2, Table 
S8). Likewise, a significant difference was observed in 
using subset of markers for first pod date for MLP (0.77 
vs. 0.74; Student t-test, P = 0.0115). Significantly higher 
mean accuracy was also observed for mature green yield 
using subsets of markers for the BRR model (0.10 vs. 
0.06; P = 0.045; Student t-test). Superior accuracies were 
also observed for ten pod weight for the RF model using a 
subset of loci (0.72) compared to using the whole marker 
data (0.68; P = 0.009; Student t-test) for genomewide 
selection. There were no significant differences (P > 0.05) 
across the models in terms of mean accuracy values for 
traits such as flowering time and plant width for using 
both the whole marker dataset and the subset of markers 
in performing genomic predictions. Overall, the average 
prediction accuracy values for the ridge regression and 
BLUP models (BRR, GBLUP, and RRBLUP) and the deep 
learning models (CNN, MLP, and RF) were similar across 
traits, except for mature red yield and plant height, where 
there were 3% (0.70 vs. 0.72) and 10% (0.30 vs. 0.33) gain 
using the latter models, respectively.

Genomic heritability (h2) values ranged between 0.0 
and 0.80, with ten pod weight and plant height hav-
ing the highest h2 values at 0.80 and 0.76, respectively. 
Yield-related traits were the least heritable, with h2 at 0.0 
(mature green yield) and 0.10 (mature red yield and total 
yield per plant). Plant width (0.31), first pod date (0.26), 
and flowering time (0.28) had moderately low values for 
h2.

The BLUP and ridge regression models showed advan-
tages for traits such as total yield per plant, ten pod 
weight, first pod date, and plant width over the deep 
learning models. There was a direct relationship between 
reported broad-sense heritability values, H2, for the traits 
and accuracy of genomic selection where a significant 
(P < 0.05) correlation using the whole marker data (Spear-
man rank correlation coefficient, ρ = 0.72; P = 0.0018) and 
the subset of markers (ρ = 0.71; P = 0.0022) across all traits 
was observed.

Genomic estimated breeding values and response to 
selection
Differences among the genomic estimated breeding val-
ues (GEBVs) were observed across the different models, 
where related traits showed higher values of correlation 
(Additional file 4, Table S1). For the BRR model using 
the whole marker dataset, for example, plant height and 
plant width GEBVs demonstrated highly significant cor-
relation coefficient (r = 0.77; P < 0.0001) (Fig. 1). Similarly, 
first pod date and flowering time showed high correla-
tion value (r = 0.99; P < 0.0001). Mature red and mature 
green yield had significant correlation with total yield per 
plant; however, ten pod weight did not have significant 

correlation with total yield per plant GEBVs. Across all 
genomic prediction models, marker datasets, and traits, 
GEBVs ranged between − 5.85E-08 (mature green) and 
93.07 (plant height) (Table  2). Plant width had mean 
GEBVs of 30.81 (whole marker dataset) and 31.18 (LD-
based marker dataset) across all prediction models, 
whereas flowering time had average values for GEBV 
of 27.59 and 27.68 for the whole marker and LD-based 
marker datasets, respectively. Skewed (non-normal) dis-
tributions for the GEBVs were observed across the traits 
(Shapiro Wilk test, P < 0.05) (Fig. 1).

The response to selection, R, for yield and yield com-
ponents were evaluated by estimating selection differen-
tials for various selection strategies, namely, phenotypic 
selection (PS) (selection using phenotypic (BLUP) val-
ues), genomic selection (GS) (selection using GEBV), 
and PS + GS (selection using both BLUP values and 
GEBV) and multiplying these selection differentials to 
the reported broad-sense heritability, H2, of the trait 
(Table 3). The values for R for green yield per plant were 
similar for PS, GS, and PS + GS. Using GEBVs exclusively 
for selecting the Top 20 selection candidates (i.e., 10% 
selection intensity) resulted in an overall decrease for 
the values for selection differential (S), and consequently, 
response to selection, for the other yield-related traits, 
viz. red yield per plant (-67%), ten pod weight (-3%), and 
total yield per plant (-33%), relative to PS. In contrast, 
selecting for the genotypes with the highest BLUP and 
highest GEBV (PS + GS) resulted in gain for R for red 
yield per plant (17%), ten pod weight (8%), and total yield 
per plant (33%). Using a PS + GS strategy, there were 11 
(55%), 9 (45%), 17 (85%), and 9 (45%) individuals that 
were selected for mature green yield, mature red yield, 
ten pod weight, and total yield per plant, respectively.

Discussion
We present the first report of implementing ridge regres-
sion and machine learning models for the genomic pre-
diction of complex traits in New Mexican chile peppers. 
Some advantages in terms of average accuracies for the 
deep learning models were observed for traits such as 
mature red yield and plant height, albeit was not con-
sistent across the traits. The majority of the phenotypes 
did not show any advantage for the deep learning mod-
els, where the ridge regression and BLUP approaches 
showed higher average values for selection accuracy. The 
major reason of the lack of apparent or clear, strong merit 
or gain for the deep learning models could be the rela-
tively small size of the population (N = 204) used for per-
forming cross-validations and predictions, as the main 
requirement for using deep learning models is the qual-
ity and large size of the training data [31]. In chile pep-
pers, the size of the training population was crucial to 
improve selection accuracy using deep learning models 
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for morphometric fruit descriptors [8]. Consequently, 
to apply deep learning models in a chile pepper breed-
ing program, a sufficiently large population size with 
sufficient genetic diversity is needed to train the predic-
tion models. Phenotypic data collection for traits related 
to yield and yield components, nevertheless, has been a 
major limitation for the implementation of genomics-
assisted breeding in the Capsicum, as majority of the 
cultivars remain hand-harvested, significantly impact-
ing the throughput for phenotyping yield-related traits 
[2]. This phenotyping bottleneck can be circumvented by 

integrating robotics systems which can facilitate “human-
like” harvesting in chile peppers, using high-throughput 
platforms to collect phenotypic data for yield-related 
traits, and ultimately developing machine harvest-
able cultivars [2, 32, 33]. While the implementation of 
mechanical-driven harvest in red chile peppers had been 
particularly more successful [34, 35], its application in 
New Mexican pod type green chile peppers is still at its 
inception. Recently, the ‘NuMex Odyssey’ pepper was 
developed, which demonstrates the potential of mechani-
cal harvesting in green chile peppers [32]. For breeding 

Table 2 Summary statistics for the genomic estimated breeding values (GEBVs) across different prediction models for quantitative 
traits in chile pepper
Trait Whole marker dataset LD-based marker dataset

Genomic heri-
tability (h2)

Mean Std. 
dev

SE 
mean

Min Max Mean Std. 
dev

SE 
mean

Min Max

First pod date 0.26 29.69 29.04 0.83 -4.57 72.29 29.76 28.98 0.83 -5.07 70.54

Flowering time 0.28 27.59 27.22 0.78 -5.29 68.81 27.68 27.12 0.78 -5.29 66.93

Mature green yield 0.00 0.17 0.17 0.01 -5.85E-08 0.35 0.17 0.17 0.005 -0.0001 0.35

Mature red yield 0.10 0.26 0.25 0.01 -0.03 0.6 0.26 0.25 0.01 -0.04 0.6

Plant height 0.76 29.68 30.49 0.87 -29.01 95.66 29.35 30.69 0.88 -29.55 93.07

Plant width 0.31 30.81 30.31 0.87 -16.78 73.96 31.18 29.93 0.86 -16.26 72.66

Ten pod weight 0.80 0.19 0.24 0.01 -0.31 1.58 0.19 0.24 0.01 -0.29 1.56

Total yield per plant 0.10 0.43 0.4 0.01 -0.07 0.98 0.42 0.40 0.01 -0.08 0.96

Fig. 1 Correlation between genomic estimated breeding values for yield and agronomic traits in chile pepper using a Bayesian ridge regression genome-
wide prediction model. FPD- First pod date; FT- Flowering time; GRN- Mature green yield; PHT- Plant height; PWDTH- Plant width; RED- Mature red yield; 
TPW- Ten pod weight; TYP- Total yield per plant
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populations with small N, ridge regression and BLUP 
models could be sufficient to provide desired prediction 
accuracy for complex traits in chile peppers, as shown 
in the current study. In other Solanaceous crops such as 
tomatoes (Solanum lycopersicum), using a small train-
ing population size of 96 was sufficient to achieve opti-
mal accuracies for soluble solid content and fruit weight, 
where a GBLUP model showed significantly higher pre-
diction accuracy compared to RF [12], possibly a conse-
quence of using a small size of the training population.

The mean accuracy for using a marker subset from LD-
based selection was observed to be higher for some traits, 
indicating that using a subset of loci can potentially 
improve the accuracy of prediction for complex traits in 
chile peppers. Notably, using subset of markers for deep 
learning models such as the MLP and RF resulted in 
increased accuracies for traits such as first pod date, ten 
pod weight, and total yield per plant, even under a rela-
tively small size of the training population. Likewise, an 
increase in prediction accuracy was observed when using 
a subset of markers derived from LD-tagging for fruit 
length, fruit shape, fruit width, and pericarp thickness 
in peppers [19]. The exclusion of the effects of redun-
dant SNPs could have resulted in increased accuracy for 
genomic prediction [8] for a number of traits in the cur-
rent study. Varying levels of LD were previously observed 
across different populations of chile peppers indicat-
ing the influence of different factors such as population 
structure, recombination hotspots, and selective sweeps 
on the patterns of LD [36–39]. The extent of LD for this 
population has been reported at ~ 2.82 Mb [30], which 
can potentially explain why a lower number of markers 
was sufficient to capture the large LD blocks present, 
resulting in an overall improvement in prediction accu-
racy across several traits. For populations with larger 
extent of LD, lesser number of markers can be used for 
performing predictions, whereas for panels with rapid 
LD decay, more loci should be included in the predic-
tion models [40]. Decreasing the number of markers for 
genomic selection can potentially improve computational 
power without compromising the accuracy achieved in 
performing predictions for several traits in chile peppers 
[8].

Heritability values tend to have a direct relationship 
with the accuracy of genomewide prediction, consistent 
with previous studies [13, 14, 41] indicating its major 
impact on implementing genomic prediction in plant 
improvement programs. In the present work, a moder-
ately strong positive relationship was observed between 
heritability and prediction accuracy. Highly heritable 
traits such as first pod date, flowering time, plant height, 
and plant width, generally showed generally higher pre-
diction accuracies, whereas lowly heritable traits such 
as yield and the yield components have lower observed Ta
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prediction values. Similarly, high prediction perfor-
mance was observed for highly heritable traits in pep-
per such as fruit size and shape [8]. Exception, however, 
was observed for the mature green yield (H2 = 0.58 [30]; 
r = 0.04 and 0.05) in the current study, which could be due 
to the prediction models not being able to fully capture 
the marker effects resulting in lower prediction accura-
cies for this trait. The genomic heritability for mature 
green yield was observed to be close to 0, demonstrating 
that minimal or no additive genetic effects were identi-
fied, consequently resulting in lower prediction accura-
cies, particularly for models that capture only this type of 
effects.

While it is ideal to achieve higher or improved pre-
diction accuracies for different traits by exploiting the 
ideal marker number, prediction models, or heritability 
(genetic architecture), it should be noted that the suc-
cess of implementing genomic prediction approaches in 
breeding programs does not rely exclusively in achiev-
ing high selection accuracy, but how breeders can uti-
lize genomic breeding values from genomic prediction, 
among others, in performing more informed breed-
ing and selection decisions for crop improvement [18, 
42]. Some traits such as yield, by nature, are compos-
ite, and hence, are more difficult to predict than others 
[43], resulting in generally lower selection accuracies. 
Selecting parental lines for hybridizations for improve-
ment of cultivars and development of mapping popula-
tions could be made on the basis of the GEBVs, as these 
represent the additive genetic variance i.e., the portion 
of total genetic variation that is inherited from the par-
ents to the offspring [43]. Ultimately, genomic selection 
can be implemented to improve the choice of parents to 
either preserve genetic diversity or optimize crossbreed-
ing among lines [44]. Caution should be exercised when 
using GEBVs solely in selection as some lines having high 
estimated breeding values can have low observed phe-
notypic values, as indicated by low prediction accuracies 
for some traits. Values for the response to selection, R, 
were highest for a PS + GS strategy, where selection can-
didates were selected based on having the highest pheno-
typic and genomic estimated breeding values. An overall 
(positive) gain for an integrated selection approach was 
achieved for three yield-related traits, indicating that 
combining different selection strategies can help improve 
selection response, even for traits with low heritabil-
ity, such as total yield per plant. Our observations were 
consistent with previous results in winter wheat for yield-
related traits  [13], where R was improved by combining 
PS and GS strategies in choosing selection candidates. 
Ultimately, using phenotypic and genomic breeding 
values could render more opportunities to select candi-
dates that have a high probability to perform well across 

locations and years relative to lines selected based on the 
phenotype alone [42].

Altogether, our results indicated that deep learning 
models can be integrated in chile pepper breeding pro-
grams’ genomic prediction pipelines provided that there 
is a sufficiently large training population to perform 
genomewide selection. It would be necessary, however, 
to establish the ideal population size when implement-
ing genomic selection in chile peppers in the future. Both 
previous studies by Hong et al. [19] and Kim et al. [22] 
used a diverse panel of at least 350 genotypes to predict 
fruit-related traits and capsaicinoid content in chile pep-
pers, respectively. Another study for fruit morphology 
traits in chile pepper used a smaller population size (i.e., 
180 lines) for genomic prediction [8]. While it has been 
recently shown that deep learning methods have com-
petitive genomic selection accuracies even with small- to 
medium-sized test populations [45], these approaches 
might still remain as additional models rather than sub-
stitutes for the standard ridge regression models for 
Capsicum breeding and improvement programs, as the 
latter models still showed higher accuracies than the deep 
learning models for some of the evaluated traits in the 
current study. More empirical studies using larger train-
ing populations of chile pepper should be conducted. 
Integrating high-throughput phenotyping data such as 
spectral reflectance indices with deep learning models 
also showed great potential of achieving optimal predic-
tion accuracies [45], and hence its utility in chile pepper 
breeding programs should be explored further. Herita-
bility plays a major role in achieving optimal prediction 
accuracies and using a subset of markers can potentially 
improve accuracy values for complex traits in chile pep-
pers using the deep learning models under a large train-
ing data.

Conclusions
This study was conducted to determine the accuracy of 
various genomic prediction models in New Mexican chile 
peppers. The potential of using ridge regression and deep 
learning strategies to predict complex traits was demon-
strated. Different models behaved differently in terms of 
prediction accuracy. Heritability is a major factor affect-
ing the accuracy of genomic prediction. Using subsets 
of markers can potentially improve accuracy using deep 
learning models even under a relatively small size of the 
training population. The effect of population structure 
and genetic relatedness between the training and vali-
dation populations on genomic selection accuracy for 
yield and related traits in Capsicum should be examined 
in future studies under a large training population, as 
these could potentially affect the stability of the results 
from cross-validations. The use of BLUEs in perform-
ing predictions should also be explored in future studies, 
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as these values could complement BLUPs for genomic 
selection. Overall, genomic prediction can be integrated 
in modern chile pepper breeding programs for the 
genetic improvement of key traits. The results observed 
here for ridge regression and deep learning prediction 
models further demonstrate that the latter approaches 
are “supplement to the genomic selection toolbox rather 
than replacement” [46], and a large training data would 
be essential when implementing these models in chile 
pepper breeding programs.

Materials and methods
Chile pepper germplasm
The chile pepper population comprised of 204 diverse 
genotypes previously used for the genomewide associa-
tion analysis for yield, phenology, and other agronomic 
traits [30]. Briefly, the population consisted of four cul-
tivated (Capsicum annuum L. including C. annuum var. 
glabriusculum (chiltepins), C. baccatum, C. chinense, and 
C. frutescens) and one wild (C. chacoense) species of chile 
pepper (Additional file 1, Table S3). The C. annuum com-
prised of breeding lines and cultivars previously released 
by the New Mexico State University Chile Pepper Breed-
ing Program including ‘NuMex Heritage Big Jim’, ‘NuMex 
Joe E. Parker’, ‘NuMex Sandia Select’, and ‘NuMex 
Vaquero’. The C. baccatum consisted of aji pepper types 
from South America, whereas the C. chinense comprised 
of the habaneros and the ‘Superhots’. C. frutescens com-
prised of ‘Zimbabwe Bird’ and ‘Siling Labuyo’. Seeds were 
sown at the Fabián García Science Center Greenhouse, 
Las Cruces, NM, and were maintained under standard 
greenhouse conditions for cultivating chile pepper [47]. 
Seedlings with 8–10 true leaves were transplanted ~ 90 
days after sowing in raised beds 4.5 m (~ 15ft) in length 
at the Leyendecker Plant Science Research Center, Las 
Cruces, NM (CRU) and at the Los Lunas Agricultural 
Science Center, Los Lunas, NM (LUN), 320 kms (200 
miles) North of CRU. The transplants on each plot were 
~ 0.30  m (1 ft) apart from each other. The plants were 
cultivated under standard management practices includ-
ing furrow irrigation for growing chile pepper in New 
Mexico [48]. The CRU location has a characteristic Belen 
clay loam class, whereas the LUN has a mixture of sandy 
clay loam (Gila) and Belen soil types. Transplanting was 
done in April and May for the CRU and the LUN loca-
tion, respectively. A single hand harvest of pepper fruit 
samples from up to five individual plants per genotype 
was conducted from September through October 2021.

Collection and analysis of phenotypic data and heritability
The population was evaluated for different yield, phenol-
ogy, and plant morphology-related traits in two environ-
ments (CRU and LUN) in New Mexico, USA [30]. Yield 
traits included total yield per plant, mature green yield, 

mature red yield, and ten pod weight; flowering time and 
first pod date comprised the phenology traits, whereas 
plant morphology-related traits consisted of plant height 
and plant width. Total yield per plant was represented as 
the total mature red and green fruit weight (in kgs.) col-
lected from up to five individual plants per genotype, 
divided by the number of plants. Mature green and red 
comprised of the fresh weight (in kgs.) from green and 
red mature fruits, respectively. Ten pod weight was the 
weight of five red and five green fruit samples that were 
chosen randomly. The flowering time and first pod date 
represented the days when the genotypes start to flower 
and develop fruits, respectively, subtracted from the day 
of transplanting. Plant height is the average measure-
ment of up to five individual plants from the ground to 
the top of the canopy. Plant width represented the mean 
measurement of the widest point of the canopy for up to 
five individual plants. Both plant height and width were 
measured in cm. The adjusted phenotypic values (BLUP) 
were calculated using the ACBD-R program for com-
bined analyses across locations (COM), as described pre-
viously [30] (Additional file 4, Table S2). Briefly, the BLUP 
model consisted of the mean effect, unreplicated geno-
type effect, block effect, replicated check effects, effects 
of the interactions between environment and genotypes, 
effect of block nested into the location, and the residual 
effect, which were all regarded as random [30]. Estimat-
ing the genotypic values of selection candidate across 
multiple environments, at the plot level, for subsequent 
parental selection and hybridization, and breeding, was 
of primary interest in the current study and hence the 
BLUP values were used in performing cross-validations.

Broad-sense heritability (H2) values for the traits across 
locations were calculated using the formula: H2 = σ2

G / 
(σ2

G + σ2
GE/n + σ2

e/nr), where σ2
G and σ2

e represent the vari-
ances due to genotype and residual, respectively; σ2

GE 
correspond to the variance due to genotype-by-environ-
ment interaction; and n is the number of environments or 
locations and were previously reported in [30]. Genomic 
heritability (h2) was calculated using the ‘mmer’ func-
tion in the package ‘sommer’ in R [49] using the formula 
h2 = σ2

A/(σ2
A + σ2

e), where σ2
A is the variance due to addi-

tive genetic effects and σ2
e is the variance due to residual, 

derived from using the whole marker dataset.

Genotyping using GBS-SNP markers
Genotyping-by-sequencing (GBS) was implemented 
for genomewide single nucleotide polymorphism (SNP) 
marker discovery of the chile pepper samples as previ-
ously described [36]. Leaf tissue from individual seed-
lings at 4–8 leaf-stage were sampled for DNA extraction. 
Isolation of DNA was performed using a Qiagen DNEasy 
kit from with minor modifications from fresh leaf tissue 
(~ 50 mg) through the University of Minnesota Genomics 
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Center (UMGC) DNA extraction facility (https://genom-
ics.umn.edu/service/dna-extraction). A single-enzyme 
(ApeKI) GBS protocol was performed for ~ 100 ng of 
DNA per sample at UMGC (https://genomics.umn.edu/
services/gbs). A detailed description of the GBS method 
conducted is presented in Lozada et al. [30]. Briefly, 
single-end (1 × 100) sequencing was performed using 
the Illumina NovaSeq 6000 sequencer (Illumina, CA, 
USA) for fragments ~ 300–744  bp in size. Raw FASTQ 
files were demultiplexed using the ‘bcl2fastq’ software. 
Trimmomatic [50] was used to remove the adapter 
sequences at the 3’ end. The FASTQ files were aligned to 
the ‘Zunla-1’ reference genome [51] using the Burrows-
Wheeler Aligner [52]. FreeBayes Bayesian identifier [53] 
was implemented for the join calling of variants across 
all samples. Genetic variants with genotype rates < 95% 
and minor allele frequency < 0.01, and samples with gen-
otype rates < 50% were excluded in the genotype data. 
Variant call format was converted to HapMap using the 
TASSEL [54] software. Numeric format from HapMap 
was derived using the “Converter” function in the iPAT 
program [55]. After filtering and quality control exclud-
ing the unmapped SNP loci, a total of 14,922 SNP mark-
ers previously used for GWAS [30] was used to perform 
genomewide selection of quantitative traits in chile 
peppers.

Genomic prediction models
The phenotypic dataset used to perform genomic predic-
tion consisted of values for BLUPs derived from adjust-
ing the phenotypes based on an augmented design, as 
described in Lozada et al. [30]. Ridge regression best 
linear unbiased prediction (RRBLUP) [56], genomic best 
linear unbiased prediction (GBLUP) [57], Bayesian Ridge 
regression (BRR); and deep learning approaches, namely, 
random forest (RF), multilayer perceptron (MLP), and 
convolutional neural network (CNN) models were 
used to evaluate prediction accuracy for yield and agro-
nomic traits in chile peppers for tested lines in tested 
environments. The RRBLUP and GBLUP models were 
implemented in 10-fold cross-validation (CV) and 100 
iterations, whereas the BRR were implemented in 1,000 
iterations, 200 burn-ins, and 10-fold CV in iPAT using 
the ‘rrBLUP’ [56] and ‘BGLR’ packages [58], respectively. 
While GBLUP, RRBLUP, and BRR could all be regarded 
as parametric regressions, they have several differences. 
The RRBLUP and GBLUP are penalized approaches [56], 
whereas BRR is a Bayesian approach [11, 58]. Further-
more, these prediction models have varying assumptions 
on the effects of markers [10]. With these, a set of similar, 
yet different commonly used BLUP and ridge regression 
genomic selection models were compared based on their 
prediction accuracies for yield and agronomic traits in 
Capsicum.

The GBLUP, RRBLUP, and BRR genomic prediction 
models take the form y = µ + Za + e, where µ is the mean; 
Z is the incidence matrix for the random effects (design 
matrix of individuals (for GBLUP) and the design for the 
markers (BRR and RRBLUP)); a is the marker effect (for 
BRR and RRBLUP, a ~ N(0,σ2

a), where σ2
a is the variance 

of markers) and a is the genetic effect of the individu-
als (GEBVs) for GBLUP with a ~ N(0, Gσ2

a), where G is 
the genomic relationship matrix of the tested materi-
als and σ2

a is the genetic variance; and e is the residual. 
Both RRBLUP and GBLUP assume loci to have a com-
mon variance making the models appropriate for traits 
affected by a large number of genes with minor effects 
[56, 59], and hence are regarded to be equivalent [60]. 
Nevertheless, in GBLUP, the dimension of the model is 
reduced and GEBV can be calculated directly without 
performing many iterations thereby increasing compu-
tational power and efficiency [57]. In BRR, the Gaussian 
prior results in the shrinkage of estimate similar to that of 
a ridge regression (RR), where all effects are reduced to a 
similar extent, where the mean (µβ = 0) and variance (σβ

2) 
is σβ

2 ~ χ−2[58].
Random forest (RF) includes collection of multiple 

trees created using a set of predictors and later average 
from these trees is used for the final prediction and this 
helps to “decorrelate” the results from multiple identical 
trees. The predictive model based on RF can be expressed 
as: ŷi = 1

B

∑B
b=1 Tb (xi), where ŷi is the predicted value 

of the individual with genotype xi ; B is the number of 
bootstrap samples and T represents the total number 
of trees. The RF model is generally computationally less 
intensive relative to other models such as the convolu-
tional neural networks, as each tree is independent of 
each other and can be trained on different nodes. The 
functioning of the RF model can be delineated into four 
primary steps: (1) Bootstrap sampling is employed to 
select an individual plant i (yi , xi)with replacement. This 
sampled individual may appear multiple times or not at 
all within the bootstrap samples (b = 1, …, B); (2) Feature 
selection is conducted by randomly choosing a subset of 
input variables (SNPj, j = 1, …, J), considering the num-
ber of features (max features). The objective is to identify 
the optimal feature set that minimizes the loss function, 
typically measured as Mean Squared Error (MSE); (3) At 
each node, the dataset is split into two new subsets (child 
nodes) based on the genotype of SNPj; and (4) Steps 
2 and 3 are reiterated for each node until a predefined 
minimum node size or the specified maximum depth is 
reached. The final predicted value for an individual with 
genotype xi  is computed as the average of the values pre-
dicted by the decision trees in the forest.

The crucial hyperparameters for training the RF model 
include the number of trees, number of features sampled 
for each iteration, importance attributed to each feature, 

https://genomics.umn.edu/service/dna-extraction
https://genomics.umn.edu/service/dna-extraction
https://genomics.umn.edu/services/gbs
https://genomics.umn.edu/services/gbs
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and the maximum depth of the trees. To optimize these 
hyperparameters, we employed randomized and grid 
search cross-validation techniques. The specific combi-
nations explored during grid search cross-validation, fol-
lowing the randomized search, included the number of 
trees (200, 300, 500, 1000), max features (auto, sqrt), and 
max depth (40, 60, 80, 100). Our analysis was conducted 
using the ‘Random Forest Regressor’ and ‘Scikit-Learn’ 
libraries in Python 3.7 [27, 61].

The Multilayer perceptron (MLP) is a prominent choice 
in genomic prediction studies, serving as a feed-forward 
neural network. Comprising an input layer, multiple hid-
den layers, and an output layer, the MLP architecture 
finds widespread application in deep learning. In the con-
text of genomic selection model training, the first hidden 
layer’s output materializes through an intricate process 
of weighted averaging and nonlinear transformations 
applied to each input feature, accompanied by a bias 
term ‘b’. The representation of this initial layer’s output 
(denoted as Z1) unfolds as follows: Z1 = b0 + W0f 0(x). In 
this equation, Z1 signifies the output for the first layer, b0 
embodies the bias specific to the first layer, which is esti-
mated based on the remaining weights (W0), ‘x’ denotes 
the genetic profiles of individual samples, and ‘f 0’ char-
acterizes a nonlinear activation function. Remarkably, 
this model undergoes sequential training, where the 
output from neurons in the preceding layer serves as the 
input for the successive layer. The overarching model 
expression can be concisely summarized as: Zk = bk−1 + 
Wk−1f k−1(x). Here, ‘Zk’ collectively represents the output 
vector pertinent to GEBVs and the terminology employed 
in this equation has been previously defined.

Hyperparameter optimization leveraged the intrinsic 
capabilities of the ‘Keras’ function and engaged grid-
search cross-validation (CV). This approach meticulously 
selects parameter configurations that minimize the mean 
square error (MSE), following the principles elucidated 
by Pedregosa et al. [61] and Cho and Hegde [62]. Notably, 
this hyperparameter tuning procedure encompassed the 
entire dataset, encompassing all evaluated traits across 
the population. The optimized hyperparameters span a 
diverse set of attributes, including the learning rate (con-
stant, adaptive), activation function (relu, linear, tanh, 
identity, logistic), solver algorithms (lbfgs, sgd, adam), the 
count of hidden layers (1, 4, 6, 8, 10), the number of neu-
rons within a fully connected network (10, 19, 38, 50, 62, 
98, 112, 150), drop-out rates (0, 0.01, 0.1, 0.2), the quan-
tity of filters (16, 32, 64, 128), and regularization tech-
niques (L1 and L2). The grid search CV process allocated 
80% of the training data to hyperparameter optimization, 
with the remaining data reserved for validation, achieved 
through the independent split function of ‘Keras’ [27]. 
Further insights into the hyperparameter optimization 

process and the libraries employed are available in prior 
publications [28, 63, 64].

The Convolutional Neural Network (CNN) serves as 
a specialized neural network model tailored for scenar-
ios where specific patterns exist within the input data. 
The CNN architecture employed here encompassed 
a structured arrangement, comprising an input layer, 
two convolutional layers, two pooling layers, a dense 
layer, a flattened layer, two dropout layers, and an out-
put layer. To delve into the convolutional operation, 
we defined it as an integral transformation, denoted as: 
s (t) = (f ∗ k) (t) =

∑
xk (t− x) f (x). Here, ‘k ’ repre-

sents the kernel, and convolution effectively transforms 
‘f ’ into ‘s (t) ’. This operation occurs iteratively across 
an infinite number of replicas of ‘f ’, each shifting over 
the kernel along the chromosome. Notably, the filters 
employed consider the linkage disequilibrium along the 
chromosome. The incorporation of max-pooling layers 
after each convolutional layer serves to address dimen-
sionality reduction and imparts invariance to the filters 
regarding minor input variations. The pooling layers 
achieved this by aggregating the output from the preced-
ing convolutional layer, utilizing methods such as mini-
mum, mean, and maximum operations.

Activation functions and dropout mechanisms were 
strategically applied, following both convolutional and 
dense layers. The optimization of hyperparameters lever-
ages the inherent capabilities of the ‘Keras’ function, 
with the aid of grid-search cross-validation [27, 61]. Key 
hyperparameters subject to optimization for the CNN 
architecture encompass the activation function, learn-
ing rate, batch size, filter configurations, number of 
epochs, and solver selection. Additionally, techniques 
such as regularization, dropout, and early stopping play 
a pivotal role in mitigating overfitting within the model. 
Specifically, a dropout rate of 0.20 was employed during 
hyperparameter optimization for both MLP and CNN, in 
accordance with the approach outlined by Srivastava et 
al. [65].

To determine the effects of marker number on the 
accuracy of genomic prediction, a subset of markers 
derived from an LD-based approach was used. Pairwise 
LD, r2, was calculated in PLINK [66] for markers within 
a 200-kb window where pairs of SNPs with r2 > 0.25 were 
excluded for analyses. Accuracy of genomic selection 
was represented as the Pearson correlation coefficient 
between the GEBVs and phenotypic BLUP. Mean predic-
tion accuracies for the different models across different 
number of SNP marker sets were compared using Stu-
dent’s t-test in JMP Pro 16.2 [67]. The average genomic 
selection accuracies across different models for each trait 
were reported for the whole genome marker data (rw) 
and the subset of LD-derived markers (rs). The GEBVs 
were calculated by fitting each of the prediction models 
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under the scenarios mentioned above for the rw and rs 
datasets. Genomic relationship (kinship) matrix for the 
genotypes was calculated using the method of VanRaden 
[68] in GAPIT v.3. [69] (Additional File 5, Figure S1). The 
relationship between reported broad-sense heritability 
values and accuracy of genomic prediction was assessed 
using Spearman rank correlation coefficient (ρ).

Response to selection
To evaluate the potential gains achieved for yield and 
agronomic traits through different selection approaches, 
the Response to selection, R was estimated. Values for 
R were calculated for different breeding strategies: phe-
notypic selection (PS), genomic selection (GS), and an 
integrated PS and GS (PS + GS) approach using a 10% 
selection intensity (i.e., selecting the top 20 genotypes) 
based on phenotypic (BLUP) values, genomic esti-
mated breeding values (GEBVs), and both BLUP and 
GEBVs, respectively. The R was represented as the prod-
uct between broad-sense heritability values reported by 
Lozada et al. [30], and selection differential which is the 
difference between the mean of phenotypic values with 
selection applied and the mean of the population without 
selection (R = H2S(µ with selection − µ without selection)) [13, 14]. 
Response was compared based on the percent change 
relative to selection using the BLUP values (PS) [13, 14].
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