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pattern. All Erythrophleum species grow as medium-
sized or large trees, up to tens of metres [2–4]. Eryth-
rophleum species have high-quality wood that is hard, 
dense, heavy and tough and contains a variety of sec-
ondary metabolites (e.g. alkaloids, terpenoids and flavo-
noids) in different parts (leaf, bark, stem or seed), which 
are valuable for the treatment of many illnesses [1, 4–7]. 
Therefore, Erythrophleum species are threatened due to 
their hardwood and/or biomedical properties in different 
distribution areas [2–4, 6, 7]. In addition to timber and 
medicinal uses, Erythrophleum species can be used as 
ornamental and agroforestry trees [8, 9].

Erythrophleum fordii Oliv. is the only species of this 
genus distributed in China [10]. Except for China, E. 
fordii is also found in Vietnam. In both countries, it is 
best known for its superior wood, which has a highly 
condensed lignin structure, leading to its hardness, 
heaviness and durableness [11]. Erythrophleum fordii is 
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Abstract
Objectives Erythrophleum is a genus in the Fabaceae family. The genus contains only about 10 species, and it is best 
known for its hardwood and medical properties worldwide. Erythrophleum fordii Oliv. is the only species of this genus 
distributed in China. It has superior wood and can be used in folk medicine, which leads to its overexploitation in the 
wild. For its effective conservation and elucidation of the distinctive genetic traits of wood formation and medical 
components, we present its first genome assembly.

Data description This work generated ~ 160.8 Gb raw Nanopore whole genome sequencing (WGS) long reads, 
~ 126.0 Gb raw MGI WGS short reads and ~ 29.0 Gb raw RNA-seq reads using E. fordii leaf tissues. The de novo assembly 
contained 864,825,911 bp in the E. fordii genome, with 59 contigs and a contig N50 of 30,830,834 bp. Benchmarking 
Universal Single-Copy Orthologs (BUSCO) revealed 98.7% completeness of the assembly. The assembly contained 
471,006,885 bp (54.4%) repetitive sequences and 28,761 genes that coded for 33,803 proteins. The protein sequences 
were functionally annotated against multiple databases, facilitating comparative genomic analysis.
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also a medicinal plant containing various bioactive com-
ponents [1, 12–14] and a high alkaloid content [1]. Some 
triterpenoids in E. fordii are species specific [1]. Due to 
its high economic value, it has been overexploited in his-
tory in both China and Vietnam, making it endangered 
in the wild [3, 10, 11]. For endangered species, contigu-
ous, accurate and annotated genome assemblies greatly 
enhance their conservation [15]. Therefore, we pres-
ent here the first fully annotated E. fordii genome for its 
effective conservation in the future. The genome will also 
help elucidate distinctive genetic traits related to wood 
formation and secondary metabolites in E. fordii, aiding 
in the molecular breeding of trees.

Data description
Leaf samples from one E. fordii individual planted in 
the South China Botanical Garden were collected. After 
total RNA and genomic DNA were extracted from the 
samples, three sequencing libraries were conducted 
for the whole genomic and transcriptomic sequenc-
ing. The Nanopore PromethION sequencer was used 
for long-read whole genomic sequencing (WGS), and 
the MGI DNBSEQ-T7 sequencer for short-read WGS 
and RNA-seq under 150  bp paired-end mode. After 
sequencing, different programmes were performed for 
analysis and default parameters were used unless other-
wise mentioned.

Sickle v1.33 [16] was used to trim the WGS short reads 
with the parameter “-q 30 -l 80”. The trimmed reads were 
used to estimate the E. fordii genome size with KmerG-
enie v1.7044 [17] using the parameter of “-k 141 --dip-
loid”. Porchop v0.2.4 [18] was used to trim the adapters 
for WGS long reads with the parameter “--check_reads 
500000”. The reads were then filtered by ontbc v1.1 
[19] with the parameters of “-min_score 7 -min_length 
10000.” The filtered long reads were used to assemble the 
assembly using NextDenovo v2.3.1 [20]. Pseudohaploid 
[21] and Purge_Dups v1.2.6 [22] were used to remove 
duplicated sequences in the assembly. The assembly was 
further polished by racon v1.5.0 [23], hapo-G v1.3.2 [24] 
and polypolish v0.5.0 [25]. In the steps using racon and 
hapo-G, they were each run for two rounds. The com-
pleteness of the assembly was assessed by BUSCO v5.4.6 
[26] using the Eudicots odb10-2020-09-10 database.

The assembly was parsed through RED v2.0 [27] and 
EDTA v2.1.0 [28] to identify repeat sequences, and the 
repeat regions were subsequently soft-masked. The genes 
were first predicted by braker v.2.0 [29] using both tran-
scriptome data and reference protein sequences (Data 
file 1) [30]. The braker results were then integrated 
into Funannotate pipeline v1.8.16 [31] to obtain the 
non-redundant gene set. The performance of Funan-
notate gene prediction included three steps: “train”, 
“predict” and “update”. In each step, the parameter of 

“--max_intronlen 1000000” was used. In the “predict” 
step, additional parameters of “--busco_seed_species 
arabidopsis --organism other --busco_db embryophyta” 
were used. The predicted genes were functionally anno-
tated against multiple databases using the “funannotate 
annotate” command in the Funannotate pipeline.

Three sequencing libraries produced ~ 126.0 Gb 
raw data for WGS short read sequencing (Data file 2) 
[32], ~ 160.8 Gb for WGS long read sequencing (Data 
file 3–7) [33–37] and ~ 29.0 Gb for RNA-seq (Data 
file 8) [38]. The estimated genome size by KmerGenie 
was 853,550,132  bp. The genome assembly measured 
864,825,911  bp with 59 contigs (N50 = 30,830,834  bp) 
(Data file 9) [39] and a BUSCO completeness of 98.7% 
(Data file 10) [40]. Repeat prediction by RED and EDTA 
identified 376,075,788 bp (43.5%) (Data file 11) [41] and 
417,133,422 repetitive sequences (48.2%) (Data file 12) 
[42], respectively. Their combination was 471,006,885 bp, 
accounting for 54.4% of the genome (data file 13) [43]. A 
total of 28,761 genes that coded for 33,803 proteins were 
predicted (Data files 14–16) [44–46] and their annotation 
was shown in Data files 17 and 18 [47, 48].

Limitations
The continuousness of the assembled genome could be 
further improved using ultra-long Nanopore sequencing 
and Hi-C data.
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