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Abstract 

Complex disorders are caused by a combination of genetic, environmental and lifestyle factors, and their preva-
lence can vary greatly across different populations. The extent to which genetic risk, as identified by Genome Wide 
Association Study (GWAS), correlates to disease prevalence in different populations has not been investigated sys-
tematically. Here, we studied 14 different complex disorders and explored whether polygenic risk scores (PRS) based 
on current GWAS correlate to disease prevalence within Europe and around the world. A clear variation in GWAS-
based genetic risk was observed based on ancestry and we identified populations that have a higher genetic liability 
for developing certain disorders. We found that for four out of the 14 studied disorders, PRS significantly correlates 
to disease prevalence within Europe. We also found significant correlations between worldwide disease prevalence 
and PRS for eight of the studied disorders with Multiple Sclerosis genetic risk having the highest correlation to dis-
ease prevalence. Based on current GWAS results, the across population differences in genetic risk for certain disorders 
can potentially be used to understand differences in disease prevalence and identify populations with the highest 
genetic liability. The study highlights both the limitations of PRS based on current GWAS but also the fact that in some 
cases, PRS may already have high predictive power. This could be due to the genetic architecture of specific disorders 
or increased GWAS power in some cases.
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Introduction
Complex disorders are caused by the interaction of 
genetic, environmental and lifestyle factors. Most disor-
ders that are frequent in human populations are complex 
[1] and their prevalence varies greatly around the world 
[2]. Understanding the basis of this prevalence differ-
ence can help disentangle the interaction among different 
factors causing complex disorders and identify groups 

of individuals who may be at a greater risk of develop-
ing certain disorders. This could become the basis of 
the implementation of early intervention strategies for 
populations at higher risk, with significant benefits for 
public health. To date, no systematic analyses have been 
performed to explore the possible correlation between 
genetic risk for complex disorders and their prevalence 
across populations.

The genetic component underlying complex disorders 
is not easy to quantify. It is highly polygenic in nature, 
possibly involving hundreds of genetic variants, each 
with a very small effect on disease liability and occur-
rence [3]. To measure the genetic risk of developing a 
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specific disorder, it is possible to combine the effects of 
genomewide individual variants deriving a polygenic risk 
score (PRS) to quantify the genetic liability of a disorder 
and compare the risk of developing complex disorders 
across various populations [4]. The PRS of an individual 
for a specific disorder is estimated by the sum of multiple 
risk alleles, each weighted by the effect size of a specific 
allele [5], which is typically obtained from Genome-Wide 
Association Studies (GWAS). With the availability of 
large-scale datasets, thousands of GWAS have been per-
formed for various traits and conditions, thus providing a 
large database of effect sizes that can be used to estimate 
PRS for a variety of complex disorders [6].

PRS have become an increasingly powerful tool to help 
identify individuals at higher risk of developing complex 
disorders and could also help explain the proportion of 
genetic variance that seems to be missing when focusing 
only on genome-wide significant hits [7, 8], as is common 
in GWAS. However, to date, PRS-based research has 
been hampered by the lack of GWAS summary statistics 
from diverse populations. It was recently highlighted that 
about 70% of GWAS studies since 2008 have used sam-
ples solely from European populations [9]. Previous stud-
ies have shown that the predictive power of PRS based on 
European GWAS is comparatively lower when applied to 
non-European populations and this decline increases as 
the target population diverges from the genetic structure 
observed in European populations [10]. The loss in pre-
diction accuracy could be due to linkage disequilibrium 
(LD) structure and allele frequency differences between 
populations, which in turn could lead to differences in 
the effect size estimates from the GWAS based on one 
population compared to another [10–12].

Systematic studies attempting to evaluate the degree 
to which PRS can predict disease prevalence in different 
populations have not been performed to date in Europe-
ans or non-Europeans. If such correlation of PRS to the 
epidemiology exists, it would significantly boost confi-
dence in the validity of GWAS results and the potential 
for their use as a tool in the design of public health stud-
ies. Furthermore, in the case of non-Europeans, given 
the lack of large-scale GWAS data, the above-mentioned 
observations, and known differences in LD structure 
around the world one would expect poor transferability 
of findings. It is thus important to explore the relevance 
(if any) of European GWAS findings to non-Europeans.

Here, we embark on a systematic exploration of the 
genetic architecture of 14 complex disorders, by using 
large scale GWAS studies to estimate average genetic 
risk within Europe as well as around the world. We find 
that PRS significantly correlates to disease prevalence 
difference for four disorders within Europe. Extending 
our study to global populations, we find that PRS also 

correlates significantly with worldwide prevalence for 
eight disorders. We show that this correlation might be 
explained by the genetic architecture of the specific dis-
orders and the potential conservation of genetic regions 
that have been implicated in disease susceptibility via 
GWAS. Our study highlights the validity of GWAS 
results and the important contribution of genetic back-
ground in shaping disease prevalence around the world.

Results
Complex disorders – prevalence and heritability
14 complex disorders grouped into five general categories 
(cardiovascular, neurological, autoimmune, metabolic, 
and psychiatric) were chosen for this analysis. The choice 
of disorders was based on both availability of large-scale 
GWAS data and disease prevalence, focusing on some of 
the most frequent diseases around the world with a large 
impact on public health. The genetic architecture for 
most of these disorders has been studied with large-scale 
GWAS analysis and for six of the 14 disorders, (Type 2 
diabetes (T2D), chronic kidney disease (CKD), major 
depression (MDD), schizophrenia (SCZ), rheumatoid 
arthritis (RA) and asthma (AST)), we were able to obtain 
trans-ethnic GWAS results. For the rest of the disorders, 
GWAS studies based on individuals of European ancestry 
were used [13–26]. Table  1 shows the brief overview of 
the disorders being studied, including the global preva-
lence (obtained from the global burden of diseases data-
set [2]) and the SNP heritability estimate of the diseases 
estimated from the GWAS summary statistics.

Among the 14 diseases studied, Metabolic disor-
ders such as obesity, CKD and T2D have the highest 
global prevalence with values of 12.23%, 9.37% and 
5.89% respectively. While comparing the prevalence 
estimates across the 5 super populations, Europeans 
had the highest prevalence of disorders like Parkinson 
disease (PD), AST, type 1 Diabetes (T1D) and crohn’s 
disease (CRD), while the prevalence of metabolic dis-
orders was highest in admixed American populations 
(Fig.  1). We then use prevalence estimates for each 
(Additional file  1) to understand its correlation with 
genetic risk of the disorders across European and 
world populations.

PRS of complex disorders in European populations
We began by exploring PRS across a dataset of nine dif-
ferent European populations (2,109 individuals) obtained 
from previously published studies [27–30]. We com-
puted the unweighted PRS (Supplementary Table 1) using 
plink2 score function [31] for the 14 different complex 
disorders (Table  1). The number of SNPs used for the 
PRS analysis are shown in Supplementary Table  2. The 
average scores for the 14 disorders across nine European 
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Table 1  List of studied disorders and sample size of the respective GWAS studies

Category Disorder GWAS Pop. (Eur/
Trans)

World Prevalence SNP Heritability   Study 
References

Cardiovascular Coronary Artery Disease (CAD) Eur 2.65 0.099 [14]

Neurological Alzheimer’s Disease (AD) Eur 0.69 0.0145 [13]

Parkinson’s Disease (PD) Eur 0.11 0.0113 [15]

Metabolic Type 2 Diabetes (T2D) Trans 5.89 0.0286 [16]

Obesity (OBY) Eur 12.23 0.1547 [17]

Chronic Kidney Disease (CKD) Trans 9.37 0.0246 [18]

Autoimmune Asthma (AST) Trans 3.53 0.075 [19]

Type 1 Diabetes (T1D) Eur 0.30 NA [23]

Rheumatoid Arthritis (RA) Trans 0.25 0.143 [22]

Crohn’s Disease (CRD) Eur 0.07 0.86 [20]

Multiple Sclerosis (MS) Eur 0.02 0.0492 [21]

Psychiatric Bipolar Disorder (BPD) Eur 0.53 0.3 [24]

Schizophrenia (SCZ) Trans 0.32 0.157 [25]

Major Depressive Disorder (MDD) Trans 2.49 0.0214 [26]

Fig. 1  Bar plot showing the mean prevalence of 14 disorders across five ancestral groups. The x-axis indicates the ancestral group starting 
with Africans (AFR) and followed by Europeans (EUR), South Asians (SAS), East Asians (EAS), and admixed Americans (AMR). The y-axis is the mean 
prevalence (%) of each group calculated based on the different nationalities in each group
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populations are shown in Additional file 2. Principal com-
ponent analysis (PCA) showed that the analyzed samples 
clustered based on geography (Fig.  2A). We calculated 
the correlation between the average PRS scores of each 
disorder and the average estimates of the top 2 principal 
components (PCs) of each of the 9 European popula-
tions. Although there was high correlation, the estimates 
were not significant for all disorders indicating that PRS 

does not always correlate with ancestry (Supplementary 
Table 3).

Figure  3 shows the overall results at the threshold of 
genome wide significance (p-value < 5 × 10–8). Individu-
als from southern European countries (Greece and Italy) 
had a lower genetic risk of developing autoimmune dis-
orders such as Asthma (AST) and Type 1 Diabetes (T1D) 
and higher genetic risk of developing Alzheimer’s Disease 

Fig. 2  PCA plot of European and worldwide populations. The left panel (A) shows distribution of 2,109 European samples based on the top two 
principal components (PCs), colored and shaped based on their country of origin. The right panel (B) shows the distribution of 3,953 global samples 
based on the top two PCs, colored and shaped based on their region/ethnicity

Fig. 3  Heatmap of average PRS Scores (p-value < 5 × 10–8) of 14 disorders across European populations. The disorders are grouped based 
on the disease domain and the populations are arranged based on their geographical location, going from southern to northern countries. 
Shades of cells indicate the standardized average genetic risk of each disorder for each population. A higher risk is shown by red, and a lower risk 
is indicated by blue [SEU – South Europeans, CEU – Central Europeans, NEU – North Europeans]
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(AD), bipolar disorder and Major Depression (MDD), 
compared to central and northern European populations. 
The highest PRS for coronary artery disease (CAD) was 
observed in populations from central European countries 
like Hungary and Poland. These populations also showed 
a two-fold higher genetic risk for Parkinson disease (PD) 
and Rheumatoid Arthritis (RA), compared to other Euro-
peans in this analysis. By contrast, we found that indi-
viduals from northern European countries like Denmark 
and the United Kingdom (UK) have lower genetic risk for 
neurological disorders and higher risk for disorders such 
as Obesity (OBESITY) and Schizophrenia (SCZ). The 
overall genetic risk of psychiatric disorders is lower in 
Central European populations.

To understand if genetic risk associated with disease 
prevalence, we calculated the correlation between the 
PRS and disease prevalence measures and, to test for sta-
tistical significance, we calculated an empirical p-value 
for association of significance based on random SNP sets 
as explained in methods; see Table 2A for our results. We 
observed significant correlation between prevalence and 
PRS for four disorders: CAD (R2 = 0.77, p = 0.004), T1D 
(R2 = 0.38, p = 0.03), obesity (R2 = 0.51, p = 0.016), and 
MDD (R2 = 0.50, p = 0.017).

Extending current GWAS studies to global populations
Having found that PRS correlates to disease preva-
lence differences within Europe for CAD,T1D, MDD 
and obesity, we proceeded to investigate the extent of 
such correlations outside Europe. If such correlations 
are identified in some cases, our hypothesis is that this 
could signify that for some disorders, genomic regions 
that are less diverse around the world have been impli-
cated. We expanded our analysis to global populations 
(European samples combined with 1000 genomes phase 
3 data [32]). The overall data set included a total of 3,953 
individuals from 24 different populations in five regions 
of the world (Supplementary Table 1). The PCA plot of 
the global data again showed that the populations are 
very tightly clustered based on their regions of origin, 
except for the AMR samples which are distributed along 
a cline (Fig. 2B).

We calculated GWAS PRS scores for the global popu-
lation samples (Additional file  3) using available data 
from trans-ethnic GWAS whenever available (for six 
disorders ie) and European ancestry GWAS for the rest 
(Table 1). In Fig. 4, we compared the average PRS cal-
culated at a threshold of p-value < 5 × 10–8 for 24 popu-
lations from five regions of the world. Genetic risk for 
the different disorders was observed to follow a pattern 
that is reminiscent of geography. Indeed, populations 

originating from the same region tend to have a rather 
uniform genetic risk score, as compared to risk scores 
between populations from different regions. This 
was also validated with strong correlations observed 
between the average genetic risk score of each country 
and the mean PC1 and PC2 estimates of each popula-
tion (Supplementary Table 4).

We observed that the mean PRS for AD, MDD and 
Chronic Kidney Disease (CKD) was highest in African 
populations. These populations also had a lower risk for 
most autoimmune disorders and other metabolic disor-
ders such as obesity and Type 2 Diabetes (T2D). Asian 
populations including East Asians and South Asians 
had a higher genetic risk for T2D and a lower risk for 
obesity compared to other populations. Additionally, 
East Asians had the highest PRS scores for Crohn’s 
Disease (CRD) and Rheumatoid Arthritis (RA). Euro-
pean populations had the highest genetic risk scores for 
CAD and obesity and were at a moderate genetic risk 
for most autoimmune and psychiatric disorders com-
pared to other world populations. The AMR popula-
tions had a high genetic risk estimates for disorders like 
bipolar disorder (BPD) and T1D.

Table 2  Pearson’s correlations coefficients between average 
genetic risk for complex disorders (calculated via PRS) and 
the actual prevalence of the respective disorders in (A) nine 
European populations and (B) 24 world populations. The values 
represent the correlation coefficient and p-value based on 
1000 permutations (shown in parentheses). The (*) indicates an 
empirical p-value < 0.05, based on 100 random sets

Disorder (A) Correlation between 
PRS and prevalence 
(Europeans only)

(B) Correlation 
between PRS and 
prevalence (World 
Populations)

R2 p-value R2 p-value

CAD 0.78 0.014* 0.07 0.756

AD 0.21 0.591 -0.03 0.896

PD 0.32 0.52 0.56 0.004*
T2D 0.17 0.668 0.63 0.001*
OBY 0.51 0.016* 0.68 0.001*
CKD -0.04 0.910 -0.31 0.136

CRD -0.04 0.922 0.58 0.003*
AST 0.38 0.313 0.51 0.011*
T1D 0.54 0.013* -0.04 0.867

MS -0.22 0.564 0.69 0.001*
RA -0.20 0.601 0.21 0.315

BPD -0.30 0.441 -0.38 0.067

SCZ -0.32 0.406 0.64 0.001*
MDD 0.50 0.017* 0.65 0.001*
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Correlation between PRS and prevalence of complex 
disorders around the world
The mean prevalence of the disorders across the five 
ancestral populations that we studied is shown in Fig. 1, 
while the prevalence of each disorder in each country 
is shown in Additional file  1 and the results of the cor-
relation analysis are shown in Table  2B. Out of the 14 
disorders, we found significant correlation between the 
disease prevalence for eight disorders with the respective 
PRS at a p-value threshold of 5 × 10–8. The strongest cor-
relation was observed for MS (R2 = 0.69, p = 0.001). Other 
significant correlations were observed for autoimmune 
disorders including CRD (R2 = 0.58, p = 0.003), AST 
(R2 = 0.51, p = 0.013). We also observed significant corre-
lation between the Average PRS and prevalence for meta-
bolic disorders like obesity (R2 = 0.698 p = 0.001) and T2D 
(R2 = 0.63, p = 0.001) as well as psychiatric disorders like 
SCZ (R2 = 0.64, p = 0.001) and MDD (R2 = 0.65, p = 0.001).

Genetic architecture of disease associated regions used 
for PRS analysis
The significant association between worldwide disease 
prevalence and PRS could be tied to the specific genetic 
architecture of these disorders as well as a strong genetic 
involvement in defining disease prevalence around 
the world. We hypothesize that this could be partially 
explained from biologically relevant signals identified by 
GWAS that are more conserved (reduced difference in 
frequency and LD structure) across world-wide popula-
tions compared to random SNPs. To test this hypothesis, 

we explored the worldwide structure and allele frequency 
differences of genomic regions that were used in our PRS 
analysis for all the disorders. First, we calculated r2 [33] 
for all pairs of variants within 100 kb of the PRS SNPs and 
we performed pairwise comparisons between Europeans 
and individuals from other geographic regions. Second, 
we calculated the mean FST of the PRS SNPs, again per-
forming pairwise comparisons between European popu-
lations and other populations [34]. The empirical p-value 
was calculated using a statistical test based on random 
SNP sets (see Methods section for details).

LD – r2 analysis
Results of our LD—r2 analysis showed that for multiple 
studied disorders, the genetic regions used in PRS cal-
culations show similar LD structure around the world 
compared to randomly selected regions (empirical 
p-value < 0.05), (see Fig.  5 and Supplementary Table  5). 
For instance, the regions around the genome-wide signif-
icant SNPs used in the computation of obesity, AST, MS, 
and RA PRS, revealed similar LD patterns across all pop-
ulations, indicating that the associated loci have similar 
genetic structure across world-wide populations. We also 
observed conserved LD structure between African and 
European individuals for regions used in PRS computa-
tions for all autoimmune disorders and also for PD and 
T2D. The LD structure for regions used for PRS in South 
Asians (SAS) was significantly correlated with European 
structure for seven out of the fourteen disorders which 
included five disorders that had significant correlation 

Fig. 4  Heatmap of average PRS scores (p-value < 5 × 10–8) of 14 disorders across worldwide populations. The disorders are grouped based 
on the disease domain and the populations are arranged based on their geographical location and ancestry, starting with Africans (AFR) 
and followed by Europeans (EUR), South Asians (SAS), East Asians (EAS), and Admixed Americans (AMR). Shades of cells indicate the standardized 
average genetic risk of each disorder for each population. A higher risk is shown by red, and lower risk is indicated by blue
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between genetic risk and prevalence (namely obesity, 
asthma, MS, MDD and SCZ). Europeans and Asians were 
the most differentiated with only five disorders showing 
significantly similar LD patterns, whereas the comparison 
of LD structure between Admixed Americans and Euro-
peans for the studied genetic regions showed significant 
correlation for nine of the fourteen disorders which indi-
cated that these populations were the least differentiated.

FST analysis
FST analysis also revealed low genetic differentiation 
around the world for many of the genetic regions used for 
PRS computations (see Supplementary Fig.  1 and Sup-
plementary Table 6). For instance, the SNPs used for PRS 
calculations for AST and MDD had significantly lower 
FST between Europeans and other worldwide popula-
tions, compared to randomly selected SNPs (empirical 
p-value < 0.05). Similar to the results obtained from the 
LD analysis, autoimmune disorders had a significantly 
lower FST between Africans and Europeans. The results 
of FST comparisons between SAS/AMR populations and 
Europeans were concordant with the results of the LD 

analysis in both cases with disorders like obesity, CRD, 
MDD and RA having significantly lower FST.

Sensitivity analysis
To better understand how associations are affected as a 
function of the p-value threshold used for the PRS cal-
culations, we performed similar analyses at relaxed 
p-value thresholds in order to include more SNPs in 
the risk score calculation. Results for PRS calculated at 
other p-value thresholds revealed an overall similar dis-
tribution of disease risk. At higher p-value thresholds, 
the differences between populations became more pro-
nounced and stronger clustering was observed between 
countries in the same region (see Supplementary Fig.  2 
and Additional file 2) The distribution of PRS calculated 
for all worldwide populations indicated that the genetic 
risk distribution for certain disorders changes at differ-
ent thresholds (Supplementary Fig. 3). The average scores 
for all disorders in global populations at all thresholds are 
listed in Additional file 3.

We then estimated the correlation between PRS at 
different thresholds and the prevalence of the studied 

Fig. 5  Bar plot showing Pearson’s correlation coefficients between four pairs of populations. The x-axis indicates the disorders, and the y-axis shows 
the correlation coefficient between each pair of populations. The dotted line shows the mean correlation value of the distribution based on 100 
randomly chosen SNP sets. (*) indicates empirical p-values below 0.05



Page 8 of 12Jain et al. BMC Genomic Data           (2023) 24:70 

disorders among European populations as well as world-
wide populations. The results among European popu-
lations showed significant associations for CAD at 
different thresholds, as well as additional significant 
associations for other disorders like AD, RA, and MS 
(see Supplementary Table  7). Similarly, among world-
wide populations, we observed that the associations 
were conserved for all seven disorders. Additionally, we 
found significant associations for disorders like CAD 
and BPD, which were not observed at p-value < 5 × 10–8 
(see Supplementary Table 8).

Discussion
The prevalence of complex disorders across different 
populations is often quite varied. This may be attributed 
to a combination of differences in genetic factors, life-
style, and environment. To the best of our knowledge, 
no previous study to date has systematically investigated 
the correlation between genetic background and disease 
prevalence differences in Europe and around the world. 
In this work, we first explored the genetic component of 
this variation using PRS to determine and compare the 
average genetic risk of 14 disorders in individuals belong-
ing to different populations within Europe. For six of the 
studied disorders trans-ethnic GWAS results were avail-
able. For the rest, we use GWAS conducted in individuals 
of European ancestry. In most cases, we observed clear 
differences in the distribution of the average PRS esti-
mates based on ancestry. Interestingly, within Europe, 
we found significant correlation between genetic risk and 
disease prevalence for four disorders. We then expanded 
the analysis to understand the differences across world 
populations. The results showed a great degree of vari-
ation in genetic risk with populations belonging to the 
same ancestry groups having similar risk estimates. For 
eight out of the 14 studied disorders, we demonstrated 
statistically significant correlations between the average 
PRS and disease prevalence. obesity and MDD had signif-
icant correlations between genetic risk and prevalence in 
both Europe and around the world. Our results indicate 
that the differences in genetic predisposition of a disor-
der across populations may potentially help explain dif-
ferences in disease prevalence across populations.

Polygenic risk scores can potentially be used to identify 
populations with high genetic predisposition for various 
disorders. For instance, the highest number of individu-
als with T2D throughout the world is reported in Asia. 
Here, we showed that East Asians had increased genetic 
risk for T2D [35]. It is also interesting that in Asian popu-
lations we found the genetic risk for obesity to be quite 
low, which could explain the unique clinical presentation 
of diabetic phenotype in Asian populations with lower 
rates of obesity [36]. Europeans have the highest lifetime 

prevalence of autoimmune disorders such as MS, T1D 
and RA as seen from the Global Burden of disease data 
[2]. In concordance with this observation, we found a 
higher genetic risk of developing autoimmune conditions 
in European populations compared to people of other 
ancestries.

The lack of non-European GWAS for many of the stud-
ied disorders is a limitation of our analysis, since there 
could be a decrease in the prediction accuracy of PRS as 
previously described [9–12]. However, despite this limi-
tation, for disorders such as OBESITY, CRD and MS we 
found that average PRS of various non-European popu-
lations calculated using GWAS based on Europeans can 
actually still capture differences in disease prevalence 
across these populations. We also observed a very high 
correlation between average PRS and principal com-
ponents across populations, which provides additional 
validation that the difference in prevalence across popu-
lations could be explained by the difference in genetic 
risk due to ancestry. We also showed a low differentiation 
of LD structure and allele frequency for regions around 
the SNPs used in PRS calculations for multiple disorders, 
suggesting that GWAS may be identifying disease-caus-
ing loci that are conserved across populations and have 
reduced difference in allele frequency compared to ran-
dom SNPs.

Using GWAS based on both trans-ethnic and European 
individuals, we were able to capture genetic risk differ-
ences and correlations with prevalence around the world 
for eight disorders, including Obesity, Multiple Sclerosis, 
Crohn’s Disease, Type 2 Diabetes, Parkinson’s Disease, 
Asthma, Schizophrenia and Major Depression. How-
ever, when we used European GWAS studies, we may 
have missed variants that might be significantly associ-
ated with disease in non-European populations and not 
seen in Europe [10, 37]. Another limitation of our analy-
sis is that the awareness regarding various conditions, 
especially psychiatric disorders, may be low in develop-
ing countries and, as a result, prevalence data might be 
biased [38]. This could also explain why fewer significant 
associations were observed for psychiatric disorders in 
non-European populations. Finally, the method used for 
PRS calculation uses a simple approach of selecting SNPs 
and does not consider the differences in genetic architec-
ture of the world population. This could potentially bias 
the correlation estimates of disorders with weaker GWAS 
summary results as not all the disease associated loci 
would be used for the PRS calculations.

Identification of populations that carry increased 
genetic susceptibility to disease could help inform 
clinical practice and public health strategies. If certain 
populations have a higher risk of a specific disorders, 
earlier intervention strategies could be implemented 
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and potentially be shaped into a public health policy. 
Additionally, as PRS scores become more accurate in 
disease prediction, it is possible to use them at an indi-
vidual level from a personalized medicine approach to 
identify the genetic susceptibility to develop various 
complex disorders [39]. It is therefore of great impor-
tance to consider the relevance and transferability of 
findings to populations that differ from the original 
GWAS discovery populations. Finally, our work can also 
be expanded to study and identify individuals and popu-
lations who could be at a higher risk for severe symp-
toms due to specific environmental factors operating at 
different world regions [40].

Here, we provided evidence to support the validity of 
GWAS and the identification of loci that are biologically 
relevant and thus more conserved across populations. 
This, together with the specific genetic architecture of 
each disorder, could explain the correlation of PRS to 
worldwide disease prevalence that we observed for eight 
of the studied disorders. As more and more GWAS stud-
ies based on trans-ancestral populations become avail-
able, future studies in this direction could use these and 
apply novel methods for PRS calculations that can bet-
ter adjust for differences in ancestry in base and target 
datasets by either modeling the LD structure or includ-
ing annotation and fine-mapping data [41, 42]. With large 
trans-ethnic sample sizes in GWAS studies it is expected 
that the prediction accuracy of PRS will improve greatly, 
and the method can then be expanded to understand the 
genetic risk of traits across populations with no preva-
lence data. Ultimately, combining genetic risk, lifestyle 
information, and environmental factors will help eluci-
date differences in disease prevalence around the world 
and inform the design of future public health strategies.

Conclusion
This is the first attempt to systematically the degree to 
which PRS can predict disease prevalence in different 
populations from around the world. We estimated the 
genetic risk of 14 complex disorders across five different 
continental regions to explore whether genetics might 
help explain disease prevalence distribution around 
the world. We found that PRS of world populations can 
indeed capture differences in disease risk and could thus 
be used to identify populations with the highest genetic 
liability to develop various disorders. Significant corre-
lations were observed between genetic risk and disease 
prevalence for eight disorders in different global popula-
tions. Intriguingly, the genetic loci around the disease-
associated SNPs showed similar LD patterns and allele 
frequencies around the world. The results of these analy-
ses highlight the validity of GWAS results and could help 
inform clinical and public health decisions in populations 

with a higher genetic risk of developing different complex 
disorders.

Methods
Data sets
We collected publicly available GWAS summary statis-
tics for 14 complex disorders with no overlap with the 
target data [13–26]. The disorders can be grouped in five 
general categories (cardiovascular, neurological, autoim-
mune, metabolic, and psychiatric). The data was cleaned 
to remove any duplicate and mismatched SNPs. The 
target dataset for the analysis consisted of 3,953 sam-
ples from 24 different countries belonging to five differ-
ent ancestral groups: Africans (504), Europeans (2109), 
South Asians (489), East Asians (504) and Admixed 
Americans (347). The European samples were collected 
from previous studies [27–30] and the samples from 
other populations were acquired from the publicly avail-
able 1000 genomes phase 3 data [32]. The detailed list of 
data sources is shown in Supplementary Table 2 and all 
appropriate informed consent, IRB approvals, and Data 
Use Agreements are in place for use of data as part of 
this study. The dataset was cleaned using Plink [31] to fil-
ter out variants with more than 2% missingness, minor 
allele frequency < 0.01, and Hardy–Weinberg Equilib-
rium < 1e-6. After QC, we included 3,953 samples and 
1,618,220 imputed SNPs for PRS calculation. The preva-
lence data for 14 traits was collected from the Global 
Burden of Disease (GBD) database [2] and the prevalence 
information for obesity was collected from the WHO 
[43] (see Additional file 1). For conditions like AD, CRD, 
and CAD for which specific data was not available, we 
used the prevalence data from broad traits like dementia, 
IBD, and ischemic heart disease.

Principal component analysis
We performed principal component analysis for both 
the European and global dataset to visualize the genetic 
architecture of the different populations. The EIGEN-
SOFT software which implements the Eigenstrat smart-
PCA method was used to run the analysis [44]. The 
dataset was cleaned to remove the MHC and the chro-
mosome 8 inversion region. We applied LD pruning 
within a 100 KB region threshold and r2 of 0.1 to select 
independent SNP. Overall, 88,899 SNPs were used to cal-
culate the Principal Components (PCs).

Polygenic risk scores estimation
PRS is generally calculated as the sum of the number of 
risk alleles weighted by the effect of the allele for the spe-
cific disorder. In this case however, since we intend to cal-
culate the PRS for individuals across various populations, 
the effect sizes may not be transferable [9, 10, 12]. To 
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reduce such bias, we calculate an unweighted polygenic 
risk score for every individual based on the direction of 
association of each SNP (obtained from GWAS sum-
mary statistics) and hence the scores become a function 
of allele frequency across populations [45]. Independent 
SNPs were selected for each disorder with a clumping 
threshold (r2) of 0.1 within a 250 kb distance and p-value 
threshold of 5e-08. We then repeated this at four other 
p-value thresholds for our sensitivity analysis (1e-05, 
0.001, 0.05, 1). The number of SNPs used at each thresh-
old for each of the disorders are shown in Supplementary 
Table 3. The Plink score function is used to estimate the 
PRS of each individual and then the average PRS scores 
for the 24 countries are calculated to visualize the mean 
distribution pattern of the genetic risk of various disor-
ders and identify populations with higher genetic risk. 
We also used these scores to estimate the correlation 
between genetic risk and prevalence of a disorder.

Correlations with prevalence and empirical p‑value 
calculations
To determine if the average genetic risk of a disorder in 
a population is associated with the prevalence of dis-
order, we estimated Pearson’s correlation coefficients 
between the Average scores and the prevalence data. 
To calculate the empirical p-value and confirm the sig-
nificance, we performed a statistical test using a PRS 
method with random SNP selection. We first picked 
100 random SNP sets to compute PRS with the num-
ber of SNPs in each set equal to the number of SNPs 
crossing the PRS significance threshold. We then com-
puted the correlation coefficients between each ran-
dom SNP set and the prevalence of the target disorder. 
This gives us a distribution of observed correlation 
coefficients between PRS and disease prevalence. The 
distribution was then used to determine the empirical 
p-value of by identifying the number of SNP sets that 
had significant correlation higher than the PRS scores 
at the actual threshold.

Linkage Disequilibrium (LD) analysis
To determine if the regions around SNPs used for PRS 
calculations are conserved across populations, we 
extracted all variants within a 100  KB region around 
the PRS SNPs and calculated LD r2 [33] for all pairs 
of SNPs within the region. This was done indepen-
dently for each of the five ancestral populations and 
was repeated for all disorders separately. We then 
compared the r2 values of the various pairs of SNPs in 
Europeans to the values of the same pair in each of the 
other four populations to estimate the Pearson’s cor-
relation for each disorder. To calculate an empirical 

p-value, we first constructed 100 SNP sets, with each 
set having 1,000 SNPs selected randomly to under-
stand whether the GWAS SNPs were more conserved 
than randomly selected SNPs. For each set, we then 
repeated the analysis as described above and obtained 
a distribution of correlation estimates. We then used 
this distribution to determine if the correlations 
observed between Europeans and each of the other 
populations for different disorders are significantly 
higher (top 5th percentile) compared to the correlation 
distribution obtained from the random SNP sets. The 
estimation of r2 was done using the Plink tool and the 
statistical analyses were performed in R.

FST Analysis
We selected SNPs that were used for PRS calculations 
and then estimated the FST [34] for four different groups 
composed of Europeans and Africans, Europeans and 
South Asians, Europeans and East Asians, and Europe-
ans and Admixed Americans. We calculated the FST of 
the selected SNPs in each group individually, with each 
ancestry used as a sub-population, and determined the 
mean FST of all SNPs in each pair. Analysis was repeated 
separately for all disorders. To calculate an empirical 
p-value for both analyses, we created 100 sets of 1000 
randomly selected SNPs and repeated the FST calcula-
tions to get a distribution. We used this distribution to 
verify if the mean FST of the PRS SNPs in each popula-
tion pair is significantly lower (bottom 5th percentile) 
than the distribution of the random SNP sets. The FST 
calculation was done using the Plink tool and the statis-
tical analyses were performed in R.
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at different p-value thresholds. Supplementary Table 3. Pearson’s cor-
relation coefficients between average genetic risk between 14 complex 
disorders and the average location of 9 European populations in a PCA 
plot (PC1 and PC2 only). The value in each cell represents the correlation 
coefficient and the respective p-value estimate. Supplementary Table 4. 
Pearson’s correlation coefficients between average genetic risk between 
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in a PCA plot (PC1 and PC2 only). The value in each cell represents the 
correlation coefficient and the respective p-value estimate. Supplemen-
tary Table 5. Pearson’s correlation coefficients of r2 estimates of SNP 
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Statistically significant results (empirical p-value < 0.05) are indicated as 
bold. Supplementary Table 7. Pearson’s correlation coefficients for aver-
age genetic risk between 18 complex disorders and their prevalence in 
European populations. The column headers indicate the p-value threshold 
for PRS calculation and the value in each cell shows the correlation coef-
ficient (R2) and respective p-value (in parentheses). (*) indicates empirical 
p-value<0.05. Supplementary Table 8. Pearson’s correlation coefficient 
for average genetic risk between 18 complex disorders and their preva-
lence in 24 countries. The column headers indicate the p-value threshold 
for PRS calculations. The value in each cell represents the correlation coef-
ficients and p-values based on 1,000 permutations (shown in parenthe-
ses). (*) indicates empirical p-value<0.05. Supplementary Figure 1. Bar 
plot showing the mean FST between four pairs of populations. The x-axis 
indicates the disorders, and the y-axis shows the mean FST for each pair 
of populations. The dotted line shows the mean FST value of a distribu-
tion formed using 100 random SNP sets. (*) indicates an empirical p-value 
below 0.05. Supplementary Figure 2. Heatmap of average PRS (r2 = 0.1; 
p-value<1) of 14 Disorders across European Populations. Populations are 
arranged based on geographical proximity; shades of cells indicate the 
standardized genetic risk of each disorder for each population. A higher 
risk is shown by red, and a lower risk is indicated by blue [SEU – South 
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mentary Figure 3. Heatmap of average PRS (r2 = 0.1; p-value<1) of 14 
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red, and a lower risk is indicated by blue. [AFR – Africans, EUR – Europeans, 
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