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Abstract 

Objectives Triple‑negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with limited treatment 
options. Unlike other breast cancer subtypes, the scarcity of specific therapies and greater frequencies of distant 
metastases contribute to its aggressiveness. We aimed to find epigenetic changes that aid in the understanding 
of the dissemination process of these cancers.

Data description Using CRISPR/Cas9, our experimental approach led us to identify and disrupt an insulator element, 
IE8, whose activity seemed relevant for cell invasion. The experiments were performed in two well‑established TNBC 
cellular models, the MDA‑MB‑231 and the MDA‑MB‑436. To gain insights into the underlying molecular mechanisms 
of TNBC invasion ability, we generated and characterized high‑resolution chromatin interaction (Hi‑C) and chromatin 
accessibility (ATAC‑seq) maps in both cell models and complemented these datasets with gene expression profiling 
(RNA‑seq) in MDA‑MB‑231, the cell line that showed more significant changes in chromatin accessibility. Altogether, 
our data provide a comprehensive resource for understanding the spatial organization of the genome in TNBC cells, 
which may contribute to accelerating the discovery of TNBC‑specific alterations triggering advances for this devastat‑
ing disease.
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Objective
Triple-negative breast cancer (TNBC), which accounts 
for approximately 15–20% of all breast cancer cases, is 
defined by the absence of estrogen receptor, progester-
one receptor, and the lack of human epidermal growth 
factor receptor 2 (HER2) overexpression and/or ampli-
fication [1]. TNBC is associated with a worse prognosis 
and higher rates of visceral metastases [2]. Matrix met-
alloproteinases (MMPs) are a family of zinc-dependent 
endopeptidases involved in the degradation of extracellu-
lar matrix components and further invasion, which is the 
first step of the metastatic cascade [3]. Different MMPs 
have been associated with poor prognosis in breast car-
cinomas [4–6]. Given the lower incidence of mutations 
in breast cancer, other mechanisms, such as epigenetics, 
may be involved in pathogenesis and progression [7, 8]. 
For that reason, we aimed to identify epigenetic mecha-
nisms that may dysregulate the expression of MMPs in 
TNBC.

We found that an insulator element located at 
chr11:102,730,781–102,736,005 —hereinafter called 
IE8— is involved in the regulation of gene expression 
of nine MMP genes. IE8 disruption was performed 
in TNBC cell lines MDA-MB-231 and MDA-MB-436 
through CRISPR/Cas9 transient expression. To gain 
deeper insights into the molecular mechanisms underly-
ing the consequences of IE8 disruption, we analyzed the 
chromatin accessibility on our cell line models. We also 
generated high-resolution maps of three-dimensional 
chromatin architecture using high‐throughput chromo-
some conformation capture technology. All analyses 
were performed in triplicates except duplicates for Hi-C. 
Additionally, we complemented these datasets with gene 
expression profiling (RNA-seq) in MDA-MB-231, the cell 
line that showed more significant changes in chromatin 
accessibility [9]. These datasets will be a useful resource 

for researchers focused on TNBC since it is the first study 
combining Hi-C and ATAC-seq in MDA-MB-231 and 
MDA-MB-436, two of the most used TNBC cell lines. 
We believe these datasets represent a valuable resource 
for a better understanding of TNBC biology.

Data description
Data files associated with this work are listed in Table 1. 
The model generation in MDA-MB-231 and MDA-
MB-436 TNBC cell lines and the study design are 
described in Fig.  1 and Data file 2 [10, 11]. TNBC cells 
were purchased at the American Type Culture Collec-
tion (ATCC). Short tandem repeat (STR) analysis was 
performed at the University of Arizona Genetics Core 
(Submission UAGC-AM-3154718, Tucson, AZ, USA) to 
authenticate cell lines before the experiments described 
in the manuscript. Cells were periodically checked using 
the MycoAlert Mycoplasma Detection Kit.

Assay for transposase‑accessible chromatin using 
sequencing (ATAC‑seq)
ATAC-seq samples were amplified using Nextera bar-
coded PCR primers as described in Buenrostro et al. [19]. 
Library generation and sequencing steps were performed 
following the published protocol by Ryan Corces M, et al. 
[20]. Amplified libraries were purified and sequenced on 
a Novaseq6000 (Illumina), 51nt(R1)-10nt(I1)-10nt(I2)-
51nt(R2). 33–141 million pairs of 50-bp paired-end read 
per sample were generated. Reads were adapter-trimmed 
with Cutadapt and mapped (hg38) using Bowtie 2 [21] 
with default parameters. Chromatin accessibility peaks 
were identified with MACS2 with the broad mode [22]. 
BedTools [23] was used to generate BigWig tracks with 
a genomic bin size of 50 bp for visualizing chromatin 
accessibility in the UCSC genome browser [24].

Table 1 Overview of data files/data sets

Label Name of data file/dataset File types (file extension) Data repository and identifier (DOI or accession number)

Data file 1 Figure 1. Study design Image file (.jpg) FigShare (https:// doi. org/ 10. 6084/ m9. figsh are. 22820 930) [10]

Data file 2 Model generation Text document (.txt) FigShare (https:// doi. org/ 10. 6084/ m9. figsh are. 22821 617) [11]

Data file 3 Figure 2. ATAC‑seq quality control (QC) Image file (.jpg) FigShare (https:// doi. org/ 10. 6084/ m9. figsh are. 22820 948) [12]

Data file 4 Figure 3. QC of Hi‑C samples Image file (.jpg) FigShare (https:// doi. org/ 10. 6084/ m9. figsh are. 22821 413) [13]

Data file 5 Figure 4. QC of RNA‑seq samples and data Image file (.jpg) FigShare (https:// doi. org/ 10. 6084/ m9. figsh are. 22821 437) [14]

Data file 6 Code version Text document (.txt) FigShare (https:// doi. org/ 10. 6084/ m9. figsh are. 22822 115) [15]

Data set 1 ATAC‑seq data files FASTQ files
BigWig files

https:// ident ifiers. org/ array expre ss:E‑ MTAB‑ 12821 [16]

Data set 2 Hi‑C data files FASTQ files
mcool files

https:// ident ifiers. org/ array expre ss:E‑ MTAB‑ 12825 [17]

Data set 3 RNA‑seq data files FASTQ files
tablecounts

https:// ident ifiers. org/ array expre ss:E‑ MTAB‑ 12823 [18]

https://doi.org/10.6084/m9.figshare.22820930
https://doi.org/10.6084/m9.figshare.22821617
https://doi.org/10.6084/m9.figshare.22820948
https://doi.org/10.6084/m9.figshare.22821413
https://doi.org/10.6084/m9.figshare.22821437
https://doi.org/10.6084/m9.figshare.22822115
https://identifiers.org/arrayexpress:E-MTAB-12821
https://identifiers.org/arrayexpress:E-MTAB-12825
https://identifiers.org/arrayexpress:E-MTAB-12823
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Quality control analysis (QC) is summarized in 
Fig. 2 [18]. Between 14–42 million reads were not dupli-
cated on each replicate. Fragment length distribution 
was very similar among replicates. The replicate similar-
ity was assessed from clustering by Euclidean distances 
between DESeq2 rlog values for each sample in the fea-
tureCounts file.

High‑throughput chromosome conformation capture 
(Hi‑C)
Hi-C was performed following the manufacturer’s pro-
tocol from Cantata Bio at the NGI Sweden sequencing 
facility. Cells were fixed using formaldehyde and disuc-
cinimidyl glutarate (DSG). Afterward, in  situ DNase I 
digestion of the cross-linked chromatin was performed. 
After digestion, the chromatin fragments were extracted, 
repaired, and ligated to a biotinylated bridge adapter, 
and the ends containing the adaptor were ligated close 
together. Before PCR amplification, biotin-containing 
fragments were extracted using streptavidin beads. The 
library prep was done using the NEBNext Ultra II DNA 
Library Prep (Illumina). Sequencing setup was per-
formed using NovaSeq S4, 151nt(R1)-19nt(I1)-10nt(I2)-
151nt(R2). Hi-C reads were analyzed using nf-core/Hi-C 
pipeline [25] using bowtie2 with local alignment.

QC is summarized in Fig.  3 [13]. Different resolution 
normalized Hi-C-PRO matrices were further generated. 

47–95 million reads of unique-trans contacts were iden-
tified across replicates. The sample distance matrix was 
created using chr1 segments with 40kb bin sizes.

Sample preparation and RNA isolation for expression 
analysis through RNA‑seq
Libraries were created using the Illumina® TruSeq 
Stranded mRNA Library Prep (Illumina). 500 ng of total 
RNA were used for mRNA capturing, fragmentation, 
cDNA synthesis, adapter ligation, and library amplifi-
cation. Libraries were purified using magnetic beads 
and sequenced on a NovaSeq 6000 (Illumina) in paired-
end mode with a read length of 2 × 100bp. Reads were 
adapter-trimmed using Fastp software (v0.21.0), mapped 
(hg38) using HISAT2 (v2.2.0), and sorted using Sam-
tools (v1.10). The read counts table was generated using 
StringTie (v2.1.4). Table counts were processed using the 
DEseq2 [26].

QC is summarized in Fig.  4 [14]. The RNA Integrity 
Number (RIN) for each sample was equal to 10. After 
sequencing, 70.6–87.7 million pairs of 100-bp paired-
end read per sample were generated. Between 20–25 
million unique reads were sequenced. Table counts were 
processed using the DEseq2 [26] to determine the asso-
ciation between samples through a principal component 
analysis (PCA).

Fig. 1 Study design for the generation of insulator element proficient and deficient TNBC cell line models. TNBC cell lines MDA‑MB‑231 
and MDA‑MB‑436 were considered eligible for the study. They were transiently transfected with PX458 using Lipofectamine 3000. 48 h 
after transfection, GFP‑positive cells were sorted. After model generation functional experiments and multi‑omic assays, including ATAC‑seq, Hi‑C, 
and RNA‑seq were performed

(See figure on next page.)
Fig. 2 ATAC‑seq quality control (QC). a Millions of unique and duplicated reads sequenced on each replicate, rounded, and stranded. b Fragment 
length distribution of ATAC‑seq reads from a representative sample (MDA‑MB‑231 WT R1). Most of the reads fall into the nucleosome‑free 
region or mono‑nucleosome peak. c HOMER peak annotation of genome ontologies from MACS2 called peaks for each replicate. d Distance 
matrix of replicates after DESeq2 processing. e Enrichment of ATAC‑seq signal around transcription start sites (TSS) in a representative sample 
(MDA‑MB‑231 WT R1). Top: aggregated enrichment around all TSSs. Bottom enrichment around individual TSS
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Fig. 2 (See legend on previous page.)
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Limitations
The count of absolute peaks per replicate in ATAC-
seq was partially influenced by the more in-depth 

sequencing that occurred in some replicates, namely 
MDA-MB-436 WT R3. However, HOMER peak 
annotation (annotatePeaks.pl) revealed similar peak 

Fig. 3 QC of Hi‑C samples. a Millions of reads sequenced on each replicate. b Chromosome interaction heatmaps of all replicates for an exemplary 
region of chr1 using a 40 kb bin size. c Correlation plot of experimental replicates based on the same chr1 region

Fig. 4 QC of RNA‑seq samples and data. a RNA integrity number of each replicate, calculated using TapeStation system. b Millions of unique 
and duplicated reads were sequenced on each replicate. c Principal component analysis of replicates after DEseq2 processing
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distribution genome ontology among replicates. RNA-
seq was only performed in MDA-MB-231 since we 
observed a more exacerbated decrease of accessibil-
ity after CRISPR/Cas9 disruption of IE8 at this locus. 
Since we conducted these experiments using only 
TNBC cell lines, not all the chromatin architecture, 
chromatin accessibility, and RNA expression features 
from primary breast samples may have been captured. 
However, due to the still technical limitations to profile 
chromatin interactions on tumor tissues, these datasets 
represent a starting point to discover and explore site-
specific chromatin alterations on TNBC.

Abbreviations
ATAC‑seq  Assay for Transposase‑Accessible Chromatin using sequencing
Hi‑C  High‐throughput chromosome conformation capture
IE  Insulator element
IE8  Insulator element close to MMP8
MMP  Matrix metalloproteinase
RIN  RNA Integrity Number
RNA‑seq  RNA sequencing
TNBC  Triple‑negative breast cancer
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