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Abstract 

Background  A relevant part of the genetic architecture of complex traits is still unknown; despite the discov-
ery of many disease-associated common variants. Polygenic risk score (PRS) models are based on the evalua-
tion of the additive effects attributable to common variants and have been successfully implemented to assess 
the genetic susceptibility for many phenotypes. In contrast, burden tests are often used to identify an enrichment 
of rare deleterious variants in specific genes. Both kinds of genetic contributions are typically analyzed independently. 
Many studies suggest that complex phenotypes are influenced by both low effect common variants and high effect 
rare deleterious variants. The aim of this paper is to integrate the effect of both common and rare functional variants 
for a more comprehensive genetic risk modeling.

Methods  We developed a framework combining gene-based scores based on the enrichment of rare functionally 
relevant variants with genome-wide PRS based on common variants for association analysis and prediction mod-
els. We applied our framework on UK Biobank dataset with genotyping and exome data and considered 28 blood 
biomarkers levels as target phenotypes. For each biomarker, an association analysis was performed on full cohort 
using gene-based scores (GBS). The cohort was then split into 3 subsets for PRS construction and feature selection, 
predictive model training, and independent evaluation, respectively. Prediction models were generated includ-
ing either PRS, GBS or both (combined).

Results  Association analyses of the cohort were able to detect significant genes that were previously known to be 
associated with different biomarkers. Interestingly, the analyses also revealed heterogeneous effect sizes and direc-
tionality highlighting the complexity of the blood biomarkers regulation. However, the combined models for many 
biomarkers show little or no improvement in prediction accuracy compared to the PRS models.

Conclusion  This study shows that rare variants play an important role in the genetic architecture of complex mul-
tifactorial traits such as blood biomarkers. However, while rare deleterious variants play a strong role at an individual 
level, our results indicate that classical common variant based PRS might be more informative to predict the genetic 
susceptibility at the population level.
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Background
The genetic architecture of complex phenotypes has been 
studied extensively for over a century; however, a rel-
evant part of the genetics still elude us. That is because, 
essentially, many factors are involved in the development 
of such traits, both biological and environmental, which 
makes it harder to discover causative effects for any com-
plex phenotype or disease [1]. Genome-wide association 
studies (GWAS) investigate the associations of low-effect 
single nucleotide polymorphisms (SNPs) with specific 
phenotypes. For the last decade, GWAS have been used 
to identify many common variants that are associated 
with diseases and other phenotypes such as cancer [2], 
autism [3] and cholesterol [4]. About 90% of the vari-
ants identified by GWAS are located in the non-coding 
regions of the genome. This gives insight to the mecha-
nisms behind development and progress of complex phe-
notypes by exploring regulatory elements that could have 
an effect on disease related genes [5]. However, the nar-
row sense of heritability estimated from the GWAS, also 
known as SNP-h2, is typically lower than the broad sense 
of heritability H2 estimate from twins and family stud-
ies, this is known as the missing heritability [6]. Different 
hypotheses have been suggested to resolve the difference 
between observed and measured heritability, such as 
non-linear effects, epigenetics and rare variants [6]. It has 
also been hypothesized that family studies or twin stud-
ies might have overestimated the heritability and that the 
shared environment plays a significant role in these traits 
[7]. On the other hand, many studies suggest that more 
genetic variations need to be included in the analysis of 
complex traits to account for the unexplained heritability, 
such as small to moderate effect low-frequency (MAF1%-
5%) variants, and potentially highly damaging rare vari-
ants (MAF < 1%) [8]. In fact, it has been observed that 
rare variants contribute to the genetic landscape of com-
plex phenotypes such as inflammatory bowel disease [9], 
hypertension [10] and autism [11].

Common and rare variants are typically analyzed inde-
pendently. Common variants’ effects on a certain phe-
notype are analyzed using polygenic risk scores (PRS), 
these scores are usually derived from large-scale GWAS 
and are used to assess an individual’s genetic liability for 
a certain trait or disease [12]. However, current PRSs 
explain only a small part of the heritability of complex 
traits [13]. On the other hand, multiple methods have 
been developed to find phenotype associations with rare 
variants. A widely known category is burden test, which 
collapses all information in a genetic region (e.g. gene) 
into one genetic burden score that can be used for asso-
ciation analysis. The association is then analyzed between 
the burden score and a certain phenotype. However, 
burden tests assume that all rare variants are causal and 

have the same directional effect on the trait tested [14]. 
Another class of methods was developed to avoid these 
limitations, which is known as the variance-component 
tests. These tests analyze associations by looking at joint 
genetic effect for variants in a genetic region. For exam-
ple, sequence kernel association test (SKAT), aggregates 
score statistics of multiple variants then evaluates the dis-
tribution [15]. While this class has dealt with the limita-
tions of burden tests, it might not perform well when a 
large proportion of the variants have strong effects in the 
same direction [14]. For this purpose, methods combin-
ing burden tests and variance-component tests have been 
proposed. One of these methods is SKAT-O, an exten-
sion of SKAT which can incorporate both common and 
rare variants in the analysis [16]. While all these differ-
ent approaches have their advantages, one of their disad-
vantages is that they do not provide individual-level data, 
therefore, other methods based on functional annota-
tions and frequency weight have been developed, such 
as Genepy [17] and GenRisk [18]. These approaches are 
more general and allow gene-based scores at individuals 
levels to be derived which can be used subsequently for 
multiple analyses.

For both common and rare variants, well-established 
methods exist to perform genotype-phenotype associa-
tion and prediction analysis; however, their combined 
contributions have not been fully studied. Our paper 
aims to analyze the contribution of both rare and com-
mon variants to complex phenotypes. We achieve this by 
integrating gene-based scores for rare variants and PRS 
for common variants in genetic risk modeling.

Results
We used gene-based scores, calculated based on the bur-
den of rare functional variants and allele frequency, to 
analyze gene associations with 28 quantitative biomark-
ers. We further integrated the gene-based scores with the 
PRS models, aiming to enhance the risk prediction.

Identification of phenotype‑associated genes
To identify genes associated with different biomarkers, 
we performed association analysis, using linear regres-
sion, on the UK biobank cohort with 28 blood biomark-
ers extracted as phenotypes. Furthermore, we calculated 
the effect size (z-score) of each gene on each biomaker 
phenotype using the beta coefficient and standard error 
extracted from the association analysis. Figure  1 dis-
plays the distribution of the effect sizes of genes with 
P-value < 0.05 after Bonferroni correction for each phe-
notype with highlight on the highest and lowest effect 
size genes, with effect sizes ranging between -49.6 (ALPL 
in alkaline phosphatase) and 23.4 (LDLR in LDL direct 
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measurement). The number of genes with positive and 
negative effects for each biomarker is shown in Table 1.

Rare and common variants integrated risk prediction 
models
In order to assess the contribution of rare and common 
variants on complex phenotypes, we generated predic-
tion models for each biomarker. These models were gen-
erated using GenRisk pipeline, which evaluates different 
regression models and outputs the model with the best 
performance as a final output, we then calculated the R2 
for each model using an independent testing set. Four 
different models for each biomarker were generated: 

based on polygenic risk scores for common variant effect 
(PRS model); based on selected gene-based scores for 
rare variant effect (GBS model); combining both rare and 
common variant effects (PRS+GBS combined model); a 
only covariates-model (in order to assess the incremental 
performance due to the genetic factors). Table 2 presents 
the R2 for the covariates models and the incremental R2 
for all other models in comparison.

Discussion
In this study, we evaluated the association of rare genetic 
variants with 28 blood biomarkers. In addition, we 
explore the genetic contribution of these variants to the 

Fig. 1  Distribution of effect sizes of genes with P-value < 0.05 after Bonferroni correction, the highest and lowest genes’ effect sizes are labeled 
for every biomarker
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regulation of the biomarkers levels using samples from 
the UK Biobank. The association analysis, based on 
gene-scores derived from the burden of rare functional 
variants, revealed several interesting gene candidates 
associated with different blood biomarkers, showing both 
positive (increasing) and negative (decreasing) effect 
sizes. Some of these candidate genes have clear known 
associations with their respective biomarker; for exam-
ple, ALPL gene was identified in association with alkaline 
phosphatase biomarker levels, and SHBG gene was asso-
ciated with both sex hormone binding globulin (SHBG) 
and testosterone biomarkers’ levels. In addition, the neg-
ative effect direction of those associations indicates that 
the presence of rare functional, possibly damaging, vari-
ants, as measured by the gene-based scores, decreases 
the biomarkers’ levels. This is consistent with the fact 
that ALPL and SHBG are the protein-coding genes for 
the alkaline phosphatase and SHBG biomarkers, respec-
tively. Consequently, the presence of damaging variants 
in these genes could lead to a decrease in the production 
of their corresponding biomarkers. Additionally, since 

SHBG regulates testosterone levels in the body, a reduc-
tion in SHBG levels may also result in a reduction of tes-
tosterone levels [19].

Another clear example for rare variant associations is 
LDL (low-density lipoprotein), which showed associa-
tion and positive effect direction with LDLR and nega-
tive effect direction with PCSK9. In this case, damaging 
mutations in LDLR, the gene for the LDL receptor, result 
in an increase in LDL levels in plasma. This finding is not 
surprising, as it has been previously suggested that muta-
tions in LDLR are often responsible for familial hyper-
cholesterolemia [20]. Instead, PCSK9 is a regulatory 
protein that degrades LDLR and thus leads to an increase 
in LDL plasma levels. In fact, PCSK9 inhibitors have been 
used as a treatment for hypercholestrolemia [21].

To confirm and validate our result, we also compared 
our findings with two different approaches that try to 
find gene-phenotype associations using rare variants and 
are performed on UK biobank samples, genebass [22] and 
AstraZeneca PheWAS [23]. Genebass uses SAIGE-GENE 
[24] to perform gene-based burden test and SKAT-O, 
while AstraZeneca PheWAS analysis was performed 
using Fisher’s exact test on different models each with 
their own variant functional and allele frequency filter-
ing criteria. In general, the different methods share many 
similar associations, however, our method has shown 
to have less inflated lambda in comparison to genebass. 
Typically, the lambda values are expected to be near 1, a 
lambda lower than 1 (deflation) could mean under-pow-
ered analysis and a lambda higher than 1 (inflation) could 
mean high false positive rate. Table 3 presents the lamb-
das as calculated from the three different approaches, 
since genebass and Astrazeneca PheWAS used different 
models to find associations, the average of these models 
is reported. Lambdas for all models’ values can be found 
in the supplementary material (Table S2).

All approaches identified genes that are previously 
known to be associated with the respective biomarker 
(P-value < 0.05 after Bonferroni correction), for example 
PCSK9, LDLR, NPC1L1 and ABCG5 association with 
LDL levels [25–27]. However, our approach was able to 
identify potential novel associations that were not found 
with the other methods, such as, SNX8 for LDL and cho-
lesterol, which is a part of the sorting nexin family and 
have been previously associated with the distribution of 
neuronal cholesterol [28]. Another example of shared 
association among all approaches is the association of 
GOT1, also known as AST1, with aspartate aminotrans-
ferase (AST), which is the gene encoding AST. GenRisk 
further identified THRA, also known as thyroid hor-
mone receptor alpha. AST is a liver enzyme that is used 
as a biomarker to indicate liver damage or disease and in 
fact, the liver plays an important role in the activation, 

Table 1  Number of significantly associated genes with negative 
and positive effect sizes

a  Values adjusted for statins

Biomarker Negative 
effect

Positive effect

Alanine aminotransferase 1 1

Albumin 4 2

Alkaline phosphatase 5 6

Apolipoprotein A 7 9

Apolipoprotein Ba 6 3

Aspartate aminotransferase 1 8

Cholesterola 8 7

Creatinine 1 27

Cystatin C 2 9

Direct bilirubin 3 10

Gamma glutamyltransferase 3 9

Glucose 1 2

Glycated haemoglobin (HbA1c) 3 8

HDL cholesterol 8 9

IGF1 4 1

LDL directa 7 4

Lipoprotein A 2 1

Phosphate 4 3

SHBG 4 1

Testosterone 1 1

Total bilirubin 7 7

Total protein 5 1

Triglycerides 8 5

Urate 3 3

Vitamin D 1 5
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metabolism and transport of thyroid hormone, while 
thyroid hormones are said to affect hepatic cells metab-
olism [29]. Notably, THRA was also identified by Gen-
Risk as significant, for alanine aminotransferase, another 
liver biomarker. Figures 2, 3 and 4 display the association 
analysis results along with venn diagram representing 
the number of significant associations identified from 
each approach mentioned above for LDL, aspartate ami-
notransferase and alanine aminotransferase, respectively. 
Similar figures for the rest of the biomarkers are provided 
in the supplementary material (Figs. S2–S26). The sum-
mary statistics for the association analysis performed by 
GenRisk for each biomarker are also provided in the sup-
plementary material (Tables S3–S31).

In addition, in order to assess the contribution of 
rare-variants in the 28 blood biomarkers, we compared 
risk prediction models using four different modalities 

(see Methods for details). Our prediction model results 
suggest that the effect of rare variants on complex phe-
notypes differs depending on the distinct genetic archi-
tecture of the phenotypes. Furthermore, even though 
most of the biomarkers predictions show improvements 
when combining rare (GBS) and common (PRS) variants, 
these improvements are marginal in many cases which 
suggest that the added predictive value of rare variants in 
risk prediction is limited. Interestingly, gradient boosting 
regressor was selected by our pipeline as best perform-
ing model for most biomarkers. In gradient boosting 
machines, weak performing models, e.g decision trees, 
are combined together to generate a more powerful pre-
dictive model [30]. In fact, it has been shown that gradi-
ent boosting and other machine learning models perform 
better than traditional linear models in complex pheno-
types when non-additive effects might be involved [31].

Table 2  The R2 of prediction models for blood biomarkers, with calculated incremental R2 values between covariates only model and 
the rest of the models

a  Values adjusted for statins

Biomarker Gene predictors Covariates Model R2 Incremental R2

Genes PRS Combined

Alanine aminotransferase 4 0.137 0.003 0.011 0.014

Albumin 5 0.059 0.005 0.027 0.032

Alkaline Phosphatase 8 0.071 0.026 0.088 0.103

Apolipoprotein A 11 0.208 0.009 0.075 0.083

Apolipoprotein Ba 5 0.088 0.007 0.157 0.162

Aspartate Aminotransferase 10 0.040 0.000 0.009 0.009

Calcium 2 0.028 0.002 0.017 0.018

Cholesterola 6 0.089 0.006 0.096 0.099

C-reactive protein 5 0.066 0.004 0.009 0.011

Creatinine 41 0.248 -0.006 0.011 0.005

Cystatin C 11 0.177 -0.001 0.043 0.043

Direct bilirubin 14 0.045 0.011 0.272 0.272

Gamma glutamyltransferase 11 0.053 0.001 0.015 0.015

Glucose 8 0.030 0.001 0.003 0.003

Glycated haemoglobin (HbA1c) 16 0.098 0.001 0.020 0.022

HDL cholesterol 14 0.274 0.011 0.113 0.120

IGF1 5 0.091 0.003 0.067 0.070

LDL directa 5 0.077 0.006 0.109 0.113

Lipoprotein A 3 0.000 0.003 0.567 0.591

Phosphate 3 0.067 0.003 0.020 0.023

SHBG 5 0.309 0.017 0.053 0.065

Testosterone 1 0.828 0.001 0.006 0.008

Total bilirubin 11 0.064 0.012 0.399 0.400

Total protein 4 0.003 0.005 0.039 0.042

Triglycerides 7 0.139 0.003 0.058 0.061

Urate 4 0.387 0.013 0.065 0.077

Urea 2 0.070 0.000 0.009 0.010

Vitamin D 2 0.040 0.001 0.015 0.015
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It is noteworthy to mention that some risk prediction 
models were mostly influenced by other factors, like sex 
for testosterone and creatinine, as seen in Fig.  5, which 
was identified as the variable with the highest influence 
in these models with the other features playing only a 
minor role in the prediction. This is to be expected, since 
testosterone is a sex-specific hormone and creatinine 
levels vary depending on the individual’s size and mus-
cle mass, which is usually higher in men [32]. The true 
vs. predicted value plot and the top features figures for all 
the biomarkers’ models can be found in the supplemen-
tary materials (Figs. S27–S54).

Conclusion
In this study, we investigate the contribution of rare 
functional variants in blood biomarkers. We performed 
association analysis on gene-based burden scores and 
built genetic risk models using rare and common variant 

effects. The results suggest that gene-based score is a 
powerful instrument to identify gene-phenotype associa-
tions between rare-variants and complex phenotypes. 
While some of the associations were replicated by other 
methods, our tool has the advantage of producing indi-
vidual-level scores that can be used for multiple subse-
quent analyses. Although gene-based scores have proven 
to be useful on the individual-level, traditional PRS pro-
vides more information for risk prediction purposes 
on the population-level scale. It is important to men-
tion that these results are limited to the effects of rare 
and common variants at gene-based level. Even though 
we included non-linear models in the analysis to poten-
tially detect gene-gene interactions, they cannot capture 
effects that happen at variant level. Furthermore, other 
potential factors influencing the genetic susceptibility 
(i.e., epigenetics, gene-environment) are not considered 
in our current work.

Table 3  The lambdas of the three different approaches, averaged in case of multiple values. Full and detailed table with all values can 
be found in Supplementary material

Biomarker GenRisk Genebass Burden Average Genebass SKATO Average AstraZeneca 
PheWAS 
Average

Alanine aminotransferase 1.016 1.139 ± 0.081 1.1967 ± 0.278 1.046 ± 0.016

Albumin 1.069 1.136 ± 0.132 1.231 ± 0.243 1.050 ± 0.018

Alkaline phosphatase 1.078 1.322 ± 0.259 1.739 ± 1.130 1.084 ± 0.023

Apolipoprotein A 1.068 1.207 ± 0.170 1.340 ± 0.317 1.070 ± 0.020

Apolipoprotein B 1.105 1.149 ± 0.094 1.247 ± 0.289 1.053 ± 0.018

Aspartate aminotransferase 0.951 1.174 ± 0.104 1.253 ± 0.285 1.064 ± 0.027

Calcium 1.063 1.099 ± 0.045 1.162 ± 0.140 1.053 ± 0.020

Cholesterol 1.085 1.158 ± 0.117 1.199 ± 0.266 1.050 ± 0.014

C-reactive protein 0.995 1.228 ± 0.178 1.505 ± 0.786 1.082 ± 0.0201

Creatinine 0.861 1.201 ± 0.158 1.328 ± 0.418 1.097 ± 0.027

Cystatin C 0.995 1.221 ± 0.173 1.376 ± 0.371 1.093 ± 0.030

Direct bilirubin 0.993 1.168 ± 0.146 1.411 ± 0.613 1.036 ± 0.001

Gamma glutamyltransferase 0.965 1.207 ± 0.078 1.384 ± 0.289 1.065 ± 0.030

Gluscose 0.998 1.081 ± 0.081 1.082 ± 0.111 1.019 ± 0.013

Glycated haemoglobin HbA1c 1.018 1.224 ± 0.125 1.391 ± 0.387 1.090 ± 0.026

HDL Cholesterol 1.076 1.231 ± 0.175 1.417 ± 0.474 1.075 ± 0.026

IGF1 1.084 1.212 ± 0.145 1.352 ± 0.396 1.096 ± 0.019

LDL direct 1.092 1.132 ± 0.119 1.179 ± 0.245 1.039 ± 0.016

Lipoprotein A 0.992 1.156 ± 0.152 1.354 ± 0.534 1.020 ± 0.008

Phosphate 1.065 1.041 ± 0.028 0.976 ± 0.060 1.054 ± 0.020

SHBG 1.07 1.194 ± 0.076 1.353 ± 0.336 1.065 ± 0.025

Testosterone 1.005 1.088 ± 0.105 1.072 ± 0.205 1.016 ± 0.014

Total bilirubin 1.028 1.264 ± 0.193 1.648 ± 0.911 1.030 ± 0.013

Total protein 1.059 1.194 ± 0.183 1.286 ± 0.323 1.078 ± 0.021

Triglycerides 1.066 1.197 ± 0.187 1.279 ± 0.362 1.071 ± 0.011

Urate 1.076 1.227 ± 0.054 1.429 ± 0.335 1.058 ± 0.018

Urea 1.036 1.116 ± 0.091 1.157 ± 0.226 1.049 ± 0.012

Vitamin D 1.034 1.089 ± 0.016 1.133 ± 0.135 1.049 ± 0.019
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Methods
Cohort and data processing
All analyses were performed on the UK biobank cohort, 
which is a large-scale population-based biomedical data-
base that contains data for half a million participants. 
Data include questionnaires, biomarkers, imaging and 
genetic data. For our analysis, we used imputed geno-
type data, whole exome sequencing data, biometric data 
(age, sex, BMI) and all blood biomarker measurements 
except for rheumatoid factor and estradiol, which were 
excluded because of low sample size. The UK biobank 
field identifiers used can be found in supplementary 
material (Table S1). Variants were annotated with genes 
using NCBI’s gene and reference sequences [33], gnomad 
allele frequency and CADD v1.6 raw scores [34]. We fil-
tered the cohort to include participants with white Brit-
ish ancestry that have whole exome sequencing data and 
genotype data, resulting in n=145,464 samples. For indi-
viduals using the cholesterol lowering statins as medica-
tion, cholesterol, LDL and apolipoprotein B levels were 

adjusted by using previously estimated factors of 0.684, 
0.749, and 0.719, respectively [35]. For risk prediction 
modeling, the cohort was split into three subsets: 60% 
(n=87,278) for constructing the PRS and feature selec-
tion, 30% (n=43,639) for training the prediction models, 
and 10% (n=14,547) for model testing. The number of 
samples per phenotype varied depending on the availa-
bility of measurements. Distribution and number of sam-
ples per biomarker can be found in the supplementary 
material (Fig. S1).

Polygenic risk score (PRS)
To generate the PRS for each biomarker, we applied 
snpnet pipeline [36] on the the imputed genotyping sam-
ples of the construction dataset. This pipeline uses batch 
screening iterative lasso framework to select effect vari-
ants and generate polygenic score which can be used to 
calculate PRS for a cohort. We used the default param-
eters defined in snpnet pipeline for polgenic score deriva-
tion and excluded SNPs with MAF < 0.01. After polygenic 

Fig. 2  Association analysis summary for LDL direct*. A Venn diagram of the number significantly associated genes as identified by GenRisk, 
AstraZeneca PheWAS (all models) and genebass (Burden and SKATO). B QQ-plot of the P-values of GenRisk pipeline results. C Manhattan plot 
of GenRisk pipeline results. *statin adjusted values
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score construction, we calculated the PRS for the remain-
ing cohort to be included in the prediction model train-
ing and testing subsets.

Rare variants analysis
We used GenRisk, a python package that implements 
a gene-based scoring system, association analysis, risk 
scores calculations and machine learning models gen-
eration [18]. The gene-based scoring system depends on 
frequency and functional annotations, with up-weight-
ing function for rare variants. Gene-based scores (GBS) 
were derived from whole exome data for all individuals 
in the cohort, using default settings (MAF threshold < 
0.01, beta weighting function with parameters 1 and 25), 
and associations were assessed for the 28 biomarkers 
with quantitative values. For association analysis, linear 
regression was applied to the gene-based scores of the 
whole cohort with BMI, age, sex and the first four genetic 
principal components (PCs) as covariates. The number of 
PCs was chosen based on the variance explained in UK 

biobank European cohort [37]. Manhattan and QQ plots 
were generated to visualize the results, and the lambda 
statistic, representing the inflation of P-values in compar-
ison to the expected distribution of P, was also calculated. 
To account for multiple testing, Bonferroni correction 
was applied to adjust the P-values. Thus, the genome-
wide significance threshold level was calculated based on 
the number of tested genes (0.05/18556 =2.69E-07).

Feature selection
To reduce the numbers of input variables in prediction 
models, feature selection was applied on the GBS matrix 
to select genes that are associated with the respective 
biomarker. Association analysis was performed using 
linear regression with the same previously stated covari-
ates on the GBS of the construction subset for each of the 
biomarker and genes with P-value < 0.05 after Bonferroni 
correction were selected as gene predictors. Number of 
gene predictors per biomarker can be found in Table 2.

Fig. 3  Association analysis summary for aspartate aminotransferase. A Venn diagram of the number significantly associated genes as identified 
by GenRisk, AstraZeneca PheWAS (all models) and genebass (Burden and SKATO). B QQ-plot of the P-values of GenRisk pipeline results. C Manhattan 
plot of GenRisk pipeline results
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Fig. 4  Association analysis summary for alanine aminotransferase. A Venn diagram of the number significantly associated genes as identified 
by GenRisk, AstraZeneca PheWAS (all models) and genebass (Burden and SKATO). B QQ-plot of the P-values of GenRisk pipeline results. C Manhattan 
plot of GenRisk pipeline results

Fig. 5  True vs. Predicted value plot (left) and top 10 features (right) for creatinine combined model. Values that are a 3 standard deviations away 
from the mean were eliminated for a better visualization
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Risk prediction modeling
For each biomarker, four different prediction models 
were generated using the machine learning model train-
ing subset.

•	 Covariates model: biomarker = sex + age + BMI + 
PC1 + PC2 + PC3 + PC4

•	 GBS model: biomarker = covariates + GBS
•	 PRS model: biomarker = covariates + PRS
•	 Combined model: biomarker = covariates + GBS + 

PRS

Our tool, GenRisk, uses PyCaret as underlying frame-
work for prediction model generation. PyCaret is a 
python library that implements different machine learn-
ing models and can be used for training and testing, 
selecting, fine tuning and finalizing models1. Different 
models (n=17) including linear, such as ridge, elastic net 
and lasso regression, and non-linear models, like gradi-
ent boosting and random forest regression, are tested. A 
list of all models can be found in the GenRisk documen-
tation2. For the GBS, only the gene predictors that were 
selected in the feature selection step for each biomarker 
were included. All features were normalized by calculat-
ing the z-score. The training step was performed on the 
training set, with the corresponding biomarker as target, 
using 10 fold cross-validation and the best performing 
model for each biomarker is then finalized considering 
the complete training cohort and applied on the inde-
pendent test set.
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