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Abstract 

Background Panax ginseng cultivated under the forest is popular because its shape and effective ingredients are 
similar to wild ginseng. The growth of P. ginseng in the larch forest is generally better than in the broad-leaved forest, 
and the incidence rate of diseases is low. Therefore, the selection of forest species is one of the basic factors in the suc-
cessful cropping of P. ginseng.

Methods Illumina HiSeq high-throughput sequencing was used to analyze the 16S rRNA/ITS gene sequence of P. 
ginseng rhizosphere soil under larch forest to study the rhizosphere microbiome’s diversity and community composi-
tion structure.

Results The species classification and richness of rhizosphere bacterial and fungal communities in the same-aged P. 
ginseng were similar. Consistent with the soil system of commonly cultivated crops, Proteobacteria, Actinobacteriota, 
Acidobacteriota, Verrucomicrobiota, Chloroflexi, and Basidiomycota, Ascomycota were the dominant phylum of bac-
teria and fungi, respectively. Compared with the soil without planting P. ginseng, the diversity of microorganisms 
and community structure of continuous planting for 2 years, 5 years, and 18 years of P. ginseng rhizosphere soil had 
little change. The accumulation levels of Ilyonectria, Fusarium, Gibberella, and Cylindrocarpon were not significantly 
increased with planting P. ginseng and the increased age of cropping P. ginseng.

Conclusions The results of this study showed that the soil function of the larch forest was good, which provided 
a theoretical basis for the land selection and soil improvement of cultivating P. ginseng under the larch forest.
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Background
Ginseng (Panax ginseng C. A. Mey.), which belongs to 
the Araliaceae family Panax genus, is a traditional pre-
cious Chinese herbal medicine with important economic 
value [1]. The cultivation mode can be divided into the 
cultivation of P. ginseng under the forest, the cultivation 
of P. ginseng in deforestation, and the cultivation of P. gin-
seng in the farmland [2]. Among them, the cultivation of 
P. ginseng in the forest is a bionic cultivation mode. The 
shape and the effective ingredients of P. ginseng planted 
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in the forest are similar to wild ginseng, and the quality is 
superior comparatively [3]. In order to achieve medicinal 
characteristics with an efficacy comparable to that of wild 
ginseng, P. ginseng that has been planted in forests must 
grow continually in fixed plots for 15 to 20 years, or even 
longer [4]. P. ginseng soil-borne diseases become more 
serious with the cultivation years, reducing the P. ginseng 
survival rate [5].

Microbiota is a major component of agroecosystems 
[6]. As the most active component in the soil ecosystem, 
soil microorganisms can improve physical and chemical 
properties and regulate soil nutrition through their activ-
ities [7, 8]. Soil microbiotas directly participate in the 
circulation and metabolism of substances, and indirectly 
affect the growth and development of plants. Rhizos-
phere soil is a unique environment directly affected by 
plant roots and root exudates, and plays a key role in 
the interaction between plants and soil microorganisms 
[9]. Rhizospheric bacteria also act as a barrier against 
diseases and harmful substances found in soil [10]. As a 
result, the rhizospheric soil microbial community is an 
essential biological indicator of soil functioning [11, 12]. 
It is common for the structure and relative activity of 
rhizospheric microbiotas to vary from one plant species 
to another, as well as during stages of plant development 
and cultivation years [13, 14]. Recent research on the 
association between continuous cropping and microbial 
community showed that the diversity and composition of 
soil microbial community have alternated after continu-
ously planted American ginseng (Panax quinquefolius) or 
P. ginseng (Panax ginseng) [15, 16]. In addition, different 
cropping years of P. ginseng will also alter the soil micro-
bial community [17, 18].

The leaf litter of trees affects the forest soil nutrients, 
microbial community diversity, and composition struc-
ture. Alterations in the microbial populations of the soil 
might have an effect on diseases that are transmitted 
through the soil [19, 20]. Therefore, the selection of forest 
tree species is one of the keys to the success of cropping 
P. ginseng under the forest. The early investigation results 
showed that the occurrence probability of P. ginseng soil-
borne disease in larch forests was generally lower than 
that in broad-leaved forests, and the survival rate of seed-
lings was higher [21, 22]. Therefore, it is necessary to 
systematically study and analyze whether the microbial 
diversity and community composition of P. ginseng rhizo-
sphere soil under larch forests alter with P. ginseng culti-
vation and growth ages.

Owing to the next-generation sequencing technology 
allowing the capture of microbes without culturing the 
microorganisms, as well as the microbial community of 
difficult to cultivate or even unable to cultivate, micro-
bial profiles analysis has become the main tool in plant 

science and agriculture [23, 24]. Therefore, this paper 
uses Illumina HiSeq high-throughput sequencing tech-
nology to analyze the 16S rRNA/ITS gene sequence of P. 
ginseng rhizosphere soil under larch forest, and study the 
diversity and community composition structure of rhizo-
sphere microorganisms. At the same time, the accumula-
tion level of soil-borne pathogens in the rhizosphere soil 
of P. ginseng after planting and different years was com-
pared and analyzed, providing theoretical support for the 
selection of P. ginseng cropping sites and soil improve-
ment under the forest.

Materials and methods
Collection of soil samples
P. ginseng rhizosphere soil samples and control soil sam-
ples (without cropping P. ginseng) were collected in July 
2020 from the P. ginseng planting base (Beigou Village, 
Jindou Korean Manchu Autonomous Township, Tong-
hua County, Jilin Province) under larch forests that have 
been continuously planted for 2 (Y2), 5 (Y5) and 18 (Y18) 
years, respectively; following other researchers [25], as 
well as our previous study [18]. The soil samples with-
out cropping P. ginseng were collected as controls, which 
were YCK2, YCK5, and YCK18, respectively. The cul-
tivation mode of P. ginseng in the three sampling points 
is cultivated under forest. P. ginseng seeds are scattered 
in the forest, and there is no manual intervention during 
the growth of P. ginseng. During sample collection, the 
rainy weather was avoided and kept the soil natural dry. 
Removed the surface soil, dogged out P. ginseng roots, 
gently scraped the soil near the root surface (at least 5 g) 
with a cotton swab, transferred it into a marked sterilized 
bag, and stored it in an ice box for transportation to the 
laboratory. In this study, three samples were collected 
for each planting year for sequencing and subsequent 
analysis.

DNA extraction, gene amplification, and high‑throughput 
sequencing
We have used E.Z.N.A® Soil DNA Kit (OMEGA, U.S.) 
to extract the total DNA of microorganisms from the 
soil sample collected from the P. ginseng rhizosphere. 
NanoDrop 2000 ultraviolet–visible spectrophotometer 
(Thermo Scientific, U.S.) was used to detect the con-
centration and purification of the extracted DNA, and 
then 1% agarose gel electrophoresis was used for quality 
detection.

Using the V3-V4 region of the bacterial 16S rRNA 
gene as the target sequence, bacterial genome were 
amplified with a set of universal primers, for the posi-
tive strand as 338F(5’-ACT CCT ACG GGA GGC AGC 
AG-3’) and the negative strand as 806R(5’-GGA 
CTA CHVGGG TWT CTAAT-3’) by following other 
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researchers [26], and the amplified product was 468 bp. 
The Internally Transcribed Space (ITS) region as the 
fungal target sequence, was amplified with the univer-
sal primer set ITS1F (5’-CTT GGT CAT TTA GAG AGG 
AAG TAA -3’) / ITS2R (5’-GCT GCG TT CTT CAT CGA 
TGC -3) [27], and the amplified product was 300 bp. We 
have used ABI GeneAmp® 9700 thermocycler for DNA 
fragment amplification. We denatured DNA at 95 °C for 
3  min with a single cycle; followed by denaturation at 
95  °C for 30  s, annealed at 55  °C for 30  s with a total 
of 28 cycles, and extended at 72  °C for 45  s; and then 
allowed a final extension to the overall reaction at 72 °C 
for 10 min. The PCR reaction recipe is given in Table 1.

The amplified PCR product was screened using 1.5% 
agarose gel electrophoresis. The gel was purified using 
the AxyPrep DNA Gel Extraction Kit (Axygen Bio-
sciences, U.S.). The gel-purified DNA was quantified 
using QuantiFluor™-ST (Promega, U.S.).

Following the standard procedure of Majorbio Bio-
Pharm Technology Co., Ltd. (Shanghai, China https:// 
www. major bio. com/), the purified amplicons were 
equimolar merged, and paired-end sequencing was 
performed on the Illumina MiSeq platform (TruSeq™ 
DNA SamplePrep Kit, Illumina, U.S.). For bacterial 
community analysis, the clustering method used the 
USEARCH7-uparse algorithm; the OTU sequence 
similarity was 0.97, the species taxonomy database was 
silva138/16 s_bacteria, and the classification confidence 
was 0.7, has been used by other researchers also [28]. 
Similarly, for the Fungal community analysis, the clus-
tering method used the USEARCH7-uparse algorithm; 
OTU sequence similarity:  0.97;  Confidence:  0.7; spe-
cies classification database used was ITS;unite8.0/its_
fungi [29, 30]. The raw reads are submitted to NCBI’s 
Sequence Read Archive (SRA) database; the accession 
numbers are PRJNA927237 and PRJNA928213.

Sequence data analysis
The FastQ raw sequencing files were demultiplexed, the 
quality filter was applied using Trimmomatic [31]. The 
files were combined with FLASH [32]. We followed these 
standards: (i) reads were truncated at any point that 
received an average quality score of < 20 over a sliding 
50-bp window, (ii)The primers were aligned exactly, per-
mitted two nucleotide mismatches, and ambiguous reads 
were filtered out, and (iii) sequences with more than 
ten bp overlap were merged according to their overlap 
sequence. We used UCHIME (V4.2) [33], to identify and 
remove chimeric sequences, and used UPARSE (V7.1) 
[34] to cluster OTUs (Operational Taxonomic Units) 
sequences with a similarity threshold of 97%. Using the 
RDP Classifier [35]. The taxonomy of each 16S rRNA and 
ITS sequences were analyzed according to our previous 
research [18]. After OTU identification results, calculated 
α-diversity index from Mothur (V1.30.2). The Bray–Cur-
tis distance algorithm was used to calculate the variance 
and β diversity. PCoA (Principal Co-ordinates Analysis) 
was investigated using ANOSIM; PERMANOVA was 
performed using the Bray–Curtis spacing algorithm with 
999 permutations [36].

Statistical analysis
This study used Student’s t-test to compare alpha diver-
sity indicators of different groups, and the statistical sig-
nificance was set as * p < 0.05, ** p < 0.01, and *** p < 0.001. 
One-way ANOVA was used for the comparative study of 
multiple groups.

Results
Sequencing and depth analysis
In order to characterize the microbial community in the 
rhizosphere soil of P. ginseng under larch forests with dif-
ferent planting years, Illumina MiSeq sequenced eighteen 
samples. After filtering the sequencing data of eighteen 
P. ginseng rhizosphere soil samples, a total of 1,429,596 
reads of bacterial 16S rRNA V3-V4 effective sequences, 
and 1,094,396 reads of fungal ITS effective sequences 
were obtained. The average length of bacterial and fun-
gal sequences was 416 bp and 251 bp, respectively. Seven 
thousand ninety-four bacterial OTUs and 3486 fungal 
OTUs were obtained by clustering with 97% sequence 
similarity of high-quality sequences.

Flattened the data set according to the minimum num-
ber of sequences of the samples, and constructed a rare-
faction curve in this study. Based on sample OTU counts, 
rarefaction curves were created (Fig.  1A, B). It can be 
seen from the figure that the OTUs rarefaction curve 
of each sample tends to be flat, which indicates that the 
sequencing data is reasonable for estimating the diversity 

Table 1 The PCR reaction recipe for DNA fragment amplification

S. No Reagent name Concentration Amount

1 FastPfu Buffer 5X 4 μL

2 dNTPs 2.5 2.5 μM 2 μL

3 Primer F 5 μM 0.8 μL

4 Primer R 5 μM 0.8 μL

5 FastPfu Polymerase - 0.4 μL

6 DNA template 10 ng 1 μL

7 H2O - 11 μL

The total amount of the reaction 20 μL

https://www.majorbio.com/
https://www.majorbio.com/
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of bacteria and fungi of P. ginseng rhizosphere soil sam-
ples. Compared with bacterial rarefaction curves, fungal 
have a higher degree of variation in the shape of rarefac-
tion curves.

From the Venn chart of OTU number (Fig. 1C, D), the 
proportion of unique OTU of P. ginseng rhizosphere bac-
teria in Y2, Y5, and Y18 was 21.69%, 35.69%, and 20.36%. 
The proportion of common OTU with non-planted P. 
ginseng soil bacteria was 56.16%, 49.55%, and 58.40%, 
respectively. It indicates the total OTU was significantly 
higher than the unique OTU. The proportion of unique 
OTU of P. ginseng rhizosphere fungi in Y2 and Y5 was 
34.70% and 51.82%, while the proportion of common 
OTU with non-cultivated P. ginseng soil fungi was 33.55% 
and 27.33%, respectively. The unique OTU of Y2 and Y5 
P. ginseng rhizosphere fungi was higher than the common 
OTU, while in Y18, the unique OTU of P. ginseng rhizo-
sphere fungi (34.45%) was lower than the common OTU 
(41.46%).

α‑ diversity analysis of microbial communities
In order to estimate the differences of the microbial 
α-diversity, we removed the minimum number sequence 
from the data set of samples. The Chao richness index 
and the Shannon evenness index of OUT, were used to 
reflect the α diversity of microbial communities (Fig. 2). 
Compared with the soil samples without planting P. gin-
seng, the rhizosphere bacteria richness index Chao and 
fungi diversity index Shannon of rhizosphere soil planted 
P. ginseng for two years decreased significantly, while 
the bacteria diversity index Shannon and fungi richness 
index Chao had no significant difference. Compared with 
the control soil samples, the bacteria richness and diver-
sity of P. ginseng rhizosphere soil planted for five years 
were significantly improved, and the fungi richness also 
increased, but the diversity of fungi did not change sig-
nificantly. The richness and diversity of P. ginseng rhizos-
phere microorganisms (bacteria and fungi) after planting 
18 years of P. ginseng have no significant difference com-
pared with the control soil samples (Fig. 2). P. ginseng is a 
perennial plant that requires several years of consistent 
growth in the same site. We noticed that as the number 
of P. ginseng cropping years increased, there was a sig-
nificant shift in the -diversity of the soil ’microbe’s popu-
lation. The above analysis results showed that after two 
years of continuous planting of P. ginseng, the rhizosphere 
soil microorganisms decreased, while after five years of 
continuous planting of P. ginseng, the rhizosphere soil 
microorganisms increased. The rhizosphere microbial 
community of long-term continuous cultivation of P. gin-
seng for 18 years had no significant alteration compared 
with the soil without planting P. ginseng.

β‑ diversity analysis of microbial communities
We have estimated the β- diversity according to the phy-
logenetic level of OTUs of soil microbial communities. 
We used a Bray–Curtis distance matrix to assess the 
community composition across samples by estimating 
the abundance of reads after normalization and square 
root conversion. Hierarchical clustering was constructed 
based on Bray–Curtis dissimilarities. The hierarchi-
cally clustered pairwise Bray–Curtis dissimilarities of P. 
ginseng rhizosphere soil microbe OTUs revealed that 
the bacterial and fungal communities are fairly closely 
related, especially the bacteria of the same group samples 
are completely clustered (Fig. 3A, C).

In order to evaluate the general similarity of microbial 
community structures in samples, a PCoA analysis was 
performed; in conjunction with a PERMANOVA analy-
sis, the PCoA results indicated that the community com-
position of bacteria (R2 = 0.9169, p = 0.001) and fungi 
(R2 = 0.5292, p = 0.002) differed significantly among the 
sample groups. PCoA analysis showed that the horizon-
tal co-ordinate was the main co-ordinate component that 
caused the difference in microbial community composi-
tion in different soil samples. It is important to note that, 
concerning the OTUs, the variance contribution rates of 
PC1 were 51.20% and 34.39%, respectively, to the differ-
ence in the composition of the bacterial and fungal com-
munities in the two samples (Fig. 3B, D).

ANOSIM (|R|) was performed using a Bray–Curtis dis-
similarity matrix with 999 permutations to show whether 
the groups’ microbial community structures were sig-
nificantly different. The "ANOSIM" analysis charts are 
provided below for bacterial and fungal communities in 
Fig. 4.

Composition and structure of the bacterial community
The rhizosphere bacteria of P. ginseng under larch forest 
identified 38 phyla, 118 classes, 283 orders, 445 families, 
798 genera, 1803 species, and 7094 OTU based on 97% 
species similarity. The phyla Proteobacteria (25.94%), 
Actinobacteriota (23.91%), Acidobacteriota (17.12%), 
Verrucomicrobiota (9.24%), and Chloroflexi (7.91%) were 
the richest in all the eighteen P. ginseng rhizosphere soil 
samples (Fig.  5A). We investigated the leading bacterial 
phyla and perceived distinct bacterial communities in 
the soil samples cropping P. ginseng. The soil microbial 
community structure differed in diverse years of contin-
uous planting of P. ginseng (Fig.  5B). The first ten phyla 
were rated using ANOVA to test the impact of differ-
ent cultivation years (YCK2 vs. Y2, YCK5 vs. Y5, YCK18 
vs. Y18) on their relative abundance in percent values 
(Fig.  5C). Verrucomicrobiota, Chloroflexi, Firmicutes, 
Methylomirabilota, and Myxococcota in the top ten 
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relatively abundant bacterial phyla were significantly dif-
ferent among distinct samples. The significant difference 
between the bacterial communities of planted and non-
planted P. ginseng soil was further assessed by ’Student’s 
t-test (Fig. 5C). Compared with no planted P. ginseng soil 
samples, the relative abundance of dominant bacteria 
Chloroflexi (YCK2 8.711%, Y2 6.495%), Methylomira-
bilota (YCK2 3.367%, Y2 1.934%), and Firmicutes (YCK2 
3.130%, Y2 1.916%) were significantly decreased in the 
rhizosphere soil continuous planting P. P. ginseng for two 
years (p < 0.05). However, Firmicutes (YCK5 1.698%, Y5 
2.583%), and Myxococcota (YCK5 1.675%, Y5 2.283%) 
were significantly increased in continuous cultivated P. 
ginseng soil for five years. After 18 years of P. ginseng con-
tinuous cultivation in larch forest, the relative abundance 
of Firmicutes (YCK18 3.430%, Y18 2.025%), and Methy-
lomirabilota (YCK18 2.342%, Y18 1.435%) decreased sig-
nificantly in Y18 as compared to that in YCK18 (Fig. 5C).

Composition and structure of the fungal community
From fungal ITS sequences of P. ginseng rhizosphere soil, 
15 phyla, 63 classes, 156 orders, 339 families, 709 gen-
era, 1158 species, and 3486 OTU were identified. Fungal 
OTUs predominantly comprised of phyla Basidiomy-
cota (49.37%), Ascomycota (28.68%), Mortierellomycota 
(13.50%), Rozellomycota (2.83%), Mucoromycota (0.81%), 
Chytridiomycota (0.11%) and Glomeromycota (0.11%) 
(Fig. 6A). Basidiomycota showed the highest abundance 
in the soil samples of larch forest while cultivating P. gin-
seng (Fig. 6A). By comparing the fungal communities in 
non-planting P. ginseng soil and three distinct years of P. 
ginseng cultivation, we could determine the dominating 
fungal phyla (Fig. 6B). The relative abundance of Basidi-
omycota and Rozellomycota varied significantly (p < 0.05) 
on different soil samples among nearly all identified 
fungal phyla. To determine whether there was a signifi-
cant difference between the fungal communities in the 
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non-cropping P. ginseng soils, the Student’s t-test was 
conducted. (YCK2, YCK5, YCK18) and continuous plant-
ing of P. ginseng soil samples (Y2, Y5, Y18). In the second 
year of P. ginseng cultivation, there was an increase in the 
relative abundances of Basidiomycota in Y2 (57.720%) 
compared to those in the YCK2 soil sample, which was 
16.210% for the phyla. While the relative abundance of 
Mortierellomycota (YCK2 30.780%, Y2 8.264%), and 
Rozellomycota (YCK2 9.011%, Y2 2.403%) decreased 
remarkably in Y2 compared to that in YCK2 (Fig.  6C). 
After continuous planting of P. ginseng for five or eight-
een years in the larch forest field, the relative abundances 
of fungal phyla did not vary significantly in Y5 and Y18 
as compared to that in YCK5 and YCK18, respectively 
(Fig. 6C).

The multi‑group comparative analysis
The multi-group comparative analysis on 3 samples Y2, 
Y5 and Y18 has been conducted for bacterial and fungal 
communities. The results are shown in Fig. 7.

Accumulation of pathogenic fungi with cropping P. ginseng
P. ginseng is a perennial plant, which needs to be planted 
continuously for many years. With the increase in the 
number of P. ginseng cropping years, the accumulation 
level of pathogenic fungi in the soil rises, and the soil-
borne disease of P. ginseng becomes progressively seri-
ous [18]. An early investigation found that the incidence 

of P. ginseng diseases under the larch forest was low, and 
the disease index was small. Therefore, it is speculated 
that with the P. ginseng cropping and increase of plant-
ing years, the accumulation level of P. ginseng related 
pathogenic fungi in the soil under larch forest is insig-
nificant. Fusarium is a common pathogenic fungi that 
causes soil-borne diseases in plants, including P. ginseng 
[37]. Gibberella, the perfect stage of Fusarium, was also 
detected in the eighteen soil samples [38]. In addition to 
P. ginseng root rot, another major soil-borne disease is P. 
ginseng rust rot, which is caused by Cylindrocarpon and/
or Ilyonectria [39]. Accordingly, we analyzed the changes 
in the abundances of these four pathogenic species with 
cropping P. ginseng under a larch forest. We found that 
four pathogenic species (Fusarium, Gibberella, Cylindro-
carpon, and Ilyonectria) accumulated differently in P. gin-
seng rhizosphere soil samples of different plantation years 
(Fig. 8).

The results of this study showed that the total num-
ber of four kinds of pathogenic fungi in the rhizosphere 
soil of P. ginseng planted for two years (Y2) was signifi-
cantly reduced compared with that in the larch forest 
soil without cropping P. ginseng (YCK2). The content of 
Ilyonectria (YCK2 1.43%, Y2 0.25%, p < 0.05) and Fusar-
ium (YCK2 0.17%, Y2 0.03%, p < 0.01) in Y2 decreased 
significantly compared with that of YCK2, as shown 
in Fig. 9A&B. Compared with the larch forest soil sam-
ples (YCK5), the sum of four kinds of pathogens in the 
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rhizosphere soil of P. ginseng cultivated for five years (Y5) 
showed an increasing trend. Although the total num-
ber of pathogenic fungi in Y5 increased significantly, 
four pathogenic species’ accumulation level did not vary 
significantly compared with YCK5. However, the total 
amount of four pathogens in the rhizosphere soil of P. 
ginseng planted continuously for 18 years (Y18) is nearly 
the same as that in the larch forest soil without planting 
P. ginseng (YCK18). And the accumulation level of these 
four pathogenic fungi in Y18 did not increase signifi-
cantly with continuously planted P. ginseng for 18 years. 
In short, the abundance of these four types of P. ginseng 
pathogens was less. And the accumulation level of patho-
gens (Fusarium, Gibberella, Cylindrocarpon, and Ilyonec-
tria) did not increase significantly compared with the 
control samples with the P. ginseng cropping under larch 
forest and the increase of cultivation years.

Discussion
P. ginseng is a perennial, slow-growing plant primarily 
used in Chinese herbal remedies. During the long-term 
natural and artificial selection, three cultivation modes 

have been formed, including cultivated P. ginseng under 
the forest, cultivated P. ginseng in deforestation, and culti-
vation of P. ginseng in the farmland. Cultivated P. ginseng 
under the forest, namely forest P. ginseng, is developed 
by sowing P. ginseng seeds into the natural environment, 
allowing them to grow without any artificial interference 
or management, and its growth usually exceeds ten years 
[40]. When grown in a forest, P. ginseng is more similar to 
wild ginseng than when it is grown in a farm [41]. Several 
factors such as climate change and soil properties affect-
plant’s survival [42]. The soil-borne diseases of P. ginseng 
are aggravated with the increase in cultivation years, 
decreasing the persistence rate of P. ginseng. An early 
investigation found that the growth status and survival 
rate of P. ginseng in larch forests were generally better 
than those in broad-leaved forests [43, 44]. Tree species 
not only affect the shade degree of the forest, but also 
influence the soil microbial community composition [45]. 
These microbes play an important role in the completion 
of nutrients cycles. Therefore, the selection of forest tree 
species is one of the important factors for the success of 
cropping P. ginseng under the forest.
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Microbial communities can be employed as sensi-
tive biological markers of soil health and function, and 
they play an important role in sustaining soil ecosystem 

stability and health [46, 47]. Variations in microbial com-
munities may have adverse effects on soil quality and 
plant health. Previous research has found that P. ginseng 
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cultivation, particularly on diverse lands and for varying 
lengths of time, affects the richness and organization of 
the P. ginseng rhizosphere microbial population [48, 49]. 
In addition, several other factors can affect root biomass 
and morphology [50]. This study found that the richness 
and evenness of soil microbial communities both fungi 
and bacteria in larch forests, transformed substantially 
with the different planting years of P. ginseng. Compared 
with the larch forest soil without cropping P. ginseng, 
the microbial community of P. ginseng rhizosphere soil 
changed significantly after planting P. ginseng for two or 
five years, while the microbial community of P. ginseng 
rhizosphere soil did not alteration after cultivating P. 
ginseng for 18 years (Fig. 2). The microbial communities 
in rhizosphere soil of the same annual P. ginseng under 
larch forest are relatively close in the hierarchical clus-
tering of pairwise Bray–Curtis dissimilarities, especially 
since the bacteria in the same group of samples are com-
pletely clustered (Fig. 3A, C). PCoA results showed that 
the community composition of bacteria (R2 = 0.9169, 
p = 0.001) and fungi (R2 = 0.5292, p = 0.002) in differ-
ent samples was significantly different (Fig.  3B, D). The 
results showed that the microbial composition of P. gin-
seng rhizosphere soil varied significantly with the cul-
tivation years. Other researchers studied microbial 
communities in different environments [51].

The rhizosphere microbial community may be influ-
enced by the soil’s characteristics and crop variety [52, 
53]. The key factor for this change is planting years [54]. 
The plant’s developmental stage is a major factor in 
determining the microbiome composition [55]. Root exu-
dates at various phases of development may be respon-
sible for this phenomenon [56, 57], which is responsible 

for this change of the rhizosphere microbiome commu-
nity, during plant growth [52, 58]. The bacterial phyla 
Proteobacteria, Actinobacteriota, Acidobacteriota, Ver-
rucomicrobiota, and Chloroflexi, and the fungal phyla 
Basidiomycota, Ascomycota, and Mortierellomycota 
were the most abundant during P. ginseng cultivation 
under larch forest in the current study, as we have indi-
cated in Figs. 5A and 6A. Our findings are in accordance 
with other researchers’ reports on farmland P. ginseng 
[18] and other crops (cotton) [59], soybean [60], and pea-
nut [61]. Habitat specialization is important in species 
richness [62, 63]. These microbial phyla were abundant 
in P. ginseng’s soil ecosystem. Proteobacteria was most 
significantly enriched in 18 larch forest soils (Fig.  5A). 
Proteobacteria, related to eutrophic soil [64, 65], plays 
an essential role in the global nitrogen, sulfur, iron, and 
carbon cycles [66, 67]. The second most prevalent group, 
Actinobacteriota, takes part in the decomposition of soil 
organic matter and the global carbon cycle [68, 69]. Act-
inobacteriota abundance fluctuated with the P. ginseng 
culture years, demonstrating that the P. ginseng cropping 
had a significant impact on the Actinobacteriota popula-
tion. As a result, individuals of both Proteobacteria and 
Actinobacteriota may play a part in maintaining micro-
bial homeostasis in soil used for continuous cropping. 
The soil nutrients have been influenced by several types 
of microbes [70].

The allelochemicals found in P. ginseng have been 
shown to cause disruption to the delicate equilibrium 
of the microbiome [71], reduce beneficial fungi, and 
increase pathogenic fungi in the rhizosphere soil of 
P. ginseng [72]. The preliminary investigation found 
that P. ginseng under larch forest grew well, and the 

Fig. 8 The relative abundance of different pathogenic fungi in soil samples. Three replicates were used for each sample (* p < 0.05, ** p < 0.01, *** 
p < 0.001)
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incidence of P. ginseng disease was low. Therefore, it 
is speculated that with the P. ginseng cropping and 
increase of cultivation years, the accumulation level of 
P. ginseng related pathogens in the soil under larch for-
est is insignificant. P. ginseng root rot caused by Fusar-
ium, and P. ginseng rust rot caused by Cylindrocarpon 
and Ilyonectria are important soil-borne diseases in P. 
ginseng cultivation [73, 74]. Furthermore, Gibberella, a 
perfect stage for Fusarium [38], is also an important 
soil-borne pathogen. The analysis of pathogenic spe-
cies found that the accumulation level of Fusarium, 
Gibberella, Cylindrocarpon, and Ilyonectria in the 

rhizosphere soil of different age P. ginseng under the 
larch forest was different (Fig. 8). The research results 
indicated that the summation of four kinds of patho-
genic fungi in Y2 was significantly decreased com-
pared with that in YCK2. The amount of Ilyonectria 
and Fusarium in Y2 reduced significantly compared 
with that of YCK2. Compared with YCK5, the total 
amount of four pathogens in Y5 showed an increas-
ing trend, but the accumulation level of four patho-
genic species did not variation significantly. Compared 
with YCK18, the accumulation level of four pathogenic 
fungi in Y18 did not increase significantly with contin-
uously cropping P. ginseng for 18 years (Fig. 8).

Fig. 9 The comparative results of four pathogens among three samples, Y2, Y5, and Y18, reveal the changes with the extension of planting time. A. 
Percent community abundance of the four fungal pathogens B. Difference in the fungal pathogens distribution with passage of time
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Conclusions
The results of this study showed that the pathogens 
(Fusarium, Gibberella, Cylindrocarpon, and Ilyonectria) 
in the soil of the larch forest changed little or not sig-
nificantly with the P. ginseng planting and the increase of 
cultivation years. It suggested that the soil function of the 
larch forest was good. This study provides a theoretical 
basis for the land selection and soil improvement of culti-
vating P. ginseng under forest.
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