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Abstract
Background When polygenic risk score (PRS) is derived from summary statistics, independence between discovery 
and test sets cannot be monitored. We compared two types of PRS studies derived from raw genetic data (denoted as 
rPRS) and the summary statistics for IGAP (sPRS).

Results Two variables with the high heritability in UK Biobank, hypertension, and height, are used to derive an 
exemplary scale effect of PRS. sPRS without APOE is derived from International Genomics of Alzheimer’s Project 
(IGAP), which records ΔAUC and ΔR2 of 0.051 ± 0.013 and 0.063 ± 0.015 for Alzheimer’s Disease Sequencing Project 
(ADSP) and 0.060 and 0.086 for Accelerating Medicine Partnership - Alzheimer’s Disease (AMP-AD). On UK Biobank, 
rPRS performances for hypertension assuming a similar size of discovery and test sets are 0.0036 ± 0.0027 (ΔAUC) and 
0.0032 ± 0.0028 (ΔR2). For height, ΔR2 is 0.029 ± 0.0037.

Conclusion Considering the high heritability of hypertension and height of UK Biobank and sample size of UK 
Biobank, sPRS results from AD databases are inflated. Independence between discovery and test sets is a well-
known basic requirement for PRS studies. However, a lot of PRS studies cannot follow such requirements because 
of impossible direct comparisons when using summary statistics. Thus, for sPRS, potential duplications should be 
carefully considered within the same ethnic group.
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Background
Recently, genetic studies involving a polygenic risk score 
(PRS) have dramatically grown, and sophisticated tools 
and methodologies are being developed for its use [1–
3]. Along with heritability, PRS has become an impor-
tant metric for explaining complex genetic diseases (e.g. 
Alzheimer’s disease, AD) and traits [4–8]. A typical PRS 
study involves both the discovery and test phases [9, 10]. 
In the discovery phase, two different methods are used 
to develop PRS. PRS is essentially derived from the raw 
genetic data, denoted as rPRS. Instead, the summary 
statistics from large-scale genetics studies or GWAS 
catalogs are also used, which we abbreviate as sPRS. Poly-
genic prediction performance is then evaluated by the 
marginal contribution of the PRS term in a regression 
model on target clinical application [10, 11].

An underlying assumption of PRS models is that the 
subjects from the discovery set do not overlap with those 
of the test set [10], which are well-known basic prereq-
uisite for PRS studies. However, our preliminary analyses 
(Fig. 1A(i)) demonstrate a significant number of identical 
subjects across multiple genetic datasets. The overlap-
ping subjects may be identified and removed for rPRS 
using the raw genetic data, a challenge remains for sPRS 
in which raw data is inaccessible. Therefore, we posit 
that a strict level of independence across datasets is hard 
to achieve with sPRS. This may pose serious issues to 
related fields, since the subject-level dependence across 
datasets may not only inflate the polygenic prediction 
performance, but also prevent generalizable applications 
of the developed model.

Among prior studies, we identify multiple signs of 
potential inflation in PRS performance attributable to 
overlapping subjects. First, if the independence between 
discovery and test sets is clearly stated in the paper, the 
PRS performance of binary traits not statistically signifi-
cant, while if not, results were highly variable or inflated 
[12–16]. For instance, for models in which independence 
is explicitly controlled during development, even with a 
large-scale national biobank, PRS contributed less than 
2% in the model accuracy [17]. As a similar line of evi-
dence, in a large-scale finnish study [12], polygenic pre-
dictions were not significant for datasets in which the 
independence is guaranteed, while in other groups with-
out the guarantee performed significantly higher. Second, 
we argue that the low portability PRS in trans-ethnic 
applications may serve as another evidence of overlap-
ping subjects developed for within-ethnic models. Low 
trans-ethnic portability, yet is not fully understood, has 
been attributed to different linkage disequilibrium (LD) 
structures, allele frequencies, and marginal effect size 
variations according to ancestries [18]. We suspect that 
the strictly preserved independence of subjects between 
different ethnicities (Fig.  1A(ii)) limits the prediction 

performance of trans-ethnic models (Fig.  1B). In other 
words, it is plausibly the level of dependence (i.e., over-
lapping subjects) between datasets that is one of the 
reasons for the gap between within- and trans-ethnic 
generalization capacities of PRS models.

The clues mentioned above, albeit circumstantial, led 
us to a systematic investigation for detecting and quanti-
fying the overestimation bias in sPRS due to overlapping 
subjects. On AD prediction, we first prove that PRS mod-
els overfit to overlapping subjects, resulting in overesti-
mated prediction performances on the test set. Then we 
extend our experiments using UK Biobank data to derive 
the scale effect of the inflation and brief guidelines for 
detecting the bias in sPRS.

Results
Overview of the study
Figure 1 illustrates an overview of our study design. We 
design an rPRS model that derives SNPs from ADSP, 
which is then replicated for all subjects from AMP-AD 
(see Fig.  1B for details and Fig.  2A for results). After 
removing subjects from AMP-AD with close kinship with 
the ADSP study, predictions are made again on AMP-
AD, and the two results with and without close subjects 
are compared. We also compare rPRS and sPRS. To this 
end, ADSP is divided into 9:1 (discovery: test) splits for 
ten-fold cross-validation for rPRS (Fig. 2B), while AMP-
AD data are used as another test set for rPRS (Fig. 2C). 
An increasing degree of overlapping bias is observed 
with an expanding number of subjects in the test set 
being replaced by samples from the corresponding dis-
covery set (Fig.  2D). We further demonstrate that sPRS 
also overestimates prediction performances (Figs.  1B 
and 2B, and Fig.  2C). We compare the sPRS prediction 
results against rPRS to indirectly infer the level of overfit-
ting. However, the number of subjects in the IGAP study 
is larger than that of ADSP, and PRS predictions may not 
be directly comparable due to the scale effect, where a 
larger discovery set may result in better generalization 
capability.

To adjust for the scale effect, we leverage a large num-
ber of samples in UK Biobank in terms of two pheno-
types with higher heritabilities than AD [19–21], namely 
hypertension, and height, which are binary and non-
binary variables. With a varying number of subjects in 
the discovery set, the rate of change per subject in rPRS 
accuracies is inferred. Finally, we estimate the level of 
overestimation bias in sPRS for AD prediction (Figs. 1C 
and 3).

PRS prediction performance after excluding genetically 
related individuals
432 identical subjects overlap between ADSP and AMP-
AD (Fig.  1B). Using ADSP as the discovery set, rPRS 
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on all subjects in AMP-AD results in ΔAUC of 0.069 
(P = 1.51 × 10–10). After removing the overlapping indi-
viduals from AMP-AD, the ΔAUC decreases to 0.0017. 
Notably, ΔAUC loses its statistical significance (P = 0.57). 
ΔR2 shows a similar level of deflation, which drops 
from 0.11 to 0.0041 by removing the identical subjects 
(Fig.  2A). PRS performances are only slightly affected 
when close relatives are removed by applying a lower 

cutoff of PI_HAT (Supplementary Table  2), and ΔAUC 
still shows no statistical significance.

rPRS and sPRS Performances on AD prediction
Figure  2B and C, and Supplementary Table  3 show 
the comparison results of rPRS and sPRS. ADSP data 
are divided into the discovery and test datasets with 
9:1 cross-validation for assessment of rPRS (Fig.  2B). 
Another test of rPRS is evaluated on non-overlapping 

Fig. 1 Overview of the study. (A) (i) Overlapping subjects are observed between AD genetic initiatives. (ii) There is no overlapping subject across ethnici-
ties. Until now, trans-ethnic applications of PRS have been limited. We suspect that subject overlap within an ethnicity is one of the key factors to explain 
overestimated performances, which motivates this study. We divide PRS into two cases, where rPRS represents when the genetic information is provided 
and used as the discovery set and sPRS stands for the case when GWAS is pre-conducted and only summary statistics are provided. (B) For rPRS, overlap-
ping subjects (n = 432) between ADSP and AMP-AD are identified, which breaks the independence assumption and causes the overestimation bias. For 
sPRS, the overlapping ratio cannot be examined by giving the summary statistics. However, the suspected inflation in the AD prediction performance 
(denoted by sPRS - rPRS) motivates further analysis of the scale effect of the datasets because IGAP has a larger number of samples. (C) (i) Two new vari-
ables, hypertension and height, from the UK Biobank database are introduced to compute the upper bounds of the scale effect. Hypertension and height 
have a higher heritability than AD. Thus, they act as the upper bounds for AD over PRS performances (shown in the QQ plot). (ii) In AD, the gap between 
sPRS and rPRS (area shaded in green) is attributable to either the overestimation bias or the scale effect of the sample size of the discovery set. Because 
UK Biobank consists of a larger number of samples (n = 342,318), the scale effect can be measured via computing the performance gains per sample unit. 
Cohort case counts and their percentages of the total were as follows: ADSP had 5687 (55.2%), AMP-AD had 696 (61.4%), IGAP had 17,008 (31.4%), and 
UK Biobank had 82,719 (24.2%)
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data of AMP-AD (n = 692) (Fig.  2C). We compute sPRS 
using summary statistics derived from the first stage of 
IGAP study (Fig. 2B and C). sPRS on ADSP is evaluated 
on 10 test folds (i.e., sets), while, on AMP-AD, the whole 
data (n = 1133) are regarded as a test set. Unlike rPRS, 
sPRS is evaluated on all AMP-AD data as overlapping 
subjects are not identifiable against IGAP.

In rPRS, a respective set (ΔAUC, ΔR2) of ADSP and 
AMP-AD data are (0.0071 ± 0.0052, 0.0077 ± 0.0045) and 
(0.0013 ± 0.00091, 0.0011 ± 0.0018). P-values are not sig-
nificant (P > 0.05). In other words, when data indepen-
dence is guaranteed, PRS for AD displays unexpectedly 
low performance. In sPRS, a respective set (ΔAUC, ΔR2) 
of ADSP and AMP-AD are as high as (0.051 ± 0.013, 
0.063 ± 0.015) and (0.060, 0.086). The results of sPRS are 
significantly inflated in comparison to those of rPRS.

PRS performances are sensitively affected by dependency
Given the suspected inflation in sPRS, we wanted to 
show how the PRS results are sensitively affected accord-
ing to the subject overlap, as well as estimate the number 
of overlapping subjects in sPRS. To this end, we simulate 
an increasing number of subjects from the discovery set 
to be added into the test set. All ADSP data (n = 10,293) 
are used to derive an rPRS model, which subsequently 
is evaluated on a mixture of AMP-AD (independent test 
set, n = 692) and ADSP data randomly selected from test 
splits of ten-fold cross-validation (fully dependent test 
set, n = 692), for which the portion of the latter increases 
from 0 to 100% via an increment of 10%. sPRS is derived 
from the first stage data of the IGAP study and evaluated 
in the same way (Fig. 2D). As expected, all ΔAUC, ΔR2, 
and –log(P) monotonically increases in a growing por-
tion of subject overlap. sPRS performances remained rel-
atively unchanged while maintaining the inflated values 
greater than those in independent rPRS (Fig. 2B and C). 

Fig. 2 PRS performance comparisons for Alzheimer’s disease. ΔAUC and ΔR2 denote the additive gain from introducing PRS term to Model II (refer to 
Materials and Methods for details). For convenience, we abbreviate the discovery and test sets as D and T, respectively. (A) AD prediction performances 
with and without subject overlap (D: ADSP, T: AMP-AD). All metrics of overlapping subjects are overestimated, growing in an increasing number of SNPs. 
(B) sPRS (D: IGAP, T: ADSP) is compared to rPRS (D: ADSP, T: ADSP). (C) AMP-AD data is another T for rPRS (D: ADSP) and sPRS (D: IGAP). D and T of ADSP 
data are derived from tenfold cross-validation. In both (B) and (C), sPRS performances are significantly higher than rPRS, and we suspect that some par-
ticipants of IGAP are identical to a subset of ADSP or AMP-AD. (D) A simulated study is conducted with rPRS (D: ADSP, T: AMP-AD), in which a subset of D 
replaces a growing number of subjects in T (see Results for details). The number of SNPs in the x-axis denotes number of the LD pruned SNPs selected in 
the order from the lowest P-value thresholds. That is, the lower number of SNP in the left side means the stricter P value threshold and the right-most side 
is the most generous P value threshold (P < 0.5)
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To show that the AD characteristics of the test sets are 
maintained, performances of APOE ε4 are also displayed. 
When only APOE ε4 status is included for developing 
rPRS in the same manner, performances are relatively 
stable compared to rPRS, which indicates that the char-
acters of AD are maintained irrespective of the AMP-AD 
and ADSP combination. Judging by the intersection of 
two lines representing rPRS and sPRS trends, we infer 
at least 10% of participants in AMP-AD or ADSP are 
included in IGAP. However, this holds true only if the 

number of subjects in discovery sets is equal. Meanwhile, 
the number of subjects in IGAP is five times larger than 
that of ADSP. Therefore, to confirm the suspected infla-
tion in sPRS, we must investigate the scale effect of the 
discovery set.

Upper bounds of PRS performance derived from UK 
Biobank data
UK Biobank data are leveraged to infer the upper bounds 
for the scale effect of sPRS. Hypertension and height are 

Fig. 3 PRS performance comparisons via UK Biobank. In this study, UK Biobank’s primary purpose is to evaluate the scale effect, defined as the marginal 
gain of performance due to the size of the discovery set. To this end, two variables representative for high heritability, namely hypertension, and height, 
are analyzed. For experimental purposes, we intentionally design three discovery sets with different sizes, 300k, 60k, and 9k, which approximately cor-
respond to the discovery set sizes of the full UK Biobank dataset, IGAP, and ADSP, respectively. For convenience, we abbreviate the discovery and test sets 
as D and T. ΔAUC and ΔR2 denote the additive gain from introducing the PRS term to Model II (refer to Materials and Methods for details). (A) A larger 
D size results in higher prediction performances (ΔAUC and ΔR2), demonstrating the scale effect as hypothesized. However, in the three sample sizes, a 
smaller subset of T rarely degrades ΔAUC or ΔR2, but it had an impact on the significance level P, perhaps intuitively. As the highest heritability (Fig. 1C) 
foretells, the height variable applied in PRS showed a greater impact on the prediction model than hypertension, as indicated by higher ΔR2 and –log(P). 
(B) When the number of SNPs varies with 100% of T used, most metrics show improvements until 50k SNPs are used, which plateaus. The number of SNPs 
in the x-axis denotes number of the LD pruned SNPs selected in the order from the lowest P-value thresholds. That is, the lower number of SNP in the left 
side means the stricter P value threshold and the right-most side is the most generous P value threshold (P < 0.5). (C) Although the size of D with 100% 
of T used shows a linear correlation with PRS performances, proving the hypothesized scale effect, the improvements are not dramatic. For instance, ΔR2 
increases by approximately 0.0000125 and 0.0000083 per 3k of D
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selected as two target variables to investigate the scale 
effect due to their notably high heritability (Fig. 1C). We 
posit that AD prediction scores are bounded by both 
hypertension and height thanks to superior heritability 
and the scale effect. Subjects from UK Biobank are split 
by 9:1 following the ten-fold cross-validation scheme.

To investigate the scale effect of AD, we evaluate rPRS 
on three different sizes of the discovery set, correspond-
ing to 9k, 60k, 300k (i.e., full data), and roughly equal to 
the size of ADSP, IGAP, and UK Biobank, respectively 
(Supplementary Table 4). Figure 3 summarizes and visu-
alizes the results. For hypertension, with a discovery 
set size of 60k subjects, a set of metrics (ΔAUC, ΔR2) is 
(0.0033 ± 0.00047, 0.0033 ± 0.00051). When the size is 
300k, (ΔAUC, ΔR2) is (0.012 ± 0.0014, 0.012 ± 0.0017), 
which is still significantly smaller than the sPRS of 
ADSP and AMP-AD (Fig.  2B and C) correspond-
ing to (0.051 ± 0.013, 0.063 ± 0.015) and (0.060, 0.086), 
respectively.

For height, ΔR2 for 60k and 300k sizes are 0.028 ± 0.0015 
and 0.075 ± 0.0056 (Fig. 3A and Supplementary Table 5). 
Relatively larger contributions of PRS in height com-
pared to hypertension reflect the greater heritability. In 
both variables, PRS scores plateau at approximately 50k 
of SNPs (Fig. 3B). The results of sPRS using IGAP (54k) 
as a discovery set are highly inflated compared to those 
of hypertension and height at a similar scale (60k). Scores 
display growth linear or sublinear to the size of the dis-
covery set (Fig. 3C).

To obtain statistical significance for ΔAUC, both the 
discovery and test sets require a substantially large num-
ber of subjects (Fig. S1). For instance, for a 60k-sized dis-
covery set, more than 10k subjects are needed in the test 
set for sufficient power (P < 0.01). Lassosum [2], which 
uses the LD information, shows two-fold higher perfor-
mance than PRS (Supplementary Table 6), but the linear 
pattern of the scale effect remains unchanged.

The results can vary based on the case:control ratio of 
the discovery set. The IGAP study consisted of 17,008 
cases and 37,154 controls, yielding a case:control ratio 
of 1:2.18, while the UK Biobank study had a case:control 
ratio of 1:3.14 (Table S1). Thus, to demonstrate that the 
lower PRS performances aren’t a result of the case:control 
ratio, we kept the number of cases constant at 17,008, 
and varied the case:control ratio to 0.33, 1, and 3 (Fig. 
S2). The results from a case:control ratio of 1:3 are almost 
comparable to those observed with 20% of the discovery 
set, as depicted in Fig. 3. Furthermore, we examined the 
results according to both the MAF of the SNPs and the 
number of SNPs. The outcomes did not significantly dif-
fer across the range of the SNP’s MAF interval (Fig. S2A). 
As for the results according to the number of SNPs, these 
were saturated from the outset and showed minimal vari-
ation (Fig. S2B and Fig. 3B). When the number of cases 

is held constant, the highest performance was observed 
at a case:control ratio of 1:3 (Fig. S2B). Therefore, if the 
number of cases in the discovery set remains fixed, the 
larger the total subject count, the higher the performance 
of the PRS.

Discussion
This study illuminates the overestimation bias in PRS 
studies. In AD prediction, we prove the presence of 
latently overlapping subjects for sPRS and demonstrate 
performance inflation. Developing sPRS without knowl-
edge of the overlapping individuals raises concerns over 
overestimation and the model’s generalizability. We argue 
that overestimation needs to be suspected when the con-
tribution of sPRS derived from discovery datasets with 
much smaller sample sizes than nation-wide biobank, by 
the referenced PRS methods [22], exceeds 1–2% of ΔR2 
for binary traits [17] and 7–8% of ΔR2 for non-binary 
traits, which are the respective upper limits drawn by 
hypertension and height from UK Biobank.

As evidenced by the three separate AD studies shar-
ing identical subjects, subject overlap may be prevalent 
in other cohort studies and large-scale meta-analyses. In 
our study, ADSP and AMP-AD data include 432 identi-
cal subjects, corresponding to 38.12% of AMP-AD data. 
Also, ADSP and ADNI have 21 overlapping subjects 
(Fig. 1A(i)). As genetic studies are conducted across mul-
tiple centers, the odds of having duplicated subjects are 
high among different initiatives. Therefore, the planning 
of PRS studies requires considerable attention to exclude 
identical persons.

Several existing studies support the relationship 
between the independence of datasets and the possibil-
ity of the overestimation bias. Concretely, we observe the 
trend in which PRS performs significantly lower when 
data independence is explicitly controlled. For instance, 
when overlapping subjects are removed, PRS contrib-
uted less than 2% accuracy even with large discovery sets 
from a national biobank [12, 17]. In a large-scale Finnish 
study for coronary artery disease (CAD), arterial fibrilla-
tion (AF), type 2 diabetes mellitus (T2DM), breast cancer 
(BrC) and prostate cancer (PrC), the independencies in 
CAD and AF were clarified [12]. The PRS contributions 
of the two diseases were statistically insignificant (0.3% 
and 0.9%, respectively). In contrast, the PRSs of T2DM, 
BrC, and PrC used the summary statistics derived from 
large meta-analyses which included the finnish popula-
tion and the contributions of PRS were significantly high 
(2%, 3.9%, and 2.9%, respectively).

We propose two potential signs when the overestima-
tion bias should be suspected. The first is when a PRS 
model achieves surprisingly high performance without 
sufficient participants. The number of subjects and SNP 
heritability are important factors in PRS performance 



Page 7 of 10Park et al. BMC Genomic Data           (2023) 24:52 

[19]. For example, hundreds of thousands of subjects in 
the discovery set would be required for PRS to be used 
in disease prediction [19]. Computing the PRS using 
UK Biobank for traits with prominent heritability sets 
the upper bounds for other traits with lower heritabil-
ity. Thus, we reveal that a test set of 10k is required in 
the 60k discovery set for statistically significant AUC 
increment by PRS. In the studies registered in the PGS 
catalog, the median number of subjects in the test sets is 
6995 and 24,573 in the discovery sets [23]. In addition, a 
systematic review of AD PRS studies reveals that the test 
set size ranges from 59 to 116,666 [24]. About one-third 
of them, the sample size is less than a thousand. There-
fore, an abundance of prior sPRS studies [24–26] may not 
suffice as the number of samples required for statistically 
significant results.  .

Second, for particular phenotypes, high variability 
in performances across different nations or races using 
the same discovery set may be another sign of overes-
timation. PRS performances plummet if the discovery 
and test sets are from different countries or ethnicities 
[12–16]. However, a line of evidence suggests that trans-
ethnic portability remains in many traits [27–29], even 
if the inherent differences in LD structures across races 
prevent causal variants from being correctly reflected in 
PRS [30]. For instance, Martin et al. reported equivalent 
performances within the confidence interval for intra- 
and trans-ethnic test sets in four out of five binary traits 
and 11 out of 17 non-binary traits of BioBank Japan [27]. 
Also, sPRS developed with Europeans showed a 50% 
discounted performance for East Asians and 25% for 
Africans [27]. The gap (or the variability) between intra-
ethnic and trans-ethnic evaluations of PRS can be falsely 
increased by overestimation in a specific ethinic group 
study. The low trans-ethnic portability of PRS can be 
understood and overcomed only after excluding overesti-
mation bias. That is, if the performance for a trans-ethnic 
application is preserved at less than 25% for intra-ethnic 
evaluation, overlapping bias might be suspected. In other 
words, sPRS suffers in trans-nation or trans-ethnic stud-
ies since the subject-level independence strictly holds.

PRS also could be developed using GWA (P < 5 × 10–8) 
SNPs in core genes curated from multiple GWA stud-
ies [31–33], which we argue are not free from the over-
estimation bias. Using GWA SNPs is justified because 
it substitutes the P-value thresholding step required 
in conventional PRS studies for selecting SNPs. Also, 
GWA SNPs tend to show highly significant P-values and 
therefore are regarded as reliable. Moreover, GWA SNPs 
information can be conveniently accessible via reviewing 
prior works, even if the authors do not release summary 
statistics. However, GWA SNPs are frequently found in 
the uninterpretable non-coding regions [34], and PRS 
performances increase with a higher number of SNPs 

then plateau (Figs. 2 and 3) [35]. Therefore, PRS models 
from GWA SNPs may overfit to the discovery set. Hence, 
the odds of overestimation bias are high when the GWA 
SNPs are selected from multiple studies.

For the non-binary trait height, PRS has a greater con-
tribution than binary trait hypertension. Similar trends 
have been observed in a prior study [27]. Heritability 
for height and hypertension was reported as 49.7% and 
14.7%, respectively [21]. Although a superior heritabil-
ity of height partially explains the performance gap, 
characteristics of each phenotype may also play a role. 
For instance, while measuring height is straightforward, 
a diagnosis of hypertension can depend on age. Thus, a 
subset of the control group can later be diagnosed with 
hypertension.

One limitation in our study is the indirect derivation of 
the scale effect to prove the overestimation bias of sPRS 
in AD prediction. We justify the choice of our methods 
based on three reasons. First, hypertension and height 
have higher heritabilities than AD [20, 21, 31]. Second, 
the number of SNPs used for UK Biobank is larger than 
those used for AD data analysis. Finally, the number of 
available subjects in UK Biobank is five-fold larger than 
IGAP. Therefore, we argue that PRS performances of 
hypertension from UK Biobank are sufficient upper 
bounds of PRS studies not only for AD prediction but 
also for those of most binary complex genetic traits/dis-
eases using subjects of less than national biobank scale.

Conclusion
As the risk of overestimation bias is evaluated in sPRS 
studies, care must be taken to prevent overlap, especially 
within the same ethnicity. Direct methods of calculating 
sample overlap are not always feasible, so indirect meth-
ods using summary statistics can be applied [36]. While 
applications of genetic studies continue to gain momen-
tum and many countries create large-scale biobanks, 
PRS developed from large meta-analyses that curate and 
merge data from several countries should be screened in 
advance to filter out overlapping subjects. Researchers 
often release summary statistics to help further research 
[23]. When using summary statistics direct comparisons 
between a test set and large-scale data are difficult. As 
such, we showcase both direct and indirect methods to 
probe overestimation bias within the same ethnicity—
either of which, we argue, must be mandatory to improve 
PRS reliability.

Methods
Participants
In this work, AD genetic studies–International Genom-
ics of Alzheimer’s Project (IGAP), Alzheimer’s Disease 
Sequencing Project (ADSP), and AMP-AD–are used 
to demonstrate overestimation bias in PRS [37–43]. 
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Non-Hispanic white individuals are used, and their 
cross-study genetic relatedness is revealed by principal 
component (PC) and identity-by-state analyses. After 
quality control, our final analyses include 10,293 partici-
pants from ADSP and 1,133 from AMP-AD (Supplemen-
tary Table 1). In the UK Biobank database [44], 342,318 
white-British participants had hypertension and height 
records. Refer to the Supplementary Material for addi-
tional information about the study datasets, sequencing 
methods, and quality control processes.

Statistical analyses
We perform logistic regressions for binary traits and lin-
ear regressions for a continuous phenotype using PLINK 
(v1.9) [45]. Three different regression models are con-
structed. First, a simple regression model is used with 
PRS as the only covariate. Second, Model II denotes a 
multivariable regression without PRS, consisting of addi-
tional covariates highly related to the phenotypes. In 
Model III, we introduce PRS as an additional covariate to 
Model II. In both models, we control for 20 leading PCs

 ModelI : y = βxPRS

 ModelII : y = xT
coaco + xT

PCbPC

 ModelIII : y = xT
coaco + xT

PCbPC + βxPRS

 

xco =





1
xco,1

?
xco,n1



 , aco =





a0

a1

?
an1



 , xPC =





xPC,1

xPC,2

?
xPC,n2



 , bPC =





b1

b2

?
bn2





,Where xco, aco ∈ Rn1+1 are vectors of general covari-
ates (e.g., age and sex) and corresponding coefficients, 
respectively, while xPC, bPC ∈ Rn2 are vectors of PCs and 
PC coefficients, respectively. Here, xPRS denotes the PRS 
term. Throughout the manuscript, we focus on measur-
ing the additive gain of PRS in Model III, on top of Model 
II.

For AD datasets, common covariates include sex, 
APOE ε4 status, and the sequencing centers. PCs are 
computed using the principal component analysis func-
tion of PLINK (v1.9) [45]. For UK Biobank, age, sex, and 
array types (UK Biobank Axiom array or UK BiLEVE 
Axiom array) are considered as covariates. Here, we 
download 40 PCs pre-calculated with fastPCA [46]. For 
hypertension of UK Biobank, body mass index is addi-
tionally included in the covariates. For binary traits, the 
areas under receiver operating characteristic (AUC) and 
Nagelkerke’s pseudo-R2 are used to assess model perfor-
mances, which are calculated using “pROC” and “fsmb” 
packages of R (v4.0.3), respectively [47, 48]. Performance 
improvements from PRS are determined by subtracting 

AUC and R2 of Model II from those of Model III, which 
we label as ΔAUC and ΔR2. The statistical significance of 
ΔAUC is examined using DeLong’s test [49]. For height, 
a non-binary trait, we compute the adjusted-R2 via “lm” 
in the R program. PRS contributions are determined by 
comparing Model II and Model III with the extra sum of 
squares test.

Cross-validation
For ten-fold cross-validation tests, we balance the num-
ber of samples between the discovery and test splits 
based on each covariate in the statistical analyses using 
“StratifiedKFold” function from Python’s (v3.8) “scikit-
learn” (v0.24.1) package [50]. When testing a part of 
the cross-validated datasets, samples are balanced over 
covariates using the R (v4.0.3) “sampling” (v2.9) package 
[51].

Computation of PRS
For computing PRS, we select common (MAF ≥ 1%) SNPs 
and use summary statistics from discovery sets, followed 
by measuring PRS in test datasets. For rPRS, we calcu-
lated summary statistics by logistic regression. For sPRS, 
we downloaded summary statistics from IGAP web 
page (https://www.niagads.org/datasets/ng00036). After 
selecting SNPs with P < 0.5 in the association tests using 
the discovery dataset, we perform clumping with the 
window of ± 1Mbp and r2 < 0.1. Clumping is performed 
using PLINK (v1.9) [45]. For AD genetic studies, we 
exclude any SNPs within 1Mbp of the APOE (apolipopro-
tein E) region. When analyzing the effect of the number 
of SNPs on the results, the SNPs are selected in the order 
from the lowest P-value. We construct PRS with PRSice 
(v2.3) and Lassosum (v0.4.5) [2, 22].
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