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Abstract
Objectives Inborn error of immunity (IEI) comprises a broad group of inherited immunological disorders that usually 
display an overlap in many clinical manifestations challenging their diagnosis. The identification of disease-causing 
variants from whole-exome sequencing (WES) data comprises the gold-standard approach to ascertain IEI diagnosis. 
The efforts to increase the availability of clinically relevant genomic data for these disorders constitute an important 
improvement in the study of rare genetic disorders. This work aims to make available WES data of Brazilian patients’ 
suspicion of IEI without a genetic diagnosis. We foresee a broad use of this dataset by the scientific community in 
order to provide a more accurate diagnosis of IEI disorders.

Data description Twenty singleton unrelated patients treated at four different hospitals in the state of Rio de 
Janeiro, Brazil were enrolled in our study. Half of the patients were male with mean ages of 9 ± 3, while females were 
12 ± 10 years old. The WES was performed in the Illumina NextSeq platform with at least 90% of sequenced bases 
with a minimum of 30 reads depth. Each sample had an average of 20,274 variants, comprising 116 classified as 
rare pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics and the 
Association (ACMG) guidelines. The genotype-phenotype association was impaired by the lack of detailed clinical and 
laboratory information, besides the unavailability of molecular and functional studies which, comprise the limitations 
of this study. Overall, the access to clinical exome sequencing data is limited, challenging exploratory analyses and 
the understanding of genetic mechanisms underlying disorders. Therefore, by making these data available, we aim to 
increase the number of WES data from Brazilian samples despite contributing to the study of monogenic IEI-disorders.
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Objective
Inborn errors of Immunity (IEI) are a broad group of 
monogenic inherited disorders often caused by deleteri-
ous germline variants, comprising 485 illnesses identified 
up to date with heterogeneous phenotypic features that 
lead to overlapping clinical manifestations and misdiag-
nosis [1–3]. Advances in massively parallel sequencing 
technologies, such as whole exome sequencing (WES), 
and whole genome sequencing (WGS) have enabled 
much better resolution of various IEI disorders since a 
broader screening to identify new disease-related genes 
is possible [4–7]. Considering the growing number of 
genes associated with IEI, exploring publicly available 
samples may improve the diagnostic yield of these dis-
orders contributing to the ongoing construction of a 
genetic background of IEI. However, until November 
2022, a few WES data from Brazilian patients were avail-
able in the National Center of Biotechnology Informa-
tion (NCBI) Sequence Read Archive (SRA) (https://www.
ncbi.nlm.nih.gov/sra/). Most of the publicly available data 
in repositories originated from samples with assertive 
genetic diagnosis, usually achieved through identifying 
pathogenic or likely pathogenic single nucleotide variants 
(SNVs) and insertion or deletion variants (INDELs). Data 
sharing may contribute to a convergent prioritization of 
variants, besides improving the criteria for classifying 
deleterious variants. Such achievement is particularly 
important in identifying of new genes related to mono-
genic disease [8]. In this context, we aimed to provide 
the WES from undiagnosed Brazilian patients suspicious 
of IEI available in NCBI/SRA database to improve the 
genetic diagnosis of monogenic disorders, variant priori-
tization and classification strategies and facilitating the 
access to Brazilians massively parallel sequencing data 
(see Data Set 1) [9].

Data description
We conducted a genetic screening of WES data from 20 
singleton unrelated patients with suspicion of IEI treated 
by the Brazilian public Unified Health System (“Sistema 
Único de Saúde” or SUS) admitted from June 2017 to 
April 2018 to different medical centers in Rio de Janeiro. 
Seven patients were admitted to the Instituto de Pueri-
cultura e Pediatria Martagão Gesteira (IPPMG) of the 
Universidade Federal do Rio de Janeiro (UFRJ), eight 
from the Serviço de Alergia e Imunologia, of the Instituto 
Fernandes Figueira (IFF) in the Fundação Oswaldo Cruz 
(FIOCRUZ), four from the Hospital Federal dos servi-
dores do Estado (HFSE) of the Health Ministry, and one 
from Hospital Federal da Lagoa (HFL) of the Health Min-
istry. All participants were evaluated by a medical expert 

team. Still, the limited availability for performing some 
immunological tests, and discontinuity in the patient 
follow-up were a challenge in their in-depth phenotypic 
background.

Our cohort included 10 males and 10 females with 
overall mean ages of 11 ± 7 years old (age is not available 
for eight patients) (Data Table 1) [10]. Two patients have 
a family history of IEI. Patient 17 has a son who carries 
a likely pathogenic variant related to Wiskott-Aldrich 
Syndrome (manuscript submitted for publication), and 
patient 9 has a grandfather reported with Agammaglob-
ulinemia phenotype. However, we have not identified 
disease-causing variants in our patients to confirm the 
same phenotype. All subjects and their guardians agreed 
to participate in this study by signing an informed writ-
ten Ethical Consent Form approved by The Institutional 
Ethical Committee from the Instituto Fernandes Figueira 
study protocol (no. CAAE42934815.4.0000.52695269), 
and the Ethical Committee of the Instituto Nacional do 
Câncer (153/10). Furthermore, we safeguard the exclu-
sivity of the patient’s personal information to researchers 
and clinicians who developed this study. Thus, all pub-
licly accessible patient’s data were de-identified before 
publication preventing identification by third parties dur-
ing secondary analysis.

Genomic DNA was extracted from peripheral blood 
lymphocytes taken from each patient using the QIAmp 
DNA Mini Kit® (QIAGEN®) according to the manufac-
turer’s instructions. The WES libraries were prepared 
using Illumina TruSeq® Exome Kit (8 rxn × 6plex) accord-
ing to the manufacturer’s protocol. The Illumina Next-
Seq® 500/550 High Output Kit v2 (150 cycles) was used, 
generating 2 × 75  bp paired-end reads to provide the 
sequencing data. The raw data files in FASTQ format 
were processed in 2022 using an in-house bioinformatic 
pipeline previously described by us [11–14]. Our frame-
work includes reads mapping, quality control, and vari-
ant calling and annotation. We used fastqc (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and 
Trimmomatic [15] to inspect the quality of sequences 
generated and remove bad-formed reads. The remaining 
sequences were mapped to the human reference genome 
(GRCh38) using Bowtie2 version 2.3.5.1 [16, 17]. Addi-
tional BAM file analysis was performed with Samtools 
version 1.11 [18] for sorting and mapping quality filtra-
tion (Q30). Duplicate reads were marked using Picard 
MarkDuplicates tool version 2.20.7 (http://broadinsti-
tute.github.io/picard). Using Genome Analysis Toolkit 
(GATK) software version 4.1.20 [19], we recalibrated 
the base quality of BAM files using Base Quality Score 
Recalibration (BQSR) steps followed by variant calling in 
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the HaplotypeCaller tool. To annotate the genetic con-
sequences, populational allele frequencies, molecular 
impact, and effects of the variants identified in our analy-
sis, we used SnpEff and SnpSift software version 5.0 [20, 
21]. The resulting variants are available in NCBI/dbSNP 
database (see Data Set 2) [22].

About 20% of sequencing reads were filtered out after 
quality control steps. On average, 90% of exonic bases 
covered by the probes had at least 30 reads (see Data 
Table 2) [23]. The variant classification strategy was based 
on the guidelines of the American College of Medical 
Genetics and Genomics and the Association for Molecu-
lar Pathology (ACMG/AMP) [24]. To further automate 
the classification analysis, we used the VarSome clinical 
database to assign the ACMG/AMP criteria. The filter-
ing approach is shown in data file 1 [25]. We identified 
a total of 65,700 SNVs and INDELs during variant call-
ing with a mean of 20,274 variants per sample (Data Set 
2; Data File 1) [22, 25]. The molecular consequences of 
the SNVs identified include missense variants (32.5%), 
synonymous variants (32%); nonsense variants (28.8%); 
splicing site variants (4.5%), truncating variants (1.3%), 
inframe variants (0.7%) (see Data File 1) [25]. To select 
potential pathogenic variants, we focused our analysis 
on rare (minor frequency allele ≤ 0.01) protein-altering 
variants, including truncating variants (stop gain/loss, 

start loss, or frameshift), missense variants, canonical 
splice-site variants, in-frame insertions and deletions, 
and indels. We used two approaches to select qualifying 
variants. First we included VarSome [26] to prioritize 
pathogenic variants based on ACMG guidelines. Sec-
ondly, the Franklin (http://franklin.genoox.com) tool was 
used to select variants based on phenotype according to 
Human Phenotype Ontology (HPO) terms. Additionally, 
we performed a target gene investigation considering 
the panel for primary Immunodeficiency Classification 
of the International Union of Immunological Societies 
(IUIS) Expert Committee, updated in 2022 [2]. We iden-
tified 116 rare variants classified as pathogenic or likely 
pathogenic across the 20 patients (see Data Table 3) [27]. 
Eight heterozygous variants are in genes related to IEI-
disorders (IUIS classification) with recessive inheritance 
pattern according to the Online Mendelian Inheritance in 
Man (OMIM) database. No compound heterozygous evi-
dence was found. Table 1 provides the links to data file 1, 
data set 1–2, and data Tables 1, 2 and 3.

Limitations
  • Absence of clinical and laboratory findings about the 

20 patients included in this study.
  • Unavailability of molecular and functional studies to 

validate the variants identified in each patient.
  • The limited cohort size to perform population-based 

studies.
  • Lack of investigation of intronic variants or large 

Structural Variants (SV) limiting our analysis to 
SNVs and INDELs.
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Table 1 Overview of data files/data tables/data sets
Label Name of data file/

data table/data set
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(file 
extension)

Data repository and 
identifier (DOI or ac-
cession number)

Data 
Set 1

Whole exome se-
quencing (WES) data 
from 20 patients with 
suspicious Inborn er-
rors of Immunity (IEI) 
manifestation

fastq files 
(.sra)

NCBI/SRA (https://
identifiers.org/ncbi/
insdc.sra:SRP411987) 
[9]

Data 
Table 1

Demographic 
characteristics of the 
cohort

MS Excel file 
(.xlsx)

Figshare (https://
doi.org/10.6084/
m9.figshare.21674387) 
[10]

Data 
Set 2

IEI Exome SNP 
Discovery

html page 
(.html)

NCBI/dbSNP (https://
www.ncbi.nlm.nih.gov/
SNP/snp_viewBatch.
cgi?sbid=1063474) [22]

Data 
Table 2

Overview of the 
sequencing metrics

MS Excel file 
(.xlsx)
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Data 
File 1
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Image file 
(.png)
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[25]

Data 
Table 3

Detailed informa-
tion of the rare and 
Pathogenic/Likely 
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m9.figshare.21674462) 
[27]
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