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few decades, although there have been many advances 
in the discovery of biomarkers for early diagnosis of GC 
and surgical, chemical and immunological methods for 
treatment through many studies, gastric cancer still has 
high incidence and mortality rates. Therefore, continuous 
research is needed to diagnose and treat GC [2, 3].

Cell lines are a population of cells that represent the 
functions of specific tissues and can be cultured stably 
for a long period. They are the most convenient tools 
used for biology research. Cell lines provide many advan-
tages, such as easy cultivation and use, low cost, and the 
absence of ethical concerns associated with the use of 
animal and human tissues [4, 5].

In various studies, cell lines are used to find and verify 
the cause of specific diseases. The data described in this 
work were initially produced to confirm the genomic and 

Objective
According to Global Cancer Statistics, gastric cancer 
(GC) is the fourth most common cancer worldwide, with 
the highest incidence and mortality regardless of gender, 
excluding female breast cancer, and more than 700,000 
deaths annually from gastric cancer [1]. Over the past 
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Abstract
Objectives Gastric cancer (GC) is the fourth most common cancer worldwide, with the highest incidence and 
mortality regardless of sex. Despite technological advances in diagnosing and treating gastric cancer, GC still has high 
incidence and mortality rates. Therefore, continuous research is needed to overcome GC. In various studies, cell lines 
are used to find and verify the cause of specific diseases. Large-scale genomic studies such as ENCODE and Roadmap 
epigenomic projects provide multiomics data from various organisms and samples. However, few multi-omics data 
for gastric tissues and cell lines have been generated. Therefore, we performed RNA-seq, Exome-seq, and ChIP-seq 
with several gastric cell lines to generate a multi-omics data set in gastric cancer.

Data description Multiomic data, such as RNA-seq, Exome-seq, and ChIP-seq, were produced in gastric cancer and 
normal cell lines. RNA-seq data were generated from nine GC and one normal gastric cell line, mapped to a human 
reference genome (hg38) using the STAR alignment tool, and quantified with HTseq. Exome sequence data were 
produced in nine GC and two normal gastric lines. Sequenced reads were mapped and processed using BWA-MEM 
and GATK, variants were called by stralka2, and annotation was performed using ANNOVAR. Finally, for the ChIP-seq, 
nine GC cell lines and four GC cell lines were used in two experimental sets; chip-seq was performed to confirm 
changes in H3K4me3 and H3K27me3. Data was mapped to human reference hg38 with BWA-MEM, and peak calling 
and annotation were performed using the Homer tool. Since these data provide multi-omics data for GC cell lines, it 
will be useful for researchers who use the GC cell lines to study.
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epigenomic landscape of GC cell lines. However, it has 
not been published because the data set contains samples 
of low depth or insufficient quality. Large-scale genomic 
studies such as ENCODE [6] and Roadmap epigenomic 
projects [7] provide researchers with insight into the 
mechanism of gene regulation by producing multi-omics 
data from various organisms and samples. However, only 
limited data is available for cell line data; particularly, 
there are no data on gastric cell lines. Therefore, this 
data set contains various omics data, including RNA-seq, 
Exome-seq, and ChIP-seq, which can be used in various 
ways to study GC. We hope that this resource will be use-
ful to GC researchers.

Data Description.
Fourteen GC cell lines, including SNU001, SNU005, 

SNU016, SNU216, SNU520, SNU620, SNU638, SNU668, 
SNU719, AGS, MKN1, MKN45, MKN74, KATO III, and 
the normal gastric cell line Hs738, were obtained from 
the Korean Cell Line Bank (https://cellbank.snu.ac.kr) 
and American Type Culture Collection (https://www.
atcc.org). A normal gastric cell line, HFE145, was previ-
ously established by H. Ashktorab and D. T. Smoot [8, 9]. 
Cell line sources and data lists are summarized in Data 
File 1.

Total RNA was extracted from eight GC cell lines and 
one normal gastric cell line using the RNeasy Mini kit 
(Qiagen). An RNA sequencing library was prepared using 
the TruSeq RNA sample prep kit (Illumina), and sequenc-
ing was performed using the Nextseq500 platform (illu-
mina) to generate 75-bp paired-end reads. The sequenced 
reads were mapped to a human reference genome (hg38) 
using the STAR alignment tool (version 2.7.8a), and gene 
expression was quantified with the HTseq. The mapping 
results of the RNA sequencing data are shown in Data 
File 2. Each sample produced from 20 million to a maxi-
mum of 35 million reads. The mapped reads ranged from 
17 million to 29 million, except for the normal cell line, 
Hs738. In Hs738, 13 million reads were produced, 11 mil-
lion reads were uniquely mapped, and the mapping rate 
was about 90%.

Total genomic DNA was extracted from eight GC cell 
lines and two normal gastric lines using the DNeasy 
blood and Tissue kit (Qiagen). The sequencing library 
was prepared using the Roche NimbleGen SeqCap EZ 
Exome Library SR (Roche). Then, sequencing was per-
formed using the Hiseq X Ten platform (Illumina) to 
generate 150 bp paired-end reads. Sequencing reads were 
mapped to the human hg38 reference genome using the 
BWA-MEM algorithm (v0.7.12-r1039) [10]. The result-
ing SAM files were transformed into BAM files using the 
samtools. Duplicate reads were eliminated using Picard 
MarkDuplicates, and the BAM files were processed using 
RealignerTargetCreator (GATK) to create the target 
intervals file for the IndelRealigner (GATK) to target local 

realignment. Local realignment of reads was performed 
to correct misalignments due to indels. BaseRecalibra-
tor (GATK) was used to identify systematic errors in base 
quality scores exported from the sequencer and compute 
a recalibration model to adjust quality scores accordingly. 
PrintReads was performed as the final GATK analysis to 
produce re-calibrated merged output bam files sorted 
in coordinate order [11]. The variants were called using 
strelka2 [12]. Finally, the resulting set was annotated 
using ANNOVAR [13].

The Exome sequencing data include mapping rate, 
genome coverage, scores of the mapping quality scores, 
and duplicate reads, as shown in Data file 3. Each sample 
produced about 43 million to a maximum of 73 million 
reads, except for HFE145, which produced about 26 mil-
lion reads, and showed an average mapping rate of more 
than 99% and a mapping quality score of more than 29. 
Duplicate reads were about 34%, and the genome cover-
age was about 1.7 on average. The human exome repre-
sents less than 2% of the genome; therefore, that coverage 
is sufficient to detect copy number variation (CNV) and 
structural variation in the genome [14]. The average 
number of variants per sample was 36,733 (from 24,299 
to 46,191). The spectrum of base substitution of samples 
is shown in Data File 4. Each cell line showed a different 
base substitution ratio, but the C > A transversion was 
generally the highest, followed by the T > C transition.

The chromatin immunoprecipitation (ChIP) assay was 
performed with nine GC cells in the ChIP set1 and four 
GC cells in the ChIP set2 for ChIP sequence analysis 
following a protocol from the Myers lab (http://hudson-
alpha.org/myers-lab/protocols) with modifications. Spe-
cifically, cells were fixed with 1% formaldehyde, lysed, 
and sonicated using a Covaris M220 (Covaris). For ChIP-
seq analysis, the sonicated lysates for GC cells were used 
by dividing the same amount into three tubes and 10% 
input. Normal Rabbit IgG (2  µg, Sigma-Aldrich), anti-
trimethyl-Histone H3 (Lys4) (2  µg, Sigma-Aldrich), and 
anti-trimethyl-Histone H3 (Lys27) (2 µg, Sigma-Aldrich) 
were prebound to 20  µl Dynabeads coupled with pro-
tein A or protein G (Invitrogen). Genomic libraries were 
prepared at 250 to 400 bp sizes with input and immuno-
precipitated fragments using the TruSeq ChIP Sample 
Prep kit (Illumina). The ChIP-Seq library was sequenced 
using NextSeq_500 (Illumina), generating 76-bp sin-
gle reads. The sequenced reads of the ChIP-seq were 
aligned with the human reference genome (hg38) using 
BWA-MEM (v0.7.12-r1039) [10]. ChIP peaks were called 
using a hypergeometric optimization of Motif EnRich-
ment (Homer, version 4.11) [15] and annotated using the 
Homer annotatePeaks module.

ChIP-sequencing data have two experiment sets, and 
quality and quantity are summarized in Data File 5 and 
Data file 6. In the ChIP set1, each sample showed about 
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24 million to a maximum of 69 million reads, an average 
mapping rate of more than 96%, and a mapping quality 
score of more than 23.77. The duplication rate ranged 
from 3 to 71.17%, and the genome coverage ranged from 
about 0.5 to 1.5. In the ChIP set2, each sample showed 

about 16  million to a maximum of 41  million reads, 
an average mapping rate of more than 95% and a map-
ping quality score of more than 25.16. The duplication 
rate ranged from 3 to 20.30%, and the genome coverage 
ranged from about 0.3 to 0.9. The approximate IP effi-
ciency is summarized in Data file 7. Data file 8 shows 
total tags in peaks / total tags after Homer peak calling, 
which shows a wide range for each sample but was gener-
ally more than 10% in the H3K4me3 immunoprecipitated 
samples. The immunoprecipitated H3K27me3 samples 
were generally less than 2%. The excessively high IP effi-
ciency is due to the high duplication levels (Table 1).

Limitations
Since the data set contained samples of low depth or 
insufficient quality, observation of the genomic and epig-
enomic landscape of whole GC cell lines is challenging. 
Only four GC cell lines have a data set of three types 
(RNA-Seq, Exome-Seq, and ChIP-Seq), and the other cell 
lines miss one or two data types.
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Table 1 Overview of data files/data sets
Label Name of data 

file/data set
File types
(file 
extension)

Data repository and 
identifier (DOI or acces-
sion number)

Data 
file 1

Sources and Data 
Lists of Cell Lines

Dataset 
(.xlxs)

Figshare
(https://doi.org/10.6084/
m9.figshare.20453322) [16]

Data 
file 2

Summary Statis-
tics of RNA-seq 
Alignment

Dataset 
(.xlxs)

Figshare
(https://doi.org/10.6084/
m9.figshare.20453802) [17]

Data 
file 3

Quality and 
quantity of the 
Exome-seq data

Dataset 
(.xlxs)

Figshare
(https://doi.org/10.6084/
m9.figshare.20454027) [18]

Data 
file 4

Exome_TiTv_plot Portable 
Document 
Format file 
(.pdf )

Figshare
(https://doi.org/10.6084/
m9.figshare.20454138) [19]

Data 
file 5

Quality and 
quantity of the 
sequencing 
data_ChIP_set1

Dataset 
(.xlxs)

Figshare
(https://doi.org/10.6084/
m9.figshare.20454267) [20]

Data 
file 6

Quality and 
quantity of the 
sequencing 
data_ChIP_set2

Dataset 
(.xlxs)

Figshare
(https://doi.org/10.6084/
m9.figshare.20454279) [21]

Data 
file 7

ChIP seq IP effi-
ciency ChIP_set1

Dataset 
(.xlxs)

Figshare
(https://doi.org/10.6084/
m9.figshare.20454294) [22]

Data 
file 8

ChIP seq IP effi-
ciency ChIP_set2

Dataset 
(.xlxs)

Figshare
(https://doi.org/10.6084/
m9.figshare.20454381) [23]

Data 
set 1

GC RNA seq Fastq file 
(fastq.gz)

Korea Nucleotide 
Archive (Accession No.: 
KRA2200860) [24]
Sequence Read Ar-
chive (Accession No.: 
PRJNA892250) [28]

Data 
set 2

GC Exome seq Fastq file 
(fastq.gz)

Korea Nucleotide 
Archive (Accession No.: 
KRA2200861) [25]
Sequence Read Ar-
chive (Accession No.: 
PRJNA892250) [28]

Data 
set 3

GC ChIP seq_set1 Fastq file 
(fastq.gz)

Korea Nucleotide 
Archive (Accession No.: 
KRA2200862) [26]
Sequence Read Ar-
chive (Accession No.: 
PRJNA892250) [28]

Data 
set 4

GC RNA seq_set2 Fastq file 
(fastq.gz)

Korea Nucleotide 
Archive (Accession No.: 
KRA2200863) [27]
Sequence Read Ar-
chive (Accession No.: 
PRJNA892250) [28]
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