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Abstract 

Background Intracranial aneurysm (IA) is a common cerebrovascular disease. The immune mechanism of IA is more 
complicated, and it is unclear so far. Therefore, it is necessary to continue to explore the immune related molecular 
mechanism of IA.

Methods All data were downloaded from the public database. Limma package and ssGSEA algorithm was used 
to identify differentially expressed mRNAs (DEmRNAs) and analyze immune cell infiltration, respectively. Machine 
learning and cytoscape-cytohubba plug-in was used to identify key immune types and multicentric DEmRNAs of IA, 
respectively. Multicentric DEmRNAs related to key immune cells were screened out as key DEmRNAs by Spearman 
correlation analysis. Diagnostic models, competing endogenous RNA (ceRNA) regulatory network and transcription 
factor regulatory network were constructed based on key DEmRNAs. Meanwhile, drugs related to key DEmRNAs were 
screened out based on DGIdb database. The expression of key DEmRNAs was also verified by real time-PCR.

Results In this study, 7 key DEmRNAs (NRXN1, GRIA2, SLC1A2, SLC17A7, IL6, VEGFA and SYP) associated with key dif-
ferential immune cell infiltration (CD56bright natural killer cell, Immature B cell and Type 1 T helper cell) were identi-
fied. Functional enrichment analysis showed that VEGFA and IL6 may be involved in the regulation of the PI3K-Akt 
signaling pathway. Moreover, IL6 was also found to be enriched in cytokine-cytokine receptor interaction signaling 
pathway. In the ceRNA regulatory network, a large number of miRNAs and lncRNAs were found. In the transcription 
factor regulatory network, the transcription factor SP1 was correlated with VEGFA, SYP and IL6. It is also predicted that 
drugs related to key DEmRNAs such as CARBOPLATIN, FENTANYL and CILOSTAZOL may contribute to the treatment 
of IA. In addition, it was also found that SVM and RF models based on key DEmRNAs may be potential markers for 
diagnosing IA and unruptured intracranial aneurysm (UIA), respectively. The expression trend of key DEmRNAs verified 
by real-time PCR was consistent with the bioinformatics analysis results.

Conclusion The identification of molecules and pathways in this study provides a theoretical basis for understanding 
the immune related molecular mechanism of IA. Meanwhile, the drug prediction and diagnosis model construction 
may also be helpful for clinical diagnosis and management.
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Introduction
Intracranial aneurysm (IA) is a common cerebrovascu-
lar disease. Most of unruptured intracranial aneurysms 
(UIAs) are incidentally found, asymptomatic and typi-
cally benign [1]. The risk of rupture increases with age, 
aneurysm size, and onset of symptoms [2]. Rupture of 
an aneurysm can have devastating consequences for the 
patient. Computerized tomography (CT) and digital sub-
traction angiography (DSA) are commonly used diag-
nostic tests [3]. Despite advances in medical technology 
in recent years, the prognosis for ruptured intracranial 
aneurysm (RIA) remains poor. Therefore, it is necessary 
to identify new diagnostic biomarkers to aid the early 
detection and management of IA.

Previous studies have found that the formation, devel-
opment and rupture of IA are closely related to immune 
inflammatory response [4–6]. Loss of balance in CD4 + T 
cell subsets may contribute to a higher inflammatory state 
in IA [7]. Th17/Treg was unbalanced in IA, and Th17 
cells are positively correlated with the severity of spon-
taneous subarachnoid hemorrhage (SAH) induced by IA 
[8]. In addition, interleukin-2 (IL-2) can also significantly 
enhance the function of Treg cells in IA patients [9]. In 
addition, IA also exhibits abundant immune cell infiltra-
tion and activation of immune-related pathways [10]. The 
above results suggest that exploring the immune mech-
anism of IA is beneficial to deepen the understanding 
of the disease, which in turn can help in treatment and 
management. However, the immune mechanism of IA is 
more complicated, and it is unclear so far. Therefore, it 
is necessary to continue to explore the immune related 
molecular mechanism of IA.

Machine learning is an emerging field of medicine, 
and a large number of machine learning algorithms are 
often used to process medical data and perform fea-
ture selection on variables to play an important role 
in disease detection, diagnosis and treatment [11, 12]. 
Cytoscape-cytohubba plug-in provides 11 topological 
analysis methods, which can mine hub genes by ranking 
nodes in the network according to network characteris-
tics [13]. In this study, machine learning and 6 algorithms 
in the cytoscape-cytohubba plug-in were used to iden-
tify the key immune types and multicentric differentially 
expressed mRNAs (DEmRNAs) of IA, respectively. Mul-
ticentric DEmRNAs related to key immune cells were 
screened out as key DEmRNAs by Spearman correla-
tion analysis. Subsequently, diagnostic models, compet-
ing endogenous RNA (ceRNA) regulatory network and 

transcription factor regulatory network were also con-
structed based on key DEmRNAs.

Materials and methods
Data sources and processing
Firstly, “intracranial aneurysm” was used as the key 
word to search in gene expression omnibus (GEO) 
database [14]. Then, cell line or animal level stud-
ies and single-sample studies were excluded. Finally, 
GSE122897, GSE54083, GSE15629 and GSE75436 data-
sets were included in this study (Table 1). Among which, 
GSE122897, GSE54083 and GSE15629 datasets were the 
discovery cohort, and GSE75436 dataset was the verifi-
cation cohort. GPL platform annotation file was used to 
annotate gene expression profile, and gene probe was 
converted into gene symbol. Multiple probes corre-
sponding to the same gene were averaged. For three data-
sets in the discovery cohort, batch effects were removed 
using the combat function in “sva” package.

Identification and functional analysis of DEmRNAs
The “limma” package was used for differential expres-
sion analysis to obtain DEmRNAs of IA. The screen-
ing criterion for DEmRNAs was set as false discovery 
rate (FDR) < 0.05, |log2 fold change|> 1 (|log2 FC|> 1). To 
understand the function of DEmRNAs, GO and KEGG 
[15–17] function enrichment analysis was performed 
based on the David database (https:// david. ncifc rf. gov/). 
FDR < 0.05 was considered significant.

Identification of key immune cells
The ssGSEA algorithm was used to quantify the rela-
tive abundance of each immune cell infiltration in the 
immune microenvironment (IME) of the IA and con-
trol samples. Sets of genes that mark each immune cell 
type were obtained from Charoentong’s study [18]. The 
Wilcoxon test was used to statistically analyze the differ-
ence of immune cell infiltration between IA and control 

Table 1 Details of 4 datasets included in the study

UIA unruptured intracranial aneurysm, RIA ruptured intracranial aneurysm, IA 
intracranial aneurysm

GEO ID Samples Platform Source Type

GSE122897 Control: UIA: RIA = 16: 21: 22 GPL16791 tissue mRNA

GSE54083 Control: UIA: RIA = 10: 5: 8 GPL4133 tissue mRNA

GSE15629 Control: UIA: RIA = 5: 6: 8 GPL6244 tissue mRNA

GSE75436 Control: IA = 15: 15 GPL570 tissue mRNA

https://david.ncifcrf.gov/
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groups. The correlation between each immune cell in IA 
and control groups was also analyzed. LASSO regression 
analysis of the “glmnet” package was performed to iden-
tify the first group of candidate key immune cells from 
23 types of immune cells. In addition, the randomFor-
est algorithm in the “randomForest” package was used 
to rank the importance of 23 kinds of immune cells from 
large to small according to the value of mean decrease 
accuracy. Then, the top 25% (6) immune cells were 
selected as the second group of candidate key immune 
cells. Subsequently, the intersection between candidate 
key immune cells in the first and second group, and dif-
ferentially infiltrating immune cells was taken as key 
immune cells.

Identification of key DEmRNAs
A protein–protein interaction (PPI) network was con-
structed based on string database (https:// cn. string- db. 
org/) to study the regulatory relationship between DEm-
RNAs. The interactions considered by the PPI network 
include known interactions (from curated databases and 
experimentally determined), predicted interactions (gene 
neighborhood, gene fusions and gene co-occurrence) and 
others (textmining, co-expression and protein homol-
ogy). Cytoscape software was used to visualize the PPI 
network. Subsequently, multicentric DEmRNAs were 
screened using betweenness, degree, edge percolated 
component (EPC), maximal clique centrality (MCC), 
maximum neighborhood component (MNC) and stress 
in the cytoscape-cytoHubba plug-in. DEmRNAs in each 
algorithm were sorted according to “Score”. The intersec-
tion DEmRNAs of the top 30 node DEmRNAs of each 
algorithm were screened by the “UpSet” package. The 
Spearman correlation was used to analyze the correlation 
between multicentric intersection DEmRNAs and key 
immune cells to explore the synergistic effect of immune 
cells and DEmRNAs in the occurrence and development 
of IA. DEmRNAs associated with immune cells were 
regarded as key DEmRNAs. The screening criterion was 
P < 0.05.

Construction of ceRNA regulation network
Based on the ENCORI (http:// starb ase. sysu. edu. cn/ 
index. php) database, miRNAs that regulate key DEmR-
NAs were searched. Then, differentially expressed miR-
NAs (DEmiRNAs) of IA were identified based on the 
GSE66239 dataset (10 control tissue samples and 7 IA 
tissue samples). The screening criterion was P < 0.05 and 
|log2FC|> 1. Subsequently, DEmiRNAs negatively regu-
lated with key DEmRNAs were selected and their corre-
sponding lncRNAs were searched based on the ENCORI 
database. Finally, a ceRNA regulation network was 
constructed.

Construction of transcription factor regulatory network 
and drug prediction
Transcription factors related to key DEmRNAs were 
screened out based on TRRUST database (https:// www. 
grnpe dia. org/ trrust/) to explore the relationship between 
transcription factors and key DEmRNAs. In order to 
provide a new perspective for the diagnosis, treatment 
and research of IA, drugs related to key DEmRNAs were 
screened out based on DGIdb database (https:// dgidb. 
org/).

Construction of diagnostic model
The “random forests”, “rpart” and “e1071” packages were 
used to construct random forest (RF), decision tree (DT) 
and support vector machine (SVM) models based on 
key DEmRNAs, respectively. Receiver operating charac-
teristic (ROC) analysis was performed using the “pROC 
(version 1.15.3)” package. The accuracy of model was 
evaluated by area under curve (AUC). Higher value of 
the AUC indicates the higher diagnostic accuracy [19]. 
AUC > 0.7 indicates good diagnostic accuracy. Diagnostic 
accuracy of model was also validated on the GSE75436 
dataset. In addition, the diagnostic accuracy of individual 
key DEmRNAs was also analyzed.

Real time‑PCR validation
Inclusion criteria for patients with IA were confirmed by 
digital subtraction angiography (DSA) and the patients 
were Chinese over 18  years of age. Patients with other 
cerebral hemangiomas, malignancies, severe complica-
tions, ongoing pregnancy or lactation, and incomplete 
clinical information were excluded. The individuals in the 
control group were gender and age matched with the IA 
group and had no disease. Those individuals with a fam-
ily history of IA were ongoing pregnancy or lactation was 
excluded.

Blood samples from 10 healthy individuals and 8 IA 
patients were included in this study according to the 
above screening criteria. Detailed clinical information is 
shown in Table S1. RNAliquid ultra-speed whole blood 
(liquid sample) total RNA extraction kit was used to 
extract total RNA. FastQuant cDNA synthesis kit and 
SuperReal PreMix Plus (SYBR Green) were used to syn-
thesize cDNA and perform real time-PCR, respectively. 
GAPDH and ACTB are internal reference genes. Each 
experiment was repeated three times.  2−ΔΔCt method was 
used for relative quantitative analysis of data [20]. The 
present study was approved by the Ethics Committee of 
The First Affiliated Hospital of Anhui Medical Univer-
sity (B2020003). Written informed consent was obtained 
from all participants.

https://cn.string-db.org/
https://cn.string-db.org/
http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/index.php
https://www.grnpedia.org/trrust/
https://www.grnpedia.org/trrust/
https://dgidb.org/
https://dgidb.org/
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Statistical analysis
All statistical analyses were performed in R software 
(version 3.5.3). The Wilcoxon test was used to statisti-
cally analyze the difference of immune cell infiltration 
between IA and control groups, as well as the difference 
of key DEmRNAs expression between UIA, RIA and nor-
mal control groups. Spearman correlation was used to 
analyze the correlation between multicentric intersec-
tion DEmRNAs and key immune cells. In real time-PCR, 
t-test was used to evaluate the statistical significance.

Results
Analysis of DEmRNAs
After pretreatment of the original data, a total of 13,607 
mRNAs were identified in the discovery cohort (Fig. 1A 
and B). According to FDR < 0.05 and |log2 FC|> 1, 448 
(169 up-regulated and 279 down-regulated) DEmRNAs 
were identified in IA group. Volcano plot of DEmRNAs 
and heatmap of the top 50 DEmRNAs are shown in 
Fig. 1C and D. Subsequently, GO and KEGG functional 
enrichment analyses were performed to understand 
the biological function of DEmRNAs (Fig. 1E and F). In 
biological process (BP) of GO terms, DEmRNAs were 
mainly involved in signal transduction and extracellular 

matrix organization. In cellular component of GO terms, 
DEmRNAs were mainly distributed in plasma membrane 
and integral component of membrane. In molecular 
function (MF) of GO terms, the functions of DEmRNAs 
mainly include protein binding and calcium ion binding. 
Moreover, KEGG analysis showed that DEmRNAs were 
enriched in multiple signaling pathways, such as neuro-
active ligand-receptor interaction, PI3K-Akt signaling 
pathway and cytokine-cytokine receptor interaction. GO 
and KEGG enrichment results indicate the complexity of 
molecular mechanisms in IA progression.

Identification of key immune cells in IA
The ssGSEA method was used to evaluate infiltra-
tion status of 23 immune cells in normal control group 
and IA group. The results showed that Activated B cell, 
CD56dim natural killer cell, Immature dendritic cell, 
Monocyte and Type 2  T helper cell had no significant 
difference between the two groups, while the infiltra-
tion levels of other 18 immune cells in IA group were 
significantly higher than that in normal control group 
(Fig. 2A). CD56bright natural killer cell, CD56dim natu-
ral killer cell, Immature B cell, Monocyte and Type 1 T 
helper cell were selected as candidate key immune cells 

Fig. 1 Identification and functional analysis of DEmRNAs. A: Boxplot of batch effect of mRNA; B: Venn diagram of intersection mRNAs of 
GSE122897, GSE54083 and GSE15629 datasets; C: Volcano map of DEmRNAs; D: Heat map of top 50 DEmRNAs; E: Bubble plot of top 10 biological 
process (BP), cellular component (CC) and molecular function (MF) of GO terms; F: Circle map of the top 10 signaling pathways of KEGG term
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in the first group of by LASSO regression (Fig.  2B and 
C). Then, CD56bright natural killer cell, Activated B cell, 
Type 1 T helper cell, Plasmacytoid dendritic cell, Regula-
tory T cell and Immature B cell were selected as candi-
date key immune cells in the second group of according 
to the value of mean decrease accuracy (Fig.  2D). The 
CD56bright natural killer cell, Immature B cell and Type 
1 T helper cell obtained by the intersection of candidate 
key immune cells in two groups, and differential immune 
cells were regarded as key immune cells.

Identification of key DEmRNAs in IA
A PPI network of DEmRNAs was constructed based on 
string database (Fig. 3A). Then, the betweenness, degree, 
EPC, MCC, MNC and stress algorithms in cytoscape-
cytoHubba plug-in were used to screen multicentric 
DEmRNAs based on PPI network. The top 30 DEmRNAs 
in each algorithm were screened according to the “Score” 

(Fig.  3B-G and Table S2). Subsequently, 11 multicentric 
intersection DEmRNAs (GRIA2, SLC17A7, CAMK2A, 
GRIN1, GABRG2, NRXN1, SYP, SLC1A2, LOX, IL6 
and VEGFA) were screened using the “UpSet” package 
(Fig.  3H and Table S2). Spearman correlation analysis 
revealed that only 7 multicentric intersection DEmR-
NAs were associated with 3 key immune cells (P < 0.05) 
(Fig. 3I).

Construction of regulatory network and drug prediction
A total of 20 negatively regulated DEmRNAs-DEmiR-
NAs relationship pairs (including 5 DEmRNAs and 19 
DEmiRNAs) were obtained based on ENCORI database 
and GSE66239 dataset analysis (Fig. 4A). Subsequently, 
lncRNAs corresponding to 19 DEmiRNAs were found 
based on the ENCORI database, followed by the con-
struction of the ceRNA network (Fig. 4B). This further 
indicates the complexity of the molecular mechanism 

Fig. 2 Identification of key immune cells. A: Difference analysis of immune cell infiltration between IA group and normal control group. The 
Wilcoxon test was used to statistically analyze the difference of immune cell infiltration between IA and normal control groups. * represents P < 0.05; 
** represents P < 0.01; *** represents P < 0.001; **** represents P < 0.0001; ns represent no significant difference. P < 0.05 was considered statistically 
significant. B: The partial likelihood deviance for the lasso regression; C: The lasso regression analysis; D: Mean decrease accuracy ranking of 23 
immune cells
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of IA. To understand the correlation between key DEm-
RNAs and transcription factors, transcription factor 
regulatory network was constructed (Fig.  5A). In the 
network, some related transcription factors were iden-
tified, such as VEGFA, SYP, NRXN1 and IL6. Moreo-
ver, the transcription factor SP1 was correlated with 

VEGFA, SYP and IL6. In addition, related drugs of key 
DEmRNAs were also predicted (Fig.  5B). The results 
showed that there were 33 drugs related to GRIA2, 25 
drugs related to IL6, 1 drug related to NRXN1, 2 drugs 
related to SLC17A7, 1 drug related to SYP, 38 drugs 
related to VEGFA, and no related drugs to SLC17A7. 

Fig. 3 Identification of key DEmRNAs. A: PPI network of DEmRNAs. Red and green represent up-regulated and down-regulated DEmRNAs, 
respectively. B: PPI network of the top 30 DEmRNAs scored by the Betweennes algorithm. The color represents the importance of the DEmRNA in 
the algorithm, the darker the more important. C: PPI network of the top 30 DEmRNAs scored by the Betweennes algorithm. The color represents 
the importance of the DEmRNA in the algorithm, the darker the more important. D: PPI network of the top 30 DEmRNAs scored by the Degree 
algorithm. The color represents the importance of the DEmRNA in the algorithm, the darker the more important. E: PPI network of the top 30 
DEmRNAs scored by the EPC algorithm. The color represents the importance of the DEmRNA in the algorithm, the darker the more important. F: PPI 
network of the top 30 DEmRNAs scored by the MCC algorithm. The color represents the importance of the DEmRNA in the algorithm, the darker 
the more important. G: PPI network of the top 30 DEmRNAs scored by the Stress algorithm. The color represents the importance of the DEmRNA in 
the algorithm, the darker the more important. H: Screening of multicentric DEmRNAs; I: Correlation between key immune cells and key DEmRNAs. 
Orange represents DEmRNAs, blue represents immune cells, solid line represents positive correlation, and dashed line represents negative 
correlation
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Fig. 4 Construction of a ceRNA regulatory network. A: DEmRNAs-DEmiRNAs negative regulatory network. Red and green represent up-regulated 
and down-regulated, respectively. B: CeRNA regulatory network. Square, V-shape and circle represents lncRNAs, DEmiRNAs and DEmRNAs, 
respectively
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Identification of these drugs may aid in the treatment 
and management of IA.

Diagnostic analysis
RF, SVM and DT models all had high diagnostic accu-
racy in the discovery cohort (AUC > 0.7), and SVM model 
had the highest diagnostic accuracy (AUC = 0.835) 
(Fig.  6A-C). Similarly, the RF, SVM and DT models all 
had high diagnostic accuracy in the verification cohort, 
and the SVM model had the highest diagnostic accuracy 
(Fig.  6D-F). Subsequently, ROC analysis of key DEm-
RNAs showed that AUC values of NRXN1, SLC1A2, 
SLC17A7, IL6, VEGFA and SYP were all greater than 
0.7 (Supplementary Fig.  1). This suggests that NRXN1, 
SLC1A2, SLC17A7, IL6, VEGFA and SYP may be poten-
tial diagnostic biomarkers for IA. Furthermore, the diag-
nostic accuracy of the SVM model was higher than that 
of all the individual key DEmRNAs. This further suggests 
that SVM model may have important significance in clin-
ical diagnosis.

In addition, IA group was divided into UIA group 
and RIA group for further study. The Wilcoxon test was 
used to statistically analyze the difference of key DEm-
RNAs expression between UIA, RIA and normal con-
trol groups. Compared with the normal control group, 
the expressions of NRXN1, GRIA2, SLC1A2, SLC17A7 
and SYP were significantly down-regulated in the RIA 
group, while the expressions of IL6 and VEGFA were sig-
nificantly up-regulated (Fig. 7). Compared with the nor-
mal control group, the expressions of NRXN1, SLC1A2, 
SLC17A7 and SYP were remarkably down-regulated in 
the UIA group, while the expressions of IL6 and VEGFA 
were remarkably up-regulated. However, there was no 
significant difference in the expression of GRIA2 between 
the normal control group and the UIA group (Fig.  7). 
Subsequently, RF, SVM and DT models were constructed 
based on key DEmRNAs to distinguish normal control 
and UIA groups. The result showed that the RF model 
had the highest diagnostic accuracy (AUC = 0.824) 
(Fig.  8). Subsequently, ROC analysis of key DEmRNAs 

Fig. 5 Construction of transcription factor regulatory network A and drug prediction B of key DEmRNAs
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showed that AUC values of SLC1A2, SLC17A7, IL6, 
VEGFA and SYP were all greater than 0.7 (Supplemen-
tary Fig.  2). This suggests that SLC1A2, SLC17A7, IL6, 
VEGFA and SYP may be potential diagnostic biomark-
ers for UIA. Furthermore, the diagnostic accuracy of the 
RF model was higher than that of all the individual key 
DEmRNAs. This further suggests that the RF model may 
have an important role in clinically distinguishing normal 
control and UIA groups.

Expression validation of NRXN1, GRIA2, SLC1A2, SLC17A7, 
IL6, VEGFA and SYP by real time‑PCR
Expression validation of NRXN1, GRIA2, SLC1A2, 
SLC17A7, IL6, VEGFA and SYP was performed by real 
time-PCR. Primers used for real time-PCR are shown 
in Table  2. Compared with the normal control group, 
there was a down-regulated expression trend of NRXN1, 
GRIA2, SLC1A2, SLC17A7 and SYP in the IA group, 
while there was an up-regulated trend of IL6 and VEGFA 
(Fig. 9). Real time-PCR validation results were consistent 

with the bioinformatics analysis results. However, most 
of the key DEmRNAs lacked significant differences in 
real time-PCR expression validation, which may be due 
to the small sample size. Therefore, a large number of 
samples are needed to collect for further research.

Discussion
IA is a serious clinical disease. Microarray data analy-
sis is a common method to identify abnormal expres-
sion molecules of IA. Previous researchers identified 
a large number of important molecules related to IA 
based on weighted gene co-expression network analysis 
(WGCNA), ferroptosis-related ceRNA network analysis 
and ClusterONE clustering algorithm analysis [21–23]. 
Although there are many reports on IA research based 
on microarray data, analysis methods and research direc-
tions involved in these studies are relatively simple. In this 
study, key immune cells and DEmRNAs in IA were iden-
tified based on ssGSEA, LASSO regression, cytoscape-
cytohubba plug-in and Pearson correlation. In order to 
understand the underlying molecular mechanism of key 

Fig. 6 The construction of diagnostic models based on normal control and IA groups. A: Diagnostic accuracy analysis of RF model in discovery 
cohort; B: Diagnostic accuracy analysis of SVM model in discovery cohort; C: Diagnostic accuracy analysis of DT model in discovery cohort; D: 
Diagnostic accuracy analysis of RF model in verification cohort; E: Diagnostic accuracy analysis of SVM model in verification cohort; F: Diagnostic 
accuracy analysis of DT model in verification cohort. ROC, receiver operating characteristic; AUC, area under curve
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DEmRNAs, ceRNA and transcription factor regulatory 
networks were constructed. In this study, we not only 
explored the potential molecular mechanism of IA, but 
also carried out drug prediction and diagnosis model 

construction. Overall, this study lays a theoretical foun-
dation for further understanding of the complex molec-
ular mechanism of IA. Meanwhile, the drug prediction 

Fig. 7 Expression analysis of key DEmRNAs in UIA, RIA and normal control groups. A: Expression analysis of NRXN1 in UIA, RIA and normal control 
groups; B: Expression analysis of GRIA2 in UIA, RIA and normal control groups; C: Expression analysis of SLC1A2 in UIA, RIA and normal control 
groups; D: Expression analysis of SLC17A7 in UIA, RIA and normal control groups; E: Expression analysis of IL6 in UIA, RIA and normal control groups; 
F: Expression analysis of VEGFA in UIA, RIA and normal control groups; G: Expression analysis of SYP in UIA, RIA and normal control groups. The 
Wilcoxon test was used to statistically analyze the expression difference of key DEmRNAs expression between UIA, RIA and normal control groups. 
* represents P < 0.05; ** represents P < 0.01; *** represents P < 0.001; **** represents P < 0.0001; ns represents no significant difference. P < 0.05 was 
considered statistically significant
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and diagnosis model construction may also be helpful for 
clinical diagnosis and management.

To understand the molecular mechanism associ-
ated with IA immunity, 7 key DEmRNAs (NRXN1, 
GRIA2, SLC1A2, SLC17A7, IL6, VEGFA and SYP) 
associated with key differential immune cell infiltration 
(CD56bright natural killer cell, Immature B cell and 
Type 1  T helper cell) were identified. Some research-
ers found that neurexin 1 (NRXN1) was closely related 
to neuropsychiatric diseases [24–26]. NRXN1 may also 
be a new target for antibody–drug conjugate therapy 

in small cell lung cancer [27]. Moreover, NRXN is also 
expressed and functions in the vascular system [28]. 
Glutamate ionotropic receptor AMPA type subunit 2 
(GRIA2), associated with arterial restenosis, regulates 
vascular smooth muscle cell proliferation and migra-
tion [29]. GRIA2 mutations are also associated with 
neurodevelopmental disorders [30]. Solute carrier fam-
ily 1 member 2 (SLC1A2), also known as EAAT2 or 
GLT1, is associated with a variety of neuropsychiatric 
diseases and is an important regulatory molecule of 
intracranial glioblastoma [31–33]. Abnormality of sol-
ute carrier family 17 member 7 (SLC17A7), also known 
as VGLUT1, seems to be associated with cognitive 
function in patients with cerebrovascular disease [34]. 
Synaptophysin (SYP) has also been found to play a role 

Fig. 8 The construction of diagnostic models based on normal control and UIA groups. A: Diagnostic accuracy analysis of RF model in discovery 
cohort; B: Diagnostic accuracy analysis of SVM model in discovery cohort; C: Diagnostic accuracy analysis of DT model in discovery cohort. ROC, 
receiver operating characteristic; AUC, area under curve

Table 2 Sequences of primers used for real time-PCR verification

Primer name Primer sequence (5’ to 3’)

GAPDH-F (internal reference) 5-CTG GGC TAC ACT GAG CAC C-3

GAPDH-R (internal reference) 5-AAG TGG TCG TTG AGG GCA ATG-3

ACTB-F (internal reference) 5-GAT CAA GAT CAT TGC TCC TCCT-3

ACTB-R (internal reference) 5-TAC TCC TGC TTG CTG ATC CA-3

GRIA2-F 5-CAC ATC ATT TTG CGG AAC ACT-3

GRIA2-R 5-AGC ACA GCT TGC AGT GTT GAT-3

IL6-F 5-ACT CAC CTC TTC AGA ACG AATTG-3

IL6-R 5-CCA TCT TTG GAA GGT TCA GGTTG-3

NRXN1-F 5-TTC TGC AAC GGA CAG ATC G-3

NRXN1-R 5-CCC AGG GTC ATT GCA GAG T-3

SLC17A7-F 5-TAC CTG TTC TGG CTG CTC GT-3

SLC17A7-R 5-CAG AAG TTG GCC ACG ATG AT-3

SLC1A2-F 5-TGT CCA CGA CCA TCA TTG CTG-3

SLC1A2-R 5-TTC TTG AGC TTG GGA TTG CCT-3

SYP-F 5-TAT GGC CAC CTA CAT CTT CCT-3

SYP-R 5-ACA GGG TCT CTC AGC TCC TTG-3

VEGFA-F 5-CTG TCT TGG GTG CAT TGG AGC-3

VEGFA-R 5-AGG GTC TCG ATT GGA TGG CAG-3

Fig. 9 Expression validation of NRXN1, GRIA2, SLC1A2, SLC17A7, IL6, 
VEGFA and SYP by real time-PCR. * represents P < 0.05, P < 0.05 was 
considered statistically significant
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in a variety of diseases such as colorectal cancer [35], 
frontotemporal dementia syndrome [36] and epithe-
lioid hemangioendothelioma [37]. So far, we have not 
found relevant studies on NRXN1, GRIA2, SLC1A2, 
SLC17A7 and SYP in IA. To our knowledge, this is 
the first study to show that NRXN1, GRIA2, SLC1A2, 
SLC17A7 and SYP are down-regulated in IA and asso-
ciated with immune cells in the IME of IA. NRXN1, 
GRIA2, SLC1A2, SLC17A7 and SYP may play poten-
tial regulatory roles in the progression of IA and may 
be novel molecular biomarkers of IA. Furthermore, the 
AUC values of SLC17A7 and SYP were greater than 0.7 
in the discovery cohort and validation cohort, suggest-
ing that SLC17A7 and SYP may be potential diagnostic 
markers for IA.

Plasma interleukin 6 (IL6) is an independent prognos-
tic biomarker that can be used to help identify patients at 
high risk for poor neurological outcomes following RIA 
[38]. IL-6 is increased in the serum of estrogen-deficient 
mice and appears to contribute to the rupture of estro-
gen-deficient cerebral aneurysm in mice by enhancing 
macrophage infiltration at the circle of Willis [39]. Vas-
cular endothelial growth factor A (VEGFA) can regulate 
the apoptosis and activity of IA vascular endothelial cells 
through lncRNA metastasis-associated lung adenocar-
cinoma transcript 1 (MALAT1)/miR-143/VEGFA sig-
nal axis [40]. In this study, IL6 was positively correlated 
with Type 1  T helper cell, and VEGFA was positively 
correlated with CD56bright natural killer cell, Imma-
ture B cell and Type 1 T helper cell, suggesting that IL6 
and VEGFA may play a role in the immunomodulatory 
process of IA. In addition, the AUC values of IL6 and 
VEGFA were greater than 0.7 in the discovery cohort 
and validation cohort, suggesting that IL6 and VEGFA 
may be potential diagnostic markers for IA. KEGG func-
tional enrichment analysis showed that VEGFA and IL6 
may be involved in the regulation of the PI3K-Akt sign-
aling pathway. One study showed that silencing serine-
arginine protein kinase 1 (SPRK1) could inhibit the PI3K/
Akt signaling pathway, thereby increasing cell prolifera-
tion and vascular remodeling, and reducing the apoptosis 
rate of vascular smooth muscle cells (VSMCs) in IA rats 
[41]. Furthermore, T helper (Th) 17/Treg balance in IA 
requires maintenance of the PI3k/Akt/NF-κB signaling 
pathway [42]. In addition, IL6 was found to be enriched 
in cytokine-cytokine receptor interaction signaling path-
way. A previous study suggested that cytokine-cytokine 
receptor interaction signaling pathway may be associ-
ated with subarachnoid hemorrhage caused by RIA [43]. 
Therefore, it is speculated that VEGFA and IL6 may play 
a role in the formation and development of IA by regulat-
ing PI3K-Akt and cytokine-cytokine receptor interaction 

signaling pathways, which provide a direction for further 
research on the molecular mechanism of IA.

To further understand the molecular regulatory 
mechanisms of key DEmRNAs, ceRNA and transcrip-
tion factor regulatory networks were constructed. In 
the ceRNA regulatory network, 19 DEmiRNAs were 
included. Hsa-miR-409-3p can regulate the prolifera-
tion and apoptosis of human brain vascular smooth 
muscle cells [44]. Hsa-miR-143-3p is reduced in 
patients with aneurysmal subarachnoid hemorrhage 
and is associated with poor prognosis, and hsa-miR-
145-5p level is also significantly reduced [45]. These 
DEmiRNAs were negatively correlated with key DEm-
RNAs, so we speculated that the role of key DEmRNAs 
in IA might be regulated by DEmiRNAs. In addition, 
ceRNA also contains a large number of lncRNAs, and 
the specific molecular mechanism needs to be further 
studied. Related transcription factors of VEGFA, SYP, 
NRXN1 and IL6 were found in the transcription factor 
regulatory network. The Sp1 transcription factor (SP1) 
was correlated with VEGFA, SYP and IL6. A study 
found that SP1 transcriptionally activates pituitary 
tumor-transforming gene 1 (PTTG1) to regulate the 
migration and phenotypic transformation of Human 
aortic vascular smooth muscle cells in AD through 
MAPK signaling [46]. Moreover, the abnormal expres-
sion of SP1 is also associated with the recurrence of 
meningioma [47]. Therefore, the underlying mecha-
nism of SP1 involvement in IA is worthy of further 
investigation. In order to provide a new perspective 
for the diagnosis, treatment and research of IA, drugs 
related to key DEmRNAs were also screened out based 
on DGIdb database. CARBOPLATIN can treat meta-
static myxomatous cerebral aneurysms [48]. FENTA-
NYL can relieve headache with little side effects after 
neck clipping of ruptured IA [49]. CILOSTAZOL can 
effectively prevent cerebral vasospasm and improve 
prognosis in patients with aneurysmal subarachnoid 
hemorrhage [50]. In addition, most of the drugs have 
not been found to be related to the treatment of IA, and 
their potential value can be explored in future studies.

In this study, RF, SVM and DT models were con-
structed based on machine learning. For the normal 
control and IA groups, the SVM model had the high-
est diagnostic accuracy in the discovery and validation 
cohorts. Furthermore, the diagnostic accuracy of the 
SVM model was higher than that of all the individual 
key DEmRNAs. Therefore, it is speculated that SVM 
model is of great significance in the clinical diagnosis 
of control and IA. UIA is mostly asymptomatic and 
difficult to diagnose. RF, SVM and DT models were 
constructed based on key DEmRNAs to distinguish 
normal control and UIA groups. The result showed 
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that the RF model had the highest diagnostic accuracy 
(AUC = 0.824). This implies that the RF model may 
have an important role in clinically distinguishing the 
normal control and UIA groups. Both the SVM model 
and the RF model considered as potential diagnostic 
tools are based on public datasets, and a large num-
ber of clinical samples are needed to collect for further 
research if they can be used clinically.

This study has some limitations. Firstly, the sample size 
in the RT-PCR is small, and a large number of samples 
are needed to collect for further research. Secondly, the 
diagnostic model obtained in this experiment needs to be 
verified in a large number of clinical samples. Finally, the 
specific mechanisms of the identified molecules require 
extensive in vitro studies. In a word, the identification of 
molecules and pathways in this study provides a theoreti-
cal basis for understanding the immune related molecu-
lar mechanism of IA.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12863- 023- 01121-w.

Additional file 1: Table S1. Clinicalinformation of IA patients and normal 
controls in the real time-PCR

Additional file 2: Table S2. screening ofmulticentric DEmRNAs

Additional file 3: Supplementary Figure 1. Diagnostic accuracy analysis 
of NRXN1 (A), GRIA2 (B), SLC1A2 (C), SLC17A7 (D),IL6 (E), VEGFA (F) and SYP 
(G) based on control group and IA group.ROC, receiver operatingcharac-
teristic; AUC, area under curve

Additional file 4: Supplementary Figure 2. Diagnostic accuracy analysis 
of NRXN1 (A), GRIA2 (B), SLC1A2 (C), SLC17A7 (D),IL6 (E), VEGFA (F) and SYP 
(G) based on control group and UIA group.ROC, receiver operatingcharac-
teristic; AUC, area under curve

Acknowledgements
Not applicable

Authors’ contributions
Z. M. conception and design, Z. S. administrative support, P. Z. provid-
ing materials and samples, Z. M. and P. Y. data collection and collation. All 
authors reviewed the manuscript. The author(s) read and approved the final 
manuscript.

Funding
Not Applicable.

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article. We searched for IA public gene expression data from GEO (http:// www. 
ncbi. nlm. nih. gov/ geo) databases. The accession numbers are GEO: GSE122897, 
GEO: GSE54083, GEO: GSE15629 and GEO: GSE75436, respectively.

Declarations

Ethics approval and consent to participate
This study was approved by the ethics committee The First Affiliated Hospital 
of Anhui Medical University (B2020003). All participants were informed as to 
the purpose of this study, and that this study complied with the Declaration of 
Helsinki. The written informed consent was obtained from the all participants. 
All of the authors have agreed to the publication of the work.

Consent for publication
Not applicable.

Competing interest
The authors declare that they have no competing interests.

Author details
1 Department of Neurology, The First Affiliated Hospital of Anhui Medical 
University, Anhui Province, No. 299, Bianhe Zhong Lu District, Suzhou City, 
Hefei 234000, China. 2 Department of Neurology, Suzhou Hospital of Anhui 
Medical University, Suzhou, China. 3 Department of Neurosurgery, Suzhou 
Hospital of Anhui Medical University, Suzhou, China. 

Received: 30 September 2022   Accepted: 30 March 2023

References
 1. Nasr DM, Brown RD Jr. Management of unruptured intracranial 

aneurysms. Curr Cardiol Rep. 2016;18:86. https:// doi. org/ 10. 1007/ 
s11886- 016- 0763-4.

 2. Gilbert ME, Sergott RC. Intracranial aneurysms. Curr Opin Ophthalmol. 
2006;17:513–8. https:// doi. org/ 10. 1097/ ICU. 0b013 e3280 10a1e7.

 3. Radić B, Blažeković A, Jovanović I, Jurišić-Kvesić A, Bilić E, Borovečki F. 
Diagnostic and therapeutic dilemmas in the management of intracranial 
aneurysms. Acta Clin Croat. 2021;60:758–64. https:// doi. org/ 10. 20471/ 
acc. 2021. 60. 04. 24.

 4. Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser 
RH, et al. Biology of intracranial aneurysms: role of inflammation. J Cereb 
Blood Flow Metab. 2012;32:1659–76. https:// doi. org/ 10. 1038/ jcbfm. 2012. 
84.

 5. Hallikainen J, Pyysalo M, Keränen S, Kellokoski J, Koivisto T, Suominen AL, 
et al. Systemic immune response against the oral pathogens porphy-
romonas gingivalis and aggregatibacter actinomycetemcomitans is 
associated with the formation and rupture of intracranial aneurysms. Eur 
J Neurol. 2021;28:3089–99. https:// doi. org/ 10. 1111/ ene. 14986.

 6. Zeyu Z, Yuanjian F, Cameron L, Sheng C. The role of immune inflam-
mation in aneurysmal subarachnoid hemorrhage. Exp Neurol. 
2021;336:113535.

 7. Zhang HF, Zhao MG, Liang GB, Yu CY, He W, Li ZQ, et al. Dysregulation of 
CD4(+) T cell subsets in intracranial aneurysm. DNA Cell Biol. 2016;35:96–
103. https:// doi. org/ 10. 1089/ dna. 2015. 3105.

 8. Song M, Jin Z, Wang P, Zhang X. Th17/Treg imbalance in peripheral blood 
from patients with intracranial aneurysm. J Neurosurg Sci. 2021. https:// 
doi. org/ 10. 23736/ s0390- 5616. 21. 05567-3.

 9. Zhang HF, Liang GB, Zhao MG, Zhao GF, Luo YH. Regulatory T cells dem-
onstrate significantly increased functions following stimulation with IL-2 
in a Tim-3-dependent manner in intracranial aneurysms. Int Immunop-
harmacol. 2018;65:342–7. https:// doi. org/ 10. 1016/j. intimp. 2018. 10. 029.

 10. Lu T, Liu Z, Guo D, Ma C, Duan L, He Y, et al. Transcriptome-based dissec-
tion of intracranial aneurysms unveils an “Immuno-Thermal” microenvi-
ronment and defines a pathological feature-derived gene signature for 
risk estimation. Front Immunol. 2022;13:878195.

 11. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30. 
https:// doi. org/ 10. 1161/ circu latio naha. 115. 001593.

 12. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. 
eDoctor: machine learning and the future of medicine. J Intern Med. 
2018;284:603–19. https:// doi. org/ 10. 1111/ joim. 12822.

 13. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying 
hub objects and sub-networks from complex interactome. BMC Syst Biol. 
2014;8(Suppl 4):S11. https:// doi. org/ 10. 1186/ 1752- 0509-8- s4- s11.

 14. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. 
NCBI GEO: archive for functional genomics data sets–update. Nucleic 
Acids Res. 2013;41:D991–5. https:// doi. org/ 10. 1093/ nar/ gks11 93.

 15. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28:27–30. https:// doi. org/ 10. 1093/ nar/ 28.1. 27.

 16. Kanehisa M. Toward understanding the origin and evolution of cellular 
organisms. Protein Sci. 2019;28:1947–51. https:// doi. org/ 10. 1002/ pro. 
3715.

https://doi.org/10.1186/s12863-023-01121-w
https://doi.org/10.1186/s12863-023-01121-w
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://doi.org/10.1007/s11886-016-0763-4
https://doi.org/10.1007/s11886-016-0763-4
https://doi.org/10.1097/ICU.0b013e328010a1e7
https://doi.org/10.20471/acc.2021.60.04.24
https://doi.org/10.20471/acc.2021.60.04.24
https://doi.org/10.1038/jcbfm.2012.84
https://doi.org/10.1038/jcbfm.2012.84
https://doi.org/10.1111/ene.14986
https://doi.org/10.1089/dna.2015.3105
https://doi.org/10.23736/s0390-5616.21.05567-3
https://doi.org/10.23736/s0390-5616.21.05567-3
https://doi.org/10.1016/j.intimp.2018.10.029
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1111/joim.12822
https://doi.org/10.1186/1752-0509-8-s4-s11
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1002/pro.3715
https://doi.org/10.1002/pro.3715


Page 14 of 14Ma et al. BMC Genomic Data           (2023) 24:20 

 17. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. 
KEGG for taxonomy-based analysis of pathways and genomes. Nucleic 
Acids Res. 2023;51:D587–92. https:// doi. org/ 10. 1093/ nar/ gkac9 63.

 18. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder 
D, et al. Pan-cancer Immunogenomic analyses reveal genotype-immu-
nophenotype relationships and predictors of response to checkpoint 
blockade. Cell Rep. 2017;18:248–62. https:// doi. org/ 10. 1016/j. celrep. 2016. 
12. 019.

 19. Dittrich T, Marsch S, Egli A, Rüegg S, De Marchis GM, Tschudin-Sutter 
S, et al. Predictors of infectious meningitis or encephalitis: the yield of 
cerebrospinal fluid in a cross-sectional study. BMC Infect Dis. 2020;20:304. 
https:// doi. org/ 10. 1186/ s12879- 020- 05022-6.

 20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using 
real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 
(San Diego, Calif ). 2001;25:402–8. https:// doi. org/ 10. 1006/ meth. 2001. 
1262.

 21. Bo L, Wei B, Wang Z, Li C, Gao Z, Miao Z. Bioinformatic analysis of 
gene expression profiling of intracranial aneurysm. Mol Med Rep. 
2018;17:3473–80. https:// doi. org/ 10. 3892/ mmr. 2017. 8367.

 22. Zhao C, Ma Z, Shang J, Cui X, Liu J, Shi R, et al. Bioinformatics analy-
sis reveals potential biomarkers associated with the occurrence of 
intracranial aneurysms. Sci Rep. 2022;12:13282. https:// doi. org/ 10. 1038/ 
s41598- 022- 17510-7.

 23. Zhu H, Tan J, Wang Z, Wu Z, Zhou W, Zhang Z, et al. Bioinformatics analy-
sis constructs potential ferroptosis-related ceRNA network involved in the 
formation of intracranial aneurysm. Front Cell Neurosci. 2022;16:1016682. 
https:// doi. org/ 10. 3389/ fncel. 2022. 10166 82.

 24. Hu Z, Xiao X, Zhang Z, Li M. Genetic insights and neurobiological 
implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry. 
2019;24:1400–14.

 25. Ishizuka K, Yoshida T, Kawabata T, Imai A, Mori H, Kimura H, et al. 
Functional characterization of rare NRXN1 variants identified in autism 
spectrum disorders and schizophrenia. J Neurodev Disord. 2020;12:25.

 26. Pak C, Danko T. Cross-platform validation of neurotransmitter release 
impairments in schizophrenia patient-derived NRXN1-mutant neurons. 
Proc Natl Acad Sci U S A. 2021;118(22):2025598118.

 27. Yotsumoto T, Maemura K, Watanabe K, Amano Y, Matsumoto Y, Zokumasu 
K, et al. NRXN1 as a novel potential target of antibody-drug conjugates 
for small cell lung cancer. Oncotarget. 2020;11:3590–600. https:// doi. org/ 
10. 18632/ oncot arget. 27718.

 28. Bottos A, Rissone A, Bussolino F, Arese M. Neurexins and neuroligins: syn-
apses look out of the nervous system. Cell Mol Life Sci. 2011;68:2655–66. 
https:// doi. org/ 10. 1007/ s00018- 011- 0664-z.

 29. Zhou M, Qi L, Gu Y. GRIA2/ENPP3 regulates the proliferation and migra-
tion of vascular smooth muscle cells in the restenosis process Post-PTA in 
lower extremity arteries. Front Physiol. 2021;12:712400.

 30. Zhou B, Zhang C, Zheng L, Wang Z, Chen X, Feng X, et al. Case report: a 
novel de novo missense mutation of the GRIA2 gene in a Chinese case of 
neurodevelopmental disorder with language impairment. Frontiers Gen. 
2021;12:794766.

 31. Fiorentino A, Sharp SI, McQuillin A. Association of rare variation in the 
glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder 
and schizophrenia. Eur J Hum Genet. 2015;23:1200–6. https:// doi. org/ 10. 
1038/ ejhg. 2014. 261.

 32. Manisha C, Selvaraj A, Jubie S, Moola Joghee Nanjan C, Moola Joghee 
N, Clement JP. Positive allosteric activation of glial EAAT-2 transporter 
protein: a novel strategy for Alzheimer’s disease. Med Hypotheses. 
2020;142:109794.

 33. Dagdelen DN, Akkulak A, Donmez YG. The investigation of glutamate 
transporter 1 (GLT-1) degradation pathway in glioblastoma cells. Mol Biol 
Rep. 2021;48:3495–502. https:// doi. org/ 10. 1007/ s11033- 021- 06407-9.

 34. Kirvell SL, Elliott MS, Kalaria RN, Hortobágyi T, Ballard CG, Francis PT. 
Vesicular glutamate transporter and cognition in stroke: a case-control 
autopsy study. Neurology. 2010;75:1803–9. https:// doi. org/ 10. 1212/ WNL. 
0b013 e3181 fd6328.

 35. Fassan M, Milione M, Maddalena G, Cremolini C, Schirripa M, Pietrantonio 
F, et al. Synaptophysin expression in (V600EBRAF-)mutated advanced 
colorectal cancers identifies a new subgroup of tumours with worse 
prognosis. Eur J Cancer (Oxford, England : 1990). 2021;146:145–54.

 36. Prota J, Rizzi L, Bonadia L, de Souza LC, Caramelli P, Secolin R, et al. Slowly 
progressive behavioral frontotemporal dementia syndrome in a family 

co-segregating the C9orf72 expansion and a Synaptophysin mutation. 
Alzheimer’s Dementia. 2022;18:523–8. https:// doi. org/ 10. 1002/ alz. 12409.

 37. Shibayama T, Makise N, Motoi T, Mori T, Hiraoka N, Yonemori K, et al. 
Clinicopathologic characterization of epithelioid hemangioendothelioma 
in a series of 62 cases: a proposal of risk stratification and identifica-
tion of a synaptophysin-positive aggressive subset. Am J Surg Pathol. 
2021;45:616–26. https:// doi. org/ 10. 1097/ pas. 00000 00000 001660.

 38. Kao HW, Lee KW, Kuo CL, Huang CS, Tseng WM, Liu CS, et al. Interleukin-6 
as a prognostic biomarker in ruptured intracranial Aneurysms. PloS one. 
2015;10:e0132115.

 39. Wajima D, Hourani S, Dodd W, Patel D, Jones C, Motwani K, et al. 
Interleukin-6 promotes murine estrogen deficiency-associated cerebral 
aneurysm rupture. Neurosurgery. 2020;86:583–92. https:// doi. org/ 10. 
1093/ neuros/ nyz220.

 40. Gao G, Zhang Y, Yu J, Chen Y, Gu D, Niu C, et al. Long non-coding RNA 
MALAT1/microRNA-143/VEGFA signal axis modulates vascular endothelial 
injury-induced intracranial aneurysm. Nanoscale Res Lett. 2020;15:139. 
https:// doi. org/ 10. 1186/ s11671- 020- 03357-2.

 41. Li XG, Wang YB. SRPK1 gene silencing promotes vascular smooth muscle 
cell proliferation and vascular remodeling via inhibition of the PI3K/Akt 
signaling pathway in a rat model of intracranial aneurysms. CNS Neurosci 
Ther. 2019;25:233–44.

 42. Sun X, Zheng X, Zhang X, Zhang Y, Luo G. Exosomal microRNA-23b-3p 
from bone marrow mesenchymal stem cells maintains T helper/Treg 
balance by downregulating the PI3k/Akt/NF-κB signaling pathway in 
intracranial aneurysm. Brain Res Bull. 2020;165:305–15. https:// doi. org/ 10. 
1016/j. brain resbu ll. 2020. 09. 003.

 43. Leng W, Fan D, Ren Z, Li Q. Identification of upregulated NF-κB inhibitor 
alpha and IRAK3 targeting lncRNA following intracranial aneurysm 
rupture-induced subarachnoid hemorrhage. BMC Neurol. 2021;21:197.

 44. Ding X, Wang X, Han L, Zhao Z, Jia S, Tuo Y. CircRNA DOCK1 regulates miR-
409–3p/MCL1 axis to modulate proliferation and apoptosis of human 
brain vascular smooth muscle cells. Front Cell Dev Biol. 2021;9:655628.

 45. Supriya M, Christopher R. Altered MicroRNA expression in intracranial 
aneurysmal tissues: possible role in TGF-β signaling pathway. 2021. 
https:// doi. org/ 10. 1007/ s10571- 021- 01121-3.

 46. Hu C, Huang W, Xiong N, Liu X. SP1-mediated transcriptional activation of 
PTTG1 regulates the migration and phenotypic switching of aortic vascu-
lar smooth muscle cells in aortic dissection through MAPK signaling. Arch 
Biochem Biophys. 2021;711:109007.

 47. Liu PC, Lieu AS, Lin CJ, Tsai HP, Chai CY, Kwan AL. High expression of 
Sp1 is associated with recurrence of meningioma. World Neurosurg. 
2021;149:e1056–60. https:// doi. org/ 10. 1016/j. wneu. 2021. 01. 016.

 48. Branscheidt M, Frontzek K, Bozinov O, Valavanis A, Rushing EJ, Weller 
M, et al. Etoposide/carboplatin chemotherapy for the treatment of 
metastatic myxomatous cerebral aneurysms. J Neurol. 2014;261:828–30. 
https:// doi. org/ 10. 1007/ s00415- 014- 7281-3.

 49. Terakado T, Nakai Y, Ikeda G, Uemura K, Matsumaru Y, Ishikawa E, et al. 
Effectiveness of low-dose intravenous fentanyl for postoperative 
headache management after neck clipping of ruptured intracranial aneu-
rysms. World Neurosurg. 2020;134:e339–45. https:// doi. org/ 10. 1016/j. 
wneu. 2019. 10. 062.

 50. Matsuda N, Naraoka M, Ohkuma H, Shimamura N, Ito K, Asano K, et al. 
Effect of cilostazol on cerebral vasospasm and outcome in patients with 
aneurysmal subarachnoid hemorrhage: a randomized, double-blind, 
placebo-controlled trial. Cerebrovasc Dis (Basel, Switzerland). 2016;42:97–
105. https:// doi. org/ 10. 1159/ 00044 5509.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1186/s12879-020-05022-6
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.3892/mmr.2017.8367
https://doi.org/10.1038/s41598-022-17510-7
https://doi.org/10.1038/s41598-022-17510-7
https://doi.org/10.3389/fncel.2022.1016682
https://doi.org/10.18632/oncotarget.27718
https://doi.org/10.18632/oncotarget.27718
https://doi.org/10.1007/s00018-011-0664-z
https://doi.org/10.1038/ejhg.2014.261
https://doi.org/10.1038/ejhg.2014.261
https://doi.org/10.1007/s11033-021-06407-9
https://doi.org/10.1212/WNL.0b013e3181fd6328
https://doi.org/10.1212/WNL.0b013e3181fd6328
https://doi.org/10.1002/alz.12409
https://doi.org/10.1097/pas.0000000000001660
https://doi.org/10.1093/neuros/nyz220
https://doi.org/10.1093/neuros/nyz220
https://doi.org/10.1186/s11671-020-03357-2
https://doi.org/10.1016/j.brainresbull.2020.09.003
https://doi.org/10.1016/j.brainresbull.2020.09.003
https://doi.org/10.1007/s10571-021-01121-3
https://doi.org/10.1016/j.wneu.2021.01.016
https://doi.org/10.1007/s00415-014-7281-3
https://doi.org/10.1016/j.wneu.2019.10.062
https://doi.org/10.1016/j.wneu.2019.10.062
https://doi.org/10.1159/000445509

	Identification of immune-related molecular markers in intracranial aneurysm (IA) based on machine learning and cytoscape-cytohubba plug-in
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Data sources and processing
	Identification and functional analysis of DEmRNAs
	Identification of key immune cells
	Identification of key DEmRNAs
	Construction of ceRNA regulation network
	Construction of transcription factor regulatory network and drug prediction
	Construction of diagnostic model
	Real time-PCR validation
	Statistical analysis

	Results
	Analysis of DEmRNAs
	Identification of key immune cells in IA
	Identification of key DEmRNAs in IA
	Construction of regulatory network and drug prediction
	Diagnostic analysis
	Expression validation of NRXN1, GRIA2, SLC1A2, SLC17A7, IL6, VEGFA and SYP by real time-PCR

	Discussion
	Anchor 26
	Acknowledgements
	References


