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Abstract

Objectives The marine cyanobacterium Prochlorococcus is a critical part of warm ocean ecosystems and a model
for studying microbial evolution and ecology. To expand the representation of this organism'’s vast wild diversity
in sequence collections, we performed a set of isolation efforts targeting low light-adapted Prochlorococcus. Three
genomes resulting from this larger body of work are described here.

Data description We present draft-quality Prochlorococcus genomes from enrichment cultures P1344, P1361, and
P1363, sampled in the North Pacific. The genomes were built from Illumina paired reads assembled de novo. Sup-
porting datasets of raw reads, assessments, and sequences from co-enriched heterotrophic marine bacteria are also
provided. These three genomes represent members of the low light-adapted LLIV Prochlorococcus clade that are
closely related, with 99.9% average nucleotide identity between pairs, yet vary in gene content. Expanding the pow-
erful toolkit of Prochlorococcus genomes, these sequences provide an opportunity to study fine-scale variation and
microevolutionary processes.
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Objective

Inhabiting the oligotrophic open oceans, the cyanobac-
terium Prochlorococcus is the most abundant photoauto-
troph on Earth, influencing local trophic flow and global
biogeochemical cycling [1, 2]. A minimalist adapted to
its low-nutrient environment [3, 4], Prochlorococcus
is unique among cyanobacteria for its small cells, 0.5 —
1.0 um diameter [5, 6], and small genomes, 1.6 — 2.7 Mb
[7]. As a model system, Prochlorococcus has revealed
ecological structure and adaptation at many scales (e.g.,
[7-12]).

Prochlorococcus diversity is organized into phyloge-
netic clades, sorted into low light-adapted (LL) and high
light-adapted (HL) groups based on ecological, genomic,
and physiological patterns [7, 12, 13]. While HL clades
are more abundant [9, 14], LL Prochlorococcus include
lineages adapted to uniquely challenging conditions,
including anoxic zones [15], seasonal mixing [14], and
light limitation in the deep euphotic zone [12]. LL strains
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Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or
accession number)
Dataset 1a  Draft genome for Prochlorococcus P1344 Fasta sequence files (fsa) and Genbank NCBI Genbank: JABBYR0O00000000.1 https://

Dataset 1b  Draft genome for Prochlorococcus P1361

Dataset 1c  Draft genome for Prochlorococcus P1363

Dataset 2a  Raw sequencing reads for P1344 enrich-

ment

Dataset 2b  Raw sequencing reads for P1361 enrich-
ment

Dataset 2c  Raw sequencing reads for P1363 enrich-

ment

Dataset 3a  Prokka genome annotations for Prochloro-

coccus P1344

Dataset 3b  Prokka genome annotations for Prochloro-
coccus P1361

Dataset 3¢ Prokka genome annotations for Prochloro-

coccus P1363

Dataset 3d  Prokka genome annotations for Prochloro-

coccus MIT1227

Prokka genome annotations for Prochloro-
coccus MIT1312

Prokka genome annotations for Prochloro-
coccus MIT1327

Enrichment assembly for P1344

Dataset 3e
Dataset 3f
Dataset 4a
Dataset 4b  Enrichment assembly for P1361
Dataset 4c  Enrichment assembly for P1363
Datafile 1  Detailed methods
Datafile2 Genome summary information
Datafile3  Enrichment contig characteristics
Datafile4 Genome contig characteristics
Datafile 5

Annotation information

Datafile 6  Overview of other organisms in enrichment

BLAST results

Genome and enrichment bin completeness
and taxonomy

Data file 7
Datafile 8  Protein ortholog clusters for identical ITS
group

Genome comparisons for identical ITS
group

Data file 9

flatfile annotations (.gbff)

Fasta sequence files (fsa) and Genbank
flatfile annotations (.gbff)

Fasta sequence files (fsa) and Genbank
flatfile annotations (.gbff)

Fastq sequence file (fastq)

Fastq sequence file (fastq)

Fastq sequence file (fastq)

Genbank flatfile annotations (.gbf)
Genbank flatfile annotations (.gbf)
Genbank flatfile annotations (.gbf)
Genbank flatfile annotations (.gbf)
Genbank flatfile annotations (.gbf)
Genbank flatfile annotations (.gbf)
Fasta sequence file (fasta)

Fasta sequence file (fasta)

Fasta sequence file (fasta)
Document (.pdf)

Microsoft Excel file (.xIsx)
Microsoft Excel file (xIsx)
Microsoft Excel file (xIsx)
Microsoft Excel file (xIsx)
Microsoft Excel file (xIsx)
Microsoft Excel file (xIsx)
Microsoft Excel file (xIsx)

Microsoft Excel file (xIsx)

identifiers.org/nucleotide:JABBYR000000000.1
[21]

NCBI Genbank: JABBYP000000000.1 https://
identifiers.org/nucleotide:JABBYP0O00000000.1
[22]

NCBI Genbank: JABBYQ000000000.1 https://
identifiers.org/nucleotide:JABBYQ000000000.1
[23]

NCBI Sequence Read Archive: SRR11497176
https://identifiers.org/insdc.sra:SRR11497176
[31]

NCBI Sequence Read Archive: SRR11497178
https://identifiers.org/insdc.sra:SRR11497178
[32]

NCBI Sequence Read Archive: SRR11497177
https://identifiers.org/insdc.sra:SRR11497177
[33]

figshare: https://doi.org/10.6084/m9 figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9 figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9 figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9 figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9 figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]

figshare: https://doi.org/10.6084/m9.figshare.
12675410 [26]
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have larger genomes with substantial flexible genome
content [7]. Known wild diversity among LL Prochloro-
coccus far exceeds culture collections [7], and culturing
this organism can be unpredictable [16].

In this context, we performed isolation and sequenc-
ing efforts targeting LL Prochlorococcus during a North
Pacific sampling opportunity. This work resulted in pre-
viously described strains [17-19] and the three LLIV
clade genomes described here: P1344, P1361, and P1363.
To date, these new genomes have been used in stud-
ies on novel mobile genetic elements [20] and diver-
sity in Prochlorococcus enrichment cultures [19]. These
genomes represent a set of sympatric, closely related
strains, supporting the study of microevolution in the
growing Prochlorococcus sequence collection.

Data description

We present draft Prochlorococcus genomes from enrich-
ment cultures P1344, P1361, and P1363 (Dataset 1)
[21-23]. They come from a single sample collected in the
North Pacific from 150 m at Station ALOHA (22.75°N,
158°W), June 2013 [24, 25]. Isolation protocols [16] were
tuned to enrich for LL Prochlorococcus. Data file 1 [26]
provides detailed methods; Table 1 lists datasets. Previ-
ously described strains from the same project [17-19] are
described in Data file 2 [26]. After 1.5 years of subcultur-
ing, enrichments P1344, P1361, and P1363 each stabi-
lized to a single internal transcribed spacer rRNA (ITS)
sequence [27], an indicator of unialgal Prochlorococcus
cultures [16, 28]. Because the time from sea to genome
was shorter than for previously sequenced enrichment
cultures (e.g., 5-20 years [28]), we followed a naming
convention for Prochlorococcus enrichments [29]. The
three ITS sequences, in the LLIV clade, were identical
to each other, strains MIT1312 and MIT1327 (additional
co-isolates from the same sample [17]), and MIT1227
(from Station ALOHA one year earlier [30]).

Genomic libraries were prepared as in [34] from bulk
enrichment DNA and sequenced with Illumina MiSeq
V3 at the MIT BioMicroCenter [35] with 300 base paired
reads. Raw reads are available in the NCBI Sequenc-
ing Read Archive (Dataset 2) [31-33]. Quality-trimmed
reads were assembled de novo with SPAdes v.3.1.1 [36].
Enrichment contigs were screened with blastn [37]
against the NCBI nt database to separate out Prochloro-
coccus sequences (Data file 3) [26]. Contigs with at least
500 bases, top BLAST hits to Prochlorococcus (Data file
4) [26], and at least 2 x kmer coverage were selected to
produce the genomes. For P1344, P1361, and P1363,
respectively, genomes consist of 106, 45, and 66 contigs,
with average read coverage depths 82x, 57x, and 67x [38]
and genome sizes 2.47 Mb, 2.51 Mb, and 2.56 Mb, similar
to other LLIV genomes (Data file 2) [26].
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For initial assessments, we annotated the genomes with
Prokka [39] (Dataset 3, Data file 5) [26]. Genbank annota-
tions come from the NCBI automated annotation pipe-
line (Dataset 1) [22—-24]. Enrichment assembly (Dataset
4 [26]) BLAST and metagenomic binning results (Data
files 1, 3, 6, 7) [26] show the presence of copiotrophic
marine bacteria at lower coverage than Prochlorococ-
cus, with partially recovered genomes [40-43]. These
include Alteromonas and Marinobacter, groups previ-
ously studied in co-culture with Prochlorococcus that
can enhance its growth or survival in culture [18, 19,
44-46]. Comparisons among P1344, P1361, P1363, and
the three other genomes with the same ITS (Data files
1, 8, 9) [26] support the idea that they represent simi-
lar but distinct strains, with average nucleotide identity
from 99.9% £ 0.7% to 100.0% +0.1% s.d. [47], 103 — 3,854
SNPs in pairwise alignments [48, 49], and 32 — 132 dis-
tinct genes in pairwise ortholog group comparisons [50].
While mostly without predicted functions, these variable
genes include a pilus-related protein and a member of the
cytochrome c family, located near contig ends (Data files
1, 5) [26]. This scale of variation will support the study of
recent Prochlorococcus evolution.

Limitations

The enrichment cultures described here were lost during
maintenance and are no longer available. These genomes
came from enrichments rather than clones, represent-
ing a snapshot in time of a likely single dominant strain
in each culture and an associated heterotrophic com-
munity (Data file 1) [26]. That these genomes are not
linked to existing cultures and did not come from clonal
isolates limits downstream use and requires caution in
interpretation, but not more so than sequences derived
from single cell methods or metagenomics, and with
the benefit of more complete genomes. With care, these
new genomes still have the potential to contribute useful
insights on the nature and mechanisms of fine-scale evo-
lution in Prochlorococcus.

Abbreviations

HL High light-adapted

LL Low light-adapted

ITS Internal transcribed spacer between the 16S and 23S ribosomal
RNA genes

NCBI National Center for Biotechnology Information
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