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Abstract 

Background:  Colon adenocarcinoma (COAD) is one of the leading causes of death worldwide. Cancer stem cells 
(CSCs) are vital for COAD chemoresistance and recurrence, however little is known about stem cell-related biomark-
ers in drug resistance and COAD prognosis prediction.

Methods:  To uncover the roles of CSC in COAD tumorigenesis, chemoresistance, and prognosis, we retrieved 
COAD patients’ RNAseq data from TCGA (The Cancer Genome Atlas). We further performed analysis of differen-
tially expressed genes (DEGs) and mRNA expression-based stemness index (mRNAsi) to identify stemness-related 
COAD biomarkers. We then evaluated the roles of mRNAsi in tumorigenesis, clinical-stage, overall survival (OS), and 
chemoresistance. Afterward, we used identified prognostic stemness-related genes (PSRGs) to construct a predic-
tion model. After constructing the prediction model, we used elastic Net regression and area under the curve (AUC) 
to explore the prediction value of PSRGs based on risk scores and the receiver operator characteristic (ROC) curve. To 
elucidate the underlying interconnected systems, we examined relationships between the levels of TFs, PSRGs, and 
50 cancer hallmarks by a Pearson correlation analysis.

Results:  Twelve thousand one hundred eight DEGs were identified by comparing 456 primary COADs and 41 
normal solid tissue samples. Furthermore, we identified 4351 clinical stage-related DEGs, 16,516 stemness-associated 
DEGs, and 54 chemoresistance-related DEGs from cancer stages: mRNAsi, and COAD chemoresistance. Compared 
to normal tissue samples, mRNAsi in COAD patients were marked on an elevation and involved in prognosis 
(p = 0.027), stemness-related DEGs based on chemoresistance (OR = 3.28, p ≤ 0.001) and AJCC clinical stage relating 
(OR = 4.02, p ≤ 0.001) to COAD patients. The prediction model of prognosis were constructed using the 6 PSRGs 
with high accuracy (AUC: 0.659). The model identified universal correlation between NRIP2 and FDFT1 (key PRSGs), 
and some cancer related transcription factors (TFs) and trademarks of cancer gene were in the regulatory network.
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Introduction
Colorectal cancer (CRC) is highly prevalent world-
wide [1], and its incidence and mortality rate continue 
to rise [2]. Despite the advances in CRC diagnosis 
and treatment, prognosis of the disease is still under-
developed due to recurrence, metastasis, and drug 
resistance [3]. CRC’s 5-year relative survival rate in 
non-metastatic patients is 90%, while in metastatic 
CRC (mCRC) patients [4] it is 14%. Therefore, more 
studies in this field should explore the mechanisms of 
tumorigenesis and chemotherapy resistance in CRC 
[5], and they should also provide scientific basis for 
developing a more effective prognosis factors and 
therapeutic targets.

Because tumors are comprised of tumor cells, can-
cer stem cells (CSCs) and microenvironment cells [6], 
CSCs are believed to contribute to the development 
and maintenance of tumors. CSCs not only contrib-
ute to the development of tumors, they also facilitate 
resistance to tumor treatments [7]. Colon cancer stem 
cells (CCSCs) facilitates colon cancer recurrence, 
metastasis, and resistance [8]. However, the prop-
erties and biomarkers of CCSCs have not been well 
understood.

We first explored DNA methylation-based 
stemness index (mDNAsi) and mRNA stemness index 
(mRNAsi) based on oncogenic dedifferentiation. Our 
results show that mRNAsi mirrors stemness gene 

Conclusion:  We found that mRNAsi is a reliable predictive biomarker of tumorigenesis and COAD prognosis. Our 
established prediction model of COAD chemoresistance, which includes the six PSRGs, is effective, as the model 
provides promising therapeutic targets in the COAD.

Keywords:  Colon adenocarcinoma, Cancer stem cell, Chemoresistance, Prognosis, Biomarkers

Fig. 1  Experimental design for the study
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expression while mRNAsi indicates stemness epige-
netic characteristics [9, 10]. These indexes greatly 
influenced the CSCs activity, loss of specialization, 
and pathologic grading [11]. However, mRNAsi’s role 
in CRC and chemotherapy resistance are still unclear.

In this current study, we retrieved published 
RNAseq data and patients’ clinical information from 
TCGA. We also identified differential expressed genes 
(DEGS) based on chemotherapy resistance, overall 
survival (OS) of patients, mRNAsi, and tumorigenesis. 
From these data, we constructed a prognostic predic-
tion model using prognostic stemness-related genes 
(PSRGs) in our study to determine therapeutic targets 
and prognostic biomarkers of COAD. The identified 
PSRGs regulatory networks and downstream signaling 
pathways could provide clinicians a basis for prevent-
ing COAD occurrence and metastasis.

Methods
Data sources and extraction
RNAseq data on 456 primary COAD issues and 41 adja-
cent normal samples, including raw counts, (FPKM 
values), were retrieved from TCGA using the bio links 

package (v2.18.0) on R (v4.0.2). We also obtained Chem-
oresistance, diagnosis, demographics, tumor informa-
tion, and endpoint data. All methods were performed 
in processing the database were in accordance with the 
TCGA relevant guidelines and regulations.

mRNAsi estimation
We used one-class logistic regression machine learn-
ing (OCLR) algorithm, which applies standardized 
gene expression profiles to each sample, to determine 
mRNAsi. The mRNAsi, reported by Malta, T. M, is an 
activity assessing index between 0 and 1. In this study, 
we presented the results of COAD in Table S1 (Stemness 
Indices Derived for All PanCancer 33 TCGA Cohort.
xlsx).

Functional enrichment analysis and determination 
of differentially expressed genes
Four groups of DEGs were analyzed using DESeq2 using 
false discovery rate (FDR) ≤ 0.05 and |log2 fold change 
(FC)| > 1.0. The 4 groups include low mRNAsi COAD 
vs high mRNAsi COADs (divided by median mRNAsi), 
stage I/II COAD vs stage III/IV COAD, chemosensitive 

Fig. 2  Functional enrichment analysis and differential gene expression analysis between primary COADs and adjacent normal samples. 
Differentially expressed genes are presented as a heatmap (A) and a volcano plot (B). GO (C) and KEGG (D) terms are also associated with 
differentially expressed genes
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COAD vs chemoresistant COAD, and primary COAD vs 
normal adjacent tissue. The analyses we used to investi-
gate the communication of signals in oncogenesis, can-
cer progression, and chemoresistance [12] were GO, 
KEGG, and GSEA. We used the GO term analysis to 
reveal molecular functions (MFs), cellular components 
(CCs), and biological processes (BPs) of enriched differ-
ential expression genes. We used KEGG pathway analy-
sis to explore enriched pathways [13–15], also collecting 
fifty cancer gene set hallmarks from the molecular signa-
tures database (MSigDB v7.2.1).

PRSGs identification
Six DEGs were subjected to univariate Cox regression 
analysis (survival, v3.1.12), so we have identified PRSGs 
using p ≤ 0.05 as the cutoff. They were then subjected 
to multivariate Cox analysis using elastic net regres-
sion analysis to avoid overfitting. This was then followed 
by a ten-fold cross-validation (glmnet v4.1). We then 
explored five-year OS using the AUC of ROC curve, 

discrimination, and goodness of fit (GOF). The multi-
variate model was determined using a deviance-residual 
plot.

Independent prognosis analysis and determination 
of prognostic index (PI)
PI was calculated using the formula:

“ m ” represents one of the COAD patients, “ β ” indi-
cates the coefficient of each PRSG, and “ n ” represents 
the number of prognostic PRSGs in the multivariate 
model. COAD patients were grouped into either a high-
risk or low-risk group based on median PI. Kaplan-
Meier survival analysis overestimates the independent 
prognosis value of the PI in COAD. Therefore, AJCC 
TNM stage gender and a year of diagnosis were adjusted 
for univariate Cox regression analysis and multivariate 
Cox regression.

PIm =

n

i=1

βiPRSGi

Fig. 3  Functional enrichment analysis and differential gene expression analysis in stage I vs II COAD and stage III vs IV COAD. Differentially 
expressed genes are expressed as a heatmap (A) and a volcano plot (B). GO (C) and KEGG (D) terms are also associated with differentially expressed 
genes
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Development of a prognostic nomogram
A prognostic nomogram for this prediction of 3- and 5-year 
COAD survival was constructed using Cox models, includ-
ing PI, and standardized using calibration plots (rms, v6.2.0).

Analysis of signaling pathways and transcription factors 
associated with PRSGs
We first obtained official gene signs of 318 cancer-
related TFs and 50 cancer gene set hallmarks from the 
Cistrome database (http://​cistr​ome.​org/) and molecular 

signatures database (MSigDB, v7.2.1, https://​www.​gsea-​
msigdb.​org/​gsea/​msigdb/​index.​jsp), respectively [16]. 
The absolute activity of cancer gene markers was quanti-
fied using GSVA gene set variation analysis [17]. Next, 
we performed co-expression analysis on the absolute 
quantification of 50 hallmarks of cancer, numbers of 
TFs, and numbers of PRSGs. Then, we also performed a 
Co-expression network analysis among the PRSGs, TFs, 
and hallmarks of cancer using a P-value < 0.05 and a cor-
relation coefficient > 0.30.

Fig. 4  Functional enrichment analysis and differential gene expression analysis between low mRNAsi COAD and high mRNAsi COAD. Differentially 
expressed genes are presented as a heatmap (A) and a volcano plot (B). GO (C) and KEGG (D) terms are also associated with differentially expressed 
genes

Table 1  Distribution of genes in stemness and 
chemoresistance-associated groups

Chemoresistance-
associated

OR(95%CI) P-value

Stemness-
associated

No Yes

No 40,063 23 1.0

Yes 16,485 31 3.28 (1.85,5.88) 1.63e-05

Table 2  Distribution of genes in stemness and progress-
associated groups

Chemoresistance-
associated

OR(95%CI) P-value

Stemness-
associated

No Yes

No 38,320 1766 1.0

Yes 13,931 2585 4.03 (3.78,4.29) <  2.2e-16

http://cistrome.org/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Validating the prognostic stemness‑related genes protein 
expression levels and prognostic significance
We examined the protein expression levels of six PRSGs 
using the Human Protein Atlas (HPA) online data [18]. 
We also tested the ability of the stemness-related gene 
constructed model to predict prognosis by using two 
chip data sets: GSE39582 dataset (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE39​582) and 
GSE17538 dataset (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​GSE17​538).

Statistical analysis
Variables, that were not continuously distributed, were 
expressed as percentages. Normally, we would use dis-
tributed continuous variables as mean ± SD or median 
(range), but we compared the differences between nor-
mally distributed continuous variables using a student 
t-test. We used Mann-Whitney U-test and Kruskal-
Wallis H-test for not normally distributed data. The 
odds ratio (OR) and 95% confidence interval (95% CI) 
were also determined using Fisher’s exact test. We used 
P ≤ 0.05 (two-sided) to represent statistical significance, 

and performed statistical analysis using the R software 
(https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp).

Results
Identification of differentially expressed genes 
and functional enrichment analysis
The study design, presented in Fig.  1, included only 
samples with clinicopathological information: clinical-
stage, mRNAsi level, and chemotherapy sensitivity. We 
identified a total of 12,108 DEGs (4605 downregulated 
and 7503 upregulated) by comparison between 456 pri-
mary COADs and 41 normal tissues. We used heatmaps 
and volcano plots (Fig. 2A-B) to visualize this compari-
son. Then the 12,108 DEGs’ distinctive properties were 
analyzed by GO and KEGG analysis. Also, the signifi-
cantly enriched cellular components (CCs), biological 
processes (BPs), and molecular functions (MFs) terms 
included regulation of neurotransmitter levels, exter-
nal side of the plasma membrane, and actin-binding, 
respectively (Fig.  2C). KEGG pathway analysis showed 
calcium signaling, drug metabolism cytochrome p450, 

Fig. 5  Functional enrichment analysis and differential gene expression analysis in chemosensitive and chemoresistant COADs. Differentially 
expressed genes are presented as a heatmap (A) and a volcano plot (B). GO (C) and KEGG (D) terms are associated with differentially expressed 
genes

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39582
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17538
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17538
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp


Page 7 of 14Li et al. BMC Genomic Data           (2022) 23:51 	

neuroactive ligand-receptor interaction, and starch 
and sucrose metabolism were significantly enriched 
(Fig. 2D).

Of the 456 primary COAD cases, 251 were in stage 
I/II, and 205 were in stage III/IV COADs. While com-
paring stages I/II and III/IV, we found that 4351 genes 
(1531 downregulated and 2820 upregulated) were differ-
entially expressed (Fig. 3A-B). GO analysis revealed cell 
killing, immunoglobulin complex, and antigen-binding 
as significantly enriched terms (Fig. 3C). KEGG pathway 
analysis that showed chemokine signaling, natural killer 
cell-mediated cytotoxicity, antigen processing and pres-
entation, and neuroactive ligand-receptor interaction 
were significantly enriched (Fig. 3D).

We also identified a total of 16,516 stemness DEGs 
(9435 downregulated and 7081 upregulated) based on 
mRNAsi level (Fig. 4A, B). GO revealed spliceosomal 

snRNP assembly, organellar ribosome, and peptide 
receptor activity as significantly enriched terms for 
MFs, BPs, CCs, and BPs correlated with stemness 
(Fig.  4C). KEGG pathway analysis identified cal-
cium signaling, cell adhesion molecules, and DNA 
replication as pathways involved in cancer stemness 
(Fig. 4D).

Among the 456 primary COAD cases, there were 55 
chemotherapies sensitive cases and 27 resistant cases. 
By comparing the two COAD cases, we further iden-
tified a total of 54 chemoresistance-related DEGs (17 
downregulated and 37 upregulated) (Fig.  5A-B). GO 
revealed that the chemoresistance-associated DEGs 
can be enriched for calcium ion homeostasis, immu-
noglobulin complex, and ion channel activity (Fig. 5C). 
KEGG pathway analysis also revealed that the chem-
oresistance-specific DEGs can significantly enriched 

Fig. 6  Clinical significance of mRNAsi and determination of stemness-related genes. A mRNAsi differences in normal vs tumor group at various 
clinical stages. B Kaplan-Meier survival analysis of COADs with mRNAsi groups. C mRNAsi differences in chemosensitive vs chemoresistant groups. 
D Tumorigenesis, stemness, clinical stage, and chemoresistance related differential gene expression are presented as a Venn plot. E mRNAsi 
differences among metastases. F Heatmap of mRNAsi with chemoresistance, metastasis, and tumor stages
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for JAK/STAT signaling pathway cytokine-cytokine 
receptor interaction, and neuroactive ligand-receptor 
interaction (Fig. 5D).

Correlation of mRNAsi with clinical characteristics
Venn diagram showed that 18 DEGs were involved in 
all four signs of progresses including tumorigenesis, 
stemness, clinical-stage differentiation, and chemore-
sistance. Eight DEGs of the 18 DEGs were expressed 
increasingly in the tumor (Fig.  6D). In addition, com-
pared to adjacent normal solid tissue, mRNAsi was 
increasingly regulated abnormally in primary COAD 
(p ≤  0.001, Fig.  6A) based on non-parametric (Mann-
Whitney U-test or Kruskal-Wallis H-test) and Kaplan-
Meier survival analysis. mRNAsi was also remarkably 
involved in the prognosis of COAD patients (p = 0.027, 
Fig.  6B), as stemness-related DEGs were correlated 
with chemoresistance (OR = 3.28, p ≤  0.001, Table  1) 

and AJCC clinical stage (OR = 4.02, p ≤ 0.001, Table 2). 
Interestingly, mRNAsi had no difference between che-
mosensitive and chemoresistant COADs (p = 0.903, 
Fig. 6C), but mRNAsi had a relationship with low lev-
els in metastasis cases(p ≤  0.001, Fig.  6E). Thus, we 
could visualize the levels of the 18 genes on a heatmap 
(Fig. 6F).

Identification of PRSGs and analysis of independent 
prognosis
As we combined the univariate Cox regression analy-
sis, 18 DEGs, PRSGs, and genes with prognostic values 
(Fig.  7A, B), we identified and incorporated this infor-
mation into the Elastic Net regression analysis (model 
parameters: α = 0.0417, β = 1.7022). Results showed 
that only 6 PRSGs (NRIP2, FDFT1, CELF4, SLC24A2, 
TRIM67, and SVOP) were essential for fitting models 
(Fig. 7C).

Fig. 7  Multivariate Cox model based on prognostic stemness-related genes. A Elastic net regression analysis of stemness-related genes (A, B). C 
Multivariate model based on 6-prognostic stemness-related genes. D Residual plot of the multivariate model and ROC curve (E). F Kaplan-Meier 
analysis based on the risk score
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The prognosis index (PI) for each COAD patient 
was determined as described in the methods section. 
The residual plots and three-year OS ROC curves 
(AUC = 0.658) showed good discrimination and GOF 
of the multivariate Cox regression model (Fig.  7D, 
E). The prognostic potential of PI in COAD patients 
was determined using Kaplan-Meier survival analysis 
(Fig. 7F, p ≤ 0.001).

Prognostic nomogram construction
Univariate (HR =2.03, 95% CI: 1.37, 3.02, p ≤ 0.001) and 
multivariate (HR = 2.00, 95% CI: (1.08, 3.69), p = 0.027) 
Cox analyses adjusted for patient demographics and 
AJCC clinical stage showed PI as an independent predic-
tor of COAD prognosis (Fig. 8A and B).

We constructed a model, using the Cox model, for 
predicting OS by prognostic nomogram (Fig. 8C), and 
we also determined the acceptable calibration (Fig. 8D-
E) of the prognostic nomogram by calibration curve 
analysis. Based on bioinformatics and clinical research 
requirements, we should adjust gene expression 

levels by demographics by constructing a multivari-
ate regression model; age and BMI are analyzed as 
categorical variables in some studies. Notably, gender 
was inappropriate for nomogram construction since it 
was not significant based on multivariate Cox analysis. 
Other important clinical-pathological characteristics 
like primary diagnosis, grade, clinical T/N/M classifi-
cation, and histology subtype were excluded from the 
multivariate regression model to preserve more mod-
eling samples. Finally, we used BMI, age, clinic stage, 
and PI to plot the nomogram. We included PI because 
it was an independent predictor of COAD prognosis as 
determined by multivariate regression analysis.

Identification of PRSGs co‑expressed TFs and related 
signaling pathways
Our findings showed 133 cancer-associated TFs (Fig. 9B) 
in primary COADs and adjacent normal tissues. The TFs, 
MYC, SOX4, E2F1, and TEAD4 were upregulated, while 
KLF4, NR5A2, and AR were downregulated in COAD. 

Fig. 8  Prognostic independent analysis and development of nomogram for COAD. Univariate (A) and multivariate (B) Cox regression models 
adjusted by demographics and histologic grade. C A prognostic nomogram based on the multivariate Cox model. D, E The calibration curve 
indicated acceptable nomogram calibration
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Interactions between the TFs and the 50 cancer gene sets 
hallmarks with mRNAsi, chemoresistance, tumor stage, 
and metastasis were presented as heatmaps (Fig. 9A and 
C). Expression makers of primary COADs compared to 
adjacent normal tissues were visualized in volcano plots 
(Fig. 9D). The volcano plots revealed MYC, G2M check-
point, and DNA repair angiogenesis signaling pathways 
to be overexpressed. We performed Co-expression anal-
ysis to explore relationships among hallmarks of cancer, 
TFs, and PRSGs. We also constructed a co-expression 
network based on interaction pairs between hallmarks 

or TFs and PRSGs with p ≤  0.05 and |correlation coef-
ficients | > 0.30, respectively. By using a total of 20 TFs 
that met the criteria, we can establish a regulatory net-
work with 6 PRSGs (Fig. 9E). Figure 9C shows the abun-
dance of KRAS signaling, adipogenesis, unfolded protein 
response, cholesterol homeostasis oxidative phospho-
rylation, reactive oxygen species pathway, mTORC1 
signaling, and peroxisome. Our findings showed that 
NRIP2 and FDFT1 were hub genes, and they were pos-
sibly stemness-related targets in the chemoresistance of 
COAD (Fig. 9F).

Fig. 9  PRSGs co-expressed TFs and hallmarks of cancer gene sets. Heatmap (A) and volcano plot (B) of differentially expressed TFs in cancer vs 
normal, adjacent samples. Heatmap (C) and volcano plot (D) of differentially expressed hallmarks of cancer gene sets in cancer vs normal solid 
tissue samples. A comparison of co-expression analysis (E) and co-expression interaction pairs (F) between PRSGs, TFs and hallmarks of cancer
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Validating the protein expression levels and the predictive 
value of prognostic stemness‑related genes in GSE cohorts
The Human Protein Atlas database analyzed the 
expression of six key PRSGs, the analysis contains 
immunohistochemical results for four PRSGs (not 
including CELF4 and SLC24A2) in COAD tissues and 
colon normal tissues (Fig.  10). We discovered that 
SVOP, FDFT1, and TRIM67 were significantly higher 
in COAD tissues than in colon normal tissue (Fig. 10), 
and also, NRIP2 was barely expressed in COAD tis-
sues and colon normal tissue in the HPA dataset, while 
NRIP2 was reported to be up-regulated in CCICs 
from both cell lines and primary colorectal cancer tis-
sues [19]. To further assess the clinical significance of 
six key PRSGs, we used the GSE39582 and GSE17538 
external validation cohorts to confirm the predic-
tion ability of the prognosis model constructed by 
stemness-related genes. According to further assess-
ment, we found that high expression of PRSGs was 
significantly (p < 0.001) associated with poor prognosis 
(Fig. 11).

Discussion
Colorectal cancer is highly prevalent worldwide and 
can cause high mortality rate in end-stage patients due 
to metastasis, recurrence, and drug resistance [20, 21]. 
CSCs, the main driver of poor COAD prognosis, are 
often activated from a dormant state by radiotherapy 
or chemotherapy, and it can promote tumor invasion, 
metastases, and enhancing chemotherapy resistance 
[22]. In this experiment, we uncovered the relationships 
between clinical stage, mRNAsi and COAD chemore-
sistance. Therefore, we identified increasing mRNAsi 

expression in primary COAD and its relationship with 
prognosis. Stemness-related DEGs also correlates with 
chemoresistance and AJCC clinical stage. Additionally, a 
highly accurate model, including 6 PSRGs, was success-
fully constructed to predict COAD prognosis, and also 
NRIP2 and FDFT1 were hub genes, which means they 
are possibly stemness-related targets in the chemoresist-
ance of COAD.

CSCs are potential drivers of CRC recurrence after 
treatment [23] as remaining tumor stem cells can main-
tain their own stem cell characteristics and also CSCs 
can promote further tumor growth. Thus, CSCs initiate 
the tumor recurrence and metastasis. Single-cell tran-
scriptome integrated with telomere length detection 
technology has also revealed that CCSCs are in a resting 
state and have relatively short telomere length [24]. But 
in some conditions, CCSCs transform into fast-growing 
tumor cells with extended telomeres. Thus, these resting 
tumor stem cells may be major drivers of tumor recur-
rence and drug resistance. KRT18, CLDN4, CXADR, 
and SLC12A2 are the potential cellular functions of new 
prognosis-valuable genes.

Here, CSCs features were identified using mRNAsi, 
a significant association between them and oncogene-
sis, prognosis, AJCC clinical stage, and drug resistance 
in COAD. The roles of CSCs in COAD chemoresist-
ance may offer more ways to optimize drug-resistance 
monitoring systems and curing COAD. Six key PRSGs 
(NRIP2, FDFT1, CELF4, SLC24A2, TRIM67, and 
SVOP) were identified using a multivariate Cox model 
and associated analyses. Among the six key PRSGs, 
NRIP2 and FDFT1 correlate with many cancer-asso-
ciated TFs and hallmarks of cancer gene sets in the 

Fig. 10  The protein levels of PRSGs in COAD tissues and colon normal tissue using the Human Protein Atlas (HPA) database
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regulatory network. FDFT1, a membrane-associated 
enzyme, is also crucial for cancer development [25], 
particularly in metabolic reprogramming. FDFT1 may 
be a promising predictor of CRC prognosis and might 
offer vital implications for targeted therapy or immu-
notherapy [26]. Right now, NRIP2 is upregulated in 
colorectal cancer initiating cells (CCIC) and mediates 
CCIC self-renewal via Wnt signaling [27]. CELF4, one 
of the CELF protein family, which belongs to a group of 

splicing regulators that controls developmentally regu-
lated and tissue-specific splicing events [28]. SLC24A2, 
a potassium-dependent sodium-calcium exchanger, 
were observed in pancreatic ductal adenocarcinoma 
and were associated with esophageal squamous cell 
carcinoma prognosis [29]. TRIM67 was involved in 
neuroprotective effects and tumor processes, has been 
reported as a potential target to inhibit CRC metasta-
sis [30]. SVOP, a transporter-like protein, and involved 

Fig. 11  A ROC curve of the six-gene signature plus age, gender, and stage in TCGA discovery cohort; (B) KM curve of the prognostic index (PI) in 
TCGA discovery cohort; (C) ROC curve of GSE39582 external validation cohort; (D) KM curve of PI in GSE39582 external validation cohort; (E) ROC 
curve of GSE17538 external validation cohort; (F) KM curve of PI in GSE17538 external validation cohort
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in neuron formation, maturation, and neuronal func-
tion. SVOP aberrant methylated played an important 
role in regulation of nervous system, and was associ-
ated with progression of glioblastoma [31].

A model with relatively high accuracy (AUC: 0.659) 
was built for predicting COAD overall survival based 
on the 6 PSRGs model. Many previous studies aimed 
to identify the prognostic biomarkers and the pre-
diction model in COAD patients (CXC Chemokine-
Based Prediction Model [32], non-invasive imaging 
prediction model for liver metastasis) which facili-
tates decision-making in COAD care. Various pre-
diction models have been used to predict COAD 
prognosis, but there prediction models did not 
report CSC-related signatures and PSRGs. Thus, our 
findings offer vital and novel insights into COAD 
prognosis.

We know that, comparably to normal stem cells, CSCs 
exhibit characteristics that could be associated with the 
expression of similar TFs [33]. Hence, we find that CSCs 
upregulated cells were MYC, SOX4, E2F1, and TEAD4 
were upregulated while downregulated cells were KLF4, 
NR5A2, and AR in COAD. MYC is a potent oncogene 
with numerous biological functions that contribute to 
tumorigenesis [34]. MYC can promote bone marrow stem 
cell dysfunction [35] and leukemia stem cell self-renewal 
[36]. SOX4, a primary transcription factor, regulates 
stemness, differentiation, and progenitor development. 
SOX4 is frequently mutated and upregulated in more 
than 20 cancers [37]. E2F1 is a regulator of CML stem/
progenitor cell proliferation. TEAD4 is one of the impor-
tant member of the TEAD family, and was reported to 
be a innovate prognostic marker in many cancer which 
includes gastric cancer, breast cancer, colorectal cancer, 
melanoma [38]. KLF4 can reprogram of differentiated 
cells into pluripotent embryonic stem cells, and combats 
tumor growth and chemoresistance in hepatocellular car-
cinoma [39]. NR5A2 can bind the same DNA motif and 
plays crucial role in gonadal development and function 
and was associated with favorable prognosis in patients 
with glioblastoma and neuroblastoma tumors [40]. AR 
is a nuclear receptor that regulates gene expression pro-
grams required for prostate development and male phe-
notype maintenance [41]. We found that overexpressed 
TFs needs to be enriched for KRAS signaling, oxidative 
phosphorylation, reactive oxygen species, and mTORC1 
signaling. Oxidative phosphorylation and mTORC1 sign-
aling also are enriched in cancer stem cells. Therefore, we 
implicated the identified TFs and signaling pathways in 
COAD chemotherapy resistance.

Conclusion
We established a prediction model using CSC-related 
genes and mRNAsi effectively and accurately pre-
dicts colon cancer prognosis. We also investigated the 
potential interconnection between cancer gene sets 
and key PSRGs to reveal their modulation in COAD 
chemotherapy resistance. However, the underlying 
mechanisms of the six PRSGs needs further experi-
mental validation.
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