
BMC Genomic DataAziz et al. BMC Genomic Data (2022) 23:45
https://doi.org/10.1186/s12863-022-01053-x

RESEARCH Open Access

Parallel and private generalized suffix tree
construction and query on genomic data
Md Momin Al Aziz*, Parimala Thulasiraman and Noman Mohammed

Abstract

Background: Several technological advancements and digitization of healthcare data have provided the scientific
community with a large quantity of genomic data. Such datasets facilitated a deeper understanding of several
diseases and our health in general. Strikingly, these genome datasets require a large storage volume and present
technical challenges in retrieving meaningful information. Furthermore, the privacy aspects of genomic data limit
access and often hinder timely scientific discovery.

Methods: In this paper, we utilize the Generalized Suffix Tree (GST); their construction and applications have been
fairly studied in related areas. The main contribution of this article is the proposal of a privacy-preserving string query
execution framework using GSTs and an additional tree-based hashing mechanism. Initially, we start by introducing
an efficient GST construction in parallel that is scalable for a large genomic dataset. The secure indexing scheme
allows the genomic data in a GST to be outsourced to an untrusted cloud server under encryption. Additionally, the
proposed methods can perform several string search operations (i.e., exact, set-maximal matches) securely and
efficiently using the outlined framework.

Results: The experimental results on different datasets and parameters in a real cloud environment exhibit the
scalability of these methods as they also outperform the state-of-the-art method based on Burrows-Wheeler
Transformation (BWT). The proposed method only takes around 36.7s to execute a set-maximal match whereas the
BWT-based method takes around 160.85s, providing a 4× speedup.

Keywords: Privacy-preserving Queries on Genomic Data, Outsourcing Genomic Data on Cloud, Parallel Construction
of Generalized Suffix Tree, Reverse Merkle Tree

Introduction
In today’s healthcare system, human genomics plays a
vital role in understanding different diseases and con-
tributes to several domains of our healthcare system.
Over the years, genomic data have given us new areas of
research such as genomic or personalized medicine and
genetic engineering. Therefore, with the recent techno-
logical advancements, we can store millions of genomes
from thousands of participants alongside their medical
records. Today, medical professionals from different geo-
location can utilize these massive interconnected datasets

*Correspondence: azizmma@cs.umanitoba.ca
Department of Computer Science, University of Manitoba, 66 Chancellor Drive,
R3T2N2 Winnipeg, Manitoba, Canada

to study disease-phenotype associations or susceptibility
to certain diseases [1].
Furthermore, due to the reducing cost of genome

sequencing, the recruitment for corresponding research
or studies is getting popular [2]. There are several con-
sumer products that appeared over the past year such as
Ancestry.com, 23AndMe.com. Nevertheless, these real-
world applications share one major computation on
human genome data which is String Search [3]. Infor-
mally, string search in this context denotes the locations
and often the presence of a query genome, representing
similarity in terms of our genomic markup. Therefore, a
high degree of similarity in genomic data can indicate the
likelihood of similar physical traits or ancestry.

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-022-01053-x&domain=pdf
mailto: azizmma@cs.umanitoba.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Aziz et al. BMC Genomic Data (2022) 23:45 Page 2 of 16

On the other hand, due to the unique nature of human
genomes, privacy aspects of this sensitive data is surfac-
ing over the last decade [4]. Therefore, the current privacy
regulations do not allow genomic datasets to be publicly
available without any formal application and require due
diligence from the researchers [5]. This can attribute a
delay to the scientific discoveries depending on sensitive
genomic data and the participants’ medical records [3].
Therefore, employing privacy-preserving techniques

while performing sensitive queries on a genomic dataset
is an important research area. This field has attracted the
cryptographic community in general where several theo-
retically proven private frameworks are being investigated
[3, 6]. Specifically, the massive scale of genomic data and
computational complexity of the queries have made this
area challenging where we would protect the privacy of
the participants while providing a timely response from
the privacy-preserving computations.
In this paper, we target suffix trees, specifically Gen-

eralized Suffix Tree (GST) which can be employed to
perform several search operations on genomic data [7].
Firstly, we construct GST in parallel (published in the con-
ference version [8], which is later extended with privacy-
preserving string query techniques using GST indexing. It
is important to note that building a suffix tree efficiently
and in parallel is a well-studied area and not our primary
contribution. Instead, we target GSTs which can repre-
sent a genomic dataset containing multiple participants
[9] where we employed distributed and shared mem-
ory architectures for parallel construction. Distributed
architecture considers multiple machines with completely
detached memory systems, connected with a network.
Our mechanism utilizes the global memory in this
case harnessing the parallel power of the several cores
available.
Primarily, we propose privacy-preserving methods to

perform arbitrary string queries on the genomic dataset.
The proposed method relies on a hash-based scheme
combined with cryptographic primitives. With two differ-
ent privacy-preserving schemes, we demonstrate that the
proposed methods provide a realistic execution time for a
large genomic dataset. The contributions of this paper are:

• The novelty of this work lies in the proposed private
query execution technique that incorporates a
hashing mechanism (Reverse Merkle Hash) over a
tree structure that additionally serves as a secure
index allowing several string search operations. We
further extend this method’s security with Garbled
Circuit [10] where the researcher’s inputs are deemed
private as well.

• Initially, we propose a GST construction mechanism
using different memory models using parallel
computations.

• Efficiency of the GST index along with the
privacy-preserving queries are tested with multiple
string searches. Specially, we analyze speedups
altering the number of processors, input dataset size,
memory components and different indexing.

• As reported in our earlier version [8], experimental
results show that the proposed parallel construction
can achieve ∼ 4.7× speedup in comparison to the
sequential algorithm for a dataset with 1000
sequences and each sequence with 1000 nucleotides
(with 16 processors).

• Our privacy-preserving query mechanism also
demonstrates promising results as it only takes
around 36.7 seconds to execute a set-maximal match
in the aforementioned dataset. Additionally, we
compared with a private Burrows-Wheeler
Transform method [11] which takes around 160.85
seconds giving us a 4× speedup. Our secure query
method is also faster than Sotiraki et al.’s [12] which
needed 60 seconds under the same setting.

The paper is organized as follows. Methodology section
describes the proposed methods for parallel GST con-
struction and privacy-preserving queries. Experimental
results are shown and discussed in Experimental results
and analysis section as potential limitations and future
works are added as well. The related works and back-
ground techniques are described in the Supplementary
Materials. Finally, Conclusion section presents the con-
clusion of the paper. It is noteworthy that the parallel
GST construction is available in the conference version [8]
which is summarized in Methodology and Experimental
results and analysis sections as well.

Methodology
As we fist build the GST in parallel prior to the private
execution of different queries, the proposed methods are
divided into two major components. Nevertheless, the
architecture of the problem and proposed method are
summarized below. Notably, the parallel GST construc-
tion is also available in our conference version [8]:

Problem architecture
The architecture consists of three entities: a) Data Owner,
b) Cloud Server and c) Researchers as outlined in Fig. 1.
Here, data owner collects the genomic dataset Dn×m
where string queries q are executed by any researcher. The
queries are handled by an intermediary cloud server as
the data owner generates a Generalized Suffix Tree (GST)
and stores it privately on the cloud. The background on
GSTs are available on the supplementary material. We
assume that the researchers have limited computational
power since they are interested in a small segment of the
dataset D. Also, researcher have no interaction with the

Aziz et al. BMC Genomic Data (2022) 23:45 Page 3 of 16

Fig. 1 Computational framework of the proposed method where the data owner holds the genomic dataset and constructs the GST in parallel on a
private computing cluster (one-time preprocessing). The GST is then outsourced securely to the Cloud Server (CS) where the query q from
researcher is executed in a privacy-preserving manner

data owner as all query operations are handled by the
cloud server. In summary, the proposedmethod presented
in this article has two steps: a) constructing the GST in
parallel, and b) executing q with a privacy guarantee over
the data.

Parallel GST construction [8]
Parallel GST construction will first evenly partition the
genomic data into different computing nodes. Here, we
employ two memory environments— a) distributed, and
b) shared. Distributed memory setting has the machines
interconnected via a network where they contain mutli-
core processors and fixed-size memory (RAM). The mul-
tiples cores in these processors also have the physical
memory namely shared memory.
We propose the memory distribution to address the

large memory requirement while constructing the trees.
For example, n sequences with m genomes may take at
least nm memory resulting in any real-world genomic
dataset overfitting the memory. Therefore, this issue gave
the motivation to build GST for a targeted genomic
dataset in a distributed memory setting [8].

Private storage and queries
After constructing the GST in parallel in a private clus-
ter, the resulting GST is stored in a offshore semi-trusted
cloud system. The utility of a commercial cloud service is
motivated by its low cost and higher storage requirement
fromGSTs built on genomic data. Furthermore, cloud ser-

vice provides a scalable and cost-effective alternative to
the procurement and management of required infrastruc-
ture costs, which will primarily handle queries on genomic
data. As shown in Fig. 1, the researchers only interact with
the cloud server, which contains the parallel constructed
GST.
However, using a third-party vendor for storing and

computing sensitive data is often not permissible as
there have been reports of privacy attacks and sev-
eral data leaks [3]. Therefore, we intend to store the
genomic data on these cloud servers with some pri-
vacy guarantee and execute corresponding string queries
alongside. Specifically, our privacy-preserving mecha-
nisms will conceal the data from the cloud server; in
case of a data breach, the outsourced genomic data
cannot be traced back to the original participants.
Further details on the threat model are available in
Privacy model.

String Queries q
We considered different string queries to test the privacy-
preserving methods proposed based on GSTs and other
cryptographic scheme (check supplementary materials).
The four queries discussed here are incrementally chal-
lenging while the inputs to these queries will be the same
D. Since we are considering a dataset of size n × m hap-
lotypes, D will have {s1, . . . sn} records where si ∈ [0, 1]m.
The query needs to be less than the number of genomes
(1 ≤ |q| ≤ m).

Aziz et al. BMC Genomic Data (2022) 23:45 Page 4 of 16

Definition 1 (Exact Match-EM) For any arbitrary
query q and genomic dataset D, exact match will only
return the record xi such that q[0,m]= xi[0,m] where
m is the number of nucleotides available on each genomic
sequence inD.

Example 1 A haplotype dataset, D is presented in
Table 1 of size n × m, where n = 5 and m = 6. For a
query, q = {1, 0, 0, 0, 1, 0}, exact queries according to the
aforementioned Definition 1 will perfectly match the first
row xi; hence the output set for this input q will be the first
sequence in X.

Definition 2 (Exact Substring Match-ESM) Exact
substring match should return the records xi such that
q[0, |q| − 1]= xi[j1, j2], where q[0, |q| − 1] represents the
query and xi[j1, j2] is a substring of the record xi given
j2 ≥ j1 and j2 − j1 = |q| − 1.

Example 2 For an exact substring match query, we need
a query sequence, where |q| < m. For q = {1, 1, 1}, the out-
put of the query (according to Definition 2) should contain
the second row as the query sequence, q is present in the
dataset,D as a substring.

Definition 3 (SetMaximalMatch-SMM) Setmaximal
match, for the same inputs will return the records xi, which
have the following conditions:

1. there exists some j2 > j1 such that
q[j1, j2]= xi[j1, j2];

2. q[j1 − 1, j2] �= xi[j1 − 1, j2] and
q[j1, j2 + 1] �= xi[j1, j2 + 1], and

3. for all i′ �= i and i′ ∈ n, if there exist j′2 > j′1
q[j′1, j′2]= xi[j′1, j′2] then it must be j′2 − j′1 < j2 − j1.

Example 3 A set maximal match can return multi-
ple records that partially matches the query. For q =
{1, 1, 0, 1}, it will return the records {2, 3, 4, 5} from D
as outputs since they have 1101,110,101,101 substrings,
respectively.

Definition 4 (Threshold SetMaximalMatch-TSMM)
For predefined threshold t, TSMM will report all records

Table 1 Sample haplotype data representation where
si ∈ {0, 1}m are the different positions on the same sequence

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6

1 1 0 0 0 1 0

2 1 1 1 0 1 0

3 1 1 0 0 0 1

4 0 1 0 1 1 0

5 0 1 0 1 0 1

following the constraints from SMM (Definition 3) and j2−
j1 ≥ t.

Example 4 Inheriting from Definition 4, we have an
additional parameter, threshold, t which determines the
number of mismatches allowed in the output sequences.
For a query q = {1, 0, 1, 1} and threshold t ≥ 3, the output
will be {2, 4, 5} since the second and fourth record have 101
starting from positions 3 and 2, respectively and the fourth
sequence completely matches the query from position 2.

Parallel GST construction [8]
In this section, we summarize the proposed techniques
to construct the GST in parallel from our earlier work
[8]. These approaches fundamentally differ in partition-
ing and agglomeration according to the PCAM (Parti-
tioning, Communication, Agglomeration and Mapping)
model [13]:

Data partitioning scheme [8]
Thememory location and the number of distributed com-
puting nodes allowed us to employ two data partitioning
scheme: Horizontal and/or Vertical [8]: Horizontal par-
titioning makes a different group of sequences according
to the computational nodes or processors available. Each
node will receive one group and perform the GST con-
struction in parallel. For example, for n = 1000 and p =
4, the data is split into 4 groups, each with |ni| = 25
sequences. Each processor node pi will build GST individ-
ually on |ni| sequences of m length. This process is done
in parallel and does not require any communication. In
supplementary materials, we discuss an example of our
horizontal partition scheme for two nodes (n = p = 2).
Vertical partitioning scheme cuts the data along the
genomes or columns and follows a similar mechanism
mentioned above. However, splitting across the columns
presents an additional complexity upon merging which is
discussed in Distributed memory model [8].
Bi-directional scheme performs data partitioning along
the rows and columns, combining earlier approaches. It
is noteworthy that this partition scheme only works with
four or more processors or p ≥ 4. For example, with n =
100, m = 100 and p = 4, each processor will get a ni ×
mi = 50 × 50 records for their computations.

Distributedmemorymodel [8]
The interconnected nodes receive the partitioned
genomic data and start building their individual GSTs
in parallel. For example, p0, p1 . . . , p|p| nodes will create
GST0, . . . ,GST |p| suffix trees in parallel. It is noteworthy
that, the underlying algorithm for constructing the GSTs
is linear employing Ukkonen’s algorithm [14], regardless
of the partitioning mechanism. Once the build GST phase
is completed, these nodes start the network activity by
sharing their GSTs for the merge operation:

Aziz et al. BMC Genomic Data (2022) 23:45 Page 5 of 16

Figure 2 shows a GST construction for horizontally par-
titioned data. Here, two different suffix trees are presented
on the left side, nodes coloured in grey and white. The
merged version of these trees is on the right. It is impor-
tant to note that, the merge operation should not create
any duplication of nodes at any particular level. How-
ever, for the other partitioning schemes (vertical and bi-
directional), we will need to perform an extra step where
the datasets are divided against the column (mi < m).
Figure 3 shows this step where GSTs are constructed for

S1,S2= {010101, 101010} with a setting of n = 2, p =
2,m = 6. Here, the first node p1 takes {010, 101} as input
whereas p2 operates on {101, 010}. Here, the GST from p1
does not have the full sequence and needs to account for
the tail-end suffixes that are generated over at p2. There-
fore, we added different end characters to p1’s suffix trees,
representing the future addition.
Based on this end character, a merge operation hap-

pens for all cases where sequences were partitioned across
the columns, without the last genomes mi < m. How-
ever, suffix trees from the tail-end sequences (mi = m)
can be described as linear or Path Graphs. For exam-
ple, in Fig. 3, 101 and 010 are represented as %1, %2
where both are linear nodes or path graphs. We add these
%1, %2 path graphs to the suffix trees on mi < m with-
out any duplication. Finally, the trees on p1 and p2 are
merged according to the previous method, following the
horizontal partitioning scheme.

Sharedmemorymodel [8]
In summary, the distributed memory model had mul-
tiple instances with completely different memory envi-
ronments where the GSTs were constructed. Now, these
instances also have multiple CPU cores accessing a global
memory (RAM). In this shared memory model, we uti-
lize these in processor cores and perform a parallel merge
operation.
Our genome data consist of a fixed alphabet set consid-

ering the nucleotides available (A, T, G, C). We use this
property here proposing an Intra-node parallel operation
using the shared memories among the cores. Here, the
number of children is always fixed due to the fixed alpha-
bet size, we propagate the operations into multiple cores.
For example, one core only handles the suffixes with 0 at
the beginning (or root) whereas another one takes only the
1 branch. Figure 2 depicts this operation where p1 and p2
constructs individual GSTs from {01, 0101, 010101} and
{1, 101, 10101}. Then, the output GSTs are merged, avoid-
ing duplicates and added to the final GST’s root. Notably,
due to the limited main memory in this shared envi-
ronment, we cannot process arbitrary large datasets only
using this method.

Merging GSTs [8]
Since GSTs are constructed in multiple processors and
memory environments, we need to merge them for the
final GST representing the whole genome dataset. Here,

Fig. 2 Uncompressed Suffix Tree (Trie) construction

Aziz et al. BMC Genomic Data (2022) 23:45 Page 6 of 16

Fig. 3 Vertical partitioning with path graphs (%1, %2) merging [8]

the merge operation takes multiple GST as input and pro-
duces a single tree without any duplicate node on a single
level (Definition 5). Formally, for p processors, we need to
merge |p| GSTs to create the final GST ; GST = GST0 +
. . . + GST |p|. We use the technique discussed in Shared
memory model [8] treating the 0 and 1 children of the
root into separate cores. Notably, the branches from 0 or
1 child of root do not have any common edges between
them. Therefore, we can perform merges in parallel avail-
ing the intra-node parallelism.

Definition 5 (Merge GSTs) Given two suffix trees T1
and T2 from two sequences S1 and S2 with m length, the
leaf nodes of the merged tree T12 will contain all possible
suffixes of S1 : i and S2 : i i ∈[1,m].

An example of the merge operation is shown in Fig. 4
depicting a bi-directional partition and merging after-
wards. Notably, merging any branch to another is a
sequential operation. Here, different threads cannot oper-
ate simultaneously for the integrity of the tree or avoid
race conditions. Nevertheless, the intra-node parallelism

can be extended according to the number of cores avail-
able. For example, rather than only considering 0 and 1
branches, it can take 11, 10, 01, 00 branches.

Communication andmapping [8]
In our proposed mechanism, the computing nodes get a
continuous segment of genomic data on which they con-
struct their GSTs. The final GST in any node is saved in a
file system which is later communicated through the net-
work with the other participating nodes. We chose the
merge operation to occur between the closest nodes or
with the least latency present. As an example, for Fig. 4
p3p4 will share their GSTs with p1, p2, respectively. Both
p1, p2 will perform the merge operation in parallel while
the GSTs were received as files. Here, the primary reason
behind using files or external memories is solely for the
memory requirements from large genomic datasets which
can create a memory overflow for a single node.

Privacy preserving query execution
In this section, we discuss the mechanisms that allow
privacy preserving queries on suffix trees.

Aziz et al. BMC Genomic Data (2022) 23:45 Page 7 of 16

Fig. 4 Bi-Directional partitioning scheme where data is separated into both rows and columns and merged using the shared memory model [8]

Merkle tree
Merkle tree is a hash-based data structure which is often
used as a data compression technique [15]. Here, the data
are represented as leaf nodes of a binary tree and they
are hashed together in a bottom-up fashion. The indi-
vidual node values are determined from its children as
they are concatenated and hashed with any cryptographic
hash function (i.e., MD5, SHA-2 [16] etc.). For example,
the parent A of leaf nodes with value 0 and 1 will denote
A = h(h(0) || h(1)) where h is a hash function with fixed
output size k as h : {0, 1}∗ → {0, 1}k . Similarly, if its
sibling is denoted by B, then their parent will have C =
h(h(A) || h(B)) where || represents concatenation.
ReverseMerkle tree (RMT)
In this work, we utilize a reverse of the Merkle Tree hash
where the data is hashed in a top-down fashion. For exam-
ple, a child node will have the hash value A = h(P || h(0))
where 0 and P is the hash value of the node and its parent,
respectively. The sibling will have B = h(P || h(1)), anal-
ogously as shown in Fig. 5b. We initialize the root’s hash
value with a random value namely SALT for additional
security which is mentioned in Privacy preserving query
execution.
Here, as the GST is constructed in parallel, we hash the

content of the individual nodes alongside the SNP values.
The hash values are passed down to the children nodes
and added with their hashed SNP value. In Fig. 5, we show
the example of a reverse hash tree for the sequence S1 =
010101. Here, in each node, we take the hash of the parent
node and add it to the hash of that node’s value. Notably,
in Fig. 5, we write h(AB) to replace h(h(A) || h(B)) in short.
The leaf nodes will also have the position of the suffix

appended together with the nucleotide value (represented
as $ in Fig. 5b.
The rational behind using the reverse Merkle tree is

to represent the suffixes using the hash values for faster
matching. Here, the hash values on the leaf nodes repre-
sent the corresponding suffixes of that edge in the GST.
For example, the longest path in Fig. 5 will represent S1 : 0
and contains the hash for suffix 010101. We also keep
the position of the suffix alongside the hash values. These
leaf hash values are kept separately for incoming queries
which accelerate the search process as we describe it in
Privacy preserving query execution.

Definition 6 (Reverse Merkle Tree) For a sequence S =
s1s2 . . . sm and a deterministic hash function h : {0, 1}∗ →
{0, 1}k, the Reverse Merkle Tree (RMT) will produce a hash
output h(S) = h(. . . (h(h(s1) || h(s2)) || . . .)).

Example 5 For a sequence S = 0110, RMT will ini-
tially produce the hash h(s1) where s1 = 0. It will pro-
ceed to the next character s2 = 1 and concatenate both
the hash outputs. However, h(s1) || (s2) doubles the size
of the fixed bit hash output which is then hashed again
to make it of the same size. h(h(s1) || (s2)) is then con-
catenated with h(s3) as RMT represents the final output
h(h(h(h(0) || h(1)) || h(1)) || h(0)).
Cryptographic hash function
The cryptographic function employed to hash the values
in each node is quite important. As there aremultiple hash
functions available (i.e., MD5, SHA-1 [16], etc.), they ulti-
mately serve a similar purpose. These functions provide a
deterministic, one-way method to retrieve a fixed bit size

Aziz et al. BMC Genomic Data (2022) 23:45 Page 8 of 16

Fig. 5 Reverse Merkle Hash for Suffix Tree on S1 = 010101 where we hash the value of each node in a top-down fashion

representation of the data. Therefore, it can also be con-
sidered as a compression technique that offers a fixed size
for arbitrary large genomic sequences or suffixes.
We utilized MD5 as an example function in our imple-

mentations as it was executed on every node as described
in Reverse Merkle tree (RMT). Here, it is important to
consider the size of the hashed values as MD5 provides a
fixed 128-bits output. Using another hash function with
better collision avoidance or more security (i.e., SHA-1)
may result in longer (256 bits) hash values, which will
increase the execution time linearly in order of the bit
size. Nevertheless, MD5 is given as an example that can be
replaced with any cryptographic hash function.

Suffix tree storage
One of the major limitations of Suffix Trees is the num-
ber of nodes and the storage they require for longer input
sequences. In the worst case, a sequence of length m will
have m + 1 unique suffixes. The number of suffixes also
increases along with the values of sequence and genomes
within (n,m). For example, m bi-allelic SNPs from one
sequence can create 2m+1 − 1 nodes on the suffix tree.
The content of these nodes is hashed according to the

aforementioned Reverse Merkle Tree method. Due to the
size of the resulting tree and its dependency on the size
of the sequence, we utilize file-based storage, in place
of the main memory. Here, all operations on the suf-
fix tree, construction and queries are run on physical
files, which are later outsourced to the external semi-
trusted computational environment. We next discuss the
privacy model and the privacy-preserving outsourcing
mechanism.

Privacymodel
The primary goal of the proposed method is to ensure the
privacy of the data (located on the GST) in an untrusted
cloud environment. Therefore, we expect the cloud to
learn nothing about the genomic sequences beyond the
results or patterns that are revealed from the traversal.
Note that the proposed method do not guarantee the
privacy derived from the query results as it might be pos-
sible for the researchers to infer private information of an
individual using the query results. The proposed secure
techniques do not defend the genomic data against such
privacy attacks, where researchers may act maliciously.
Nevertheless, we discuss some preventive measures using
differential privacy in Discussion.
The privacy assumption for the cloud service provider

(CS) is different as we adopt the semi-honest adversary
model [17]. We assume that CS will follow the implicit
protocols but may attempt to retrieve additional infor-
mation about the data from the underlying computations
(i.e., logs). This is a common security definition, and real-
istic in a commercial cloud setting since any cloud service
providers comply with the user agreement and cannot
use/publish the stored data without lawful intervention.
Furthermore, in case of a data breach on the server, our
proposed mechanism should protect the privacy of the
underlying genomic data. In addition, the system has the
following properties: a) CS does not collude with any third
party or researchers to learn further information, b) in
case of an unwanted data breach on CS, the stored GST
(or genomic data) does not reveal the original genomic
sequences, and c) Researchers are assumed honest as they
do not collude with other parties to breach the data.

Aziz et al. BMC Genomic Data (2022) 23:45 Page 9 of 16

Algorithm 1: Encrypted Reverse Merkle Tree (RMT)
Input: Root Node of GST, random SALT bytes, secret

key
Output: encrypted nodes using AES-CBC and reverse

merkle hashing
1 Procedure ReverseMerkleTree(node,
previousValue)

2 node.val ← Hash(randomBytes||node.val)
3 foreach child of node do
4 ReverseMerkleTree (child, node.val)
5 encryptedNode← AES-CBC(node,key)
6 return encryptedNode
7 ReverseMerkleTree (root, SALT)

Formally, let researcher and cloud server be P1 and P2,
respectively. P2 stores a private database D′ as P1 wants
to execute a string function f (q,D′) based on a query
string q. For example, this function can be any string query
defined in Definitions 1, 2, 3pdefsmm and 4. The privacy
goal of the targeted method will be to execute f (q,D′) in
a way that P1 and P2, both are unaware of each other’s
input, but only knows the output of f. We assume that P2 is
semi-honest as it does not deviate from the protocol. Fur-
thermore, no polynomially bounded adversary can infer
the sensitive genomic data from outsourced D′ if it gets
compromised.

Privacy-Preserving outsourcing
As the GST is constructed in parallel in a private cluster,
the resulting suffix tree is stored (or outsourced) in a com-
mercial cloud server (CS). The researchers will present
their queries to this CS, and CS will search on the GST
for the corresponding queries. For example, if we consider
the four queries from String Queries q, each will warrant
a different number of searches throughout the outsourced
GST.
Since we intend to ensure the privacy of the genomic

data in an untrusted environment, we remove the plain-
text nucleotide values from the GST replacing them with
their Reverse Merkle hash value according to Definition 6.
For example, GST in Fig. 5a will be hashed in a top-down
fashion where the leaf nodes will contain the sequence
number and corresponding suffix position.
Since a genomic dataset will only have limited input

characters (A, T, G, C), hashing them individually will
always produce the same output. As a result, CS (or any
third party) can infer the hashed genomic sequences.
Therefore, to protect the privacy of the data, we utilize
two methods: a) A random byte array is added to the root
of the GST, kept hidden from the CS, and b) the final hash
values are encrypted with Advanced Encryption Standard

(AES) in the block cipher mode (AES-CBC) prior to their
storage.
As the one-way public hash function reveals the

genomic sequence due to its limited alphabet size, we
need to randomize the hash values so that no adversary
can infer additional information. Such inference is avoided
with a standard random byte array, namely SALT. Here,
the root of the GST (Fig. 5a) contains a SALT byte array
which is never revealed to CS. As this SALT array of the
root node is appended to its children nodes, it will cascad-
ingly alter all the hash values downstream making them
appear random.
For example, while generating Fig. 5b from a, the left and

right child of root S1 will contain the value h(SALT || h(0))
and h(SALT || h(1)), respectively. For simplicity, the ran-
dom SALT byte can be assumed to be of the same length
as of the hash function output, k (128 random bits for
MD5). Since CS does not know these random k bits, it
will need to brute force through the 2k possible values
which is exponential in nature. Since the hashing is also
done repeatedly, it can prove to be challenging to infer
meaningful information from the RMT hash tree for an
arbitrarily long genomic dataset. Notably, the SALT bytes
are shared with the researcher as it is required to construct
the queries as well.
To further improve the security, these individual hash

values are also encrypted with AES-CBC with 128 bit
keys. This AES mode requires an random Initialization
Vector (IV) which is also shared with the researcher but
kept hidden from CS. This encryption provides an addi-
tional layer of security in an unlikely event if CS gets com-
promised. The encrypted hash values will be randomized
and should prevent further data leakage. The procedure
to get the Encrypted Reverse Merkle tree is described in
Algorithm 1. In summary, the output from data owner to
CS will be the encrypted GST, EGST where every node
value is encrypted. We demonstrated the process in Fig. 6.
Therefore, according to our privacy model in Privacy

model, the RMT containing the encrypted hash values of
the original dataset is safe to transfer over to a semi-honest
party [17]. As we also assume the CS to be honest-but-
curious [17], it will follow the assigned protocols and will
not attempt any brute force attacks on the hashed values.
However, under any data breach, the proposed encrypted
tree will suffer the same limitations of symmetric encryp-
tion. Notably, some of them can be avoided by using
asymmetric encryption or separate secret keys for differ-
ent heights or depth of the GST which will strengthen the
security; we discuss this in Discussion.
It is important to note that the size of the suffix tree is an

important factor to consider when deciding on the under-
lying cryptosystem. We picked the symmetric encryption
scheme, AES partially due to this reason as it will not
increase the size of the hash output. For example, the

Aziz et al. BMC Genomic Data (2022) 23:45 Page 10 of 16

Fig. 6 The search protocol of our proposed solution for Exact Match (Definition 1). Data owners are offline after sharing the encrypted GST to CS as
the researchers and CS only need to be online for search operation. The encrypted query EQ are send to CS and matched against theHI for the
final result

Algorithm 2: Encrypted query using RMT (Eh)
Input: Query String q, SALT bytes, secret key
Output: Encrypted Query String, Eh

1 hashVal ← SALT
2 foreach character of query q do
3 hashVal ← Hash(hashVal||Hash(character))
4 return AES-CBC(result,key)

output from MD5 for every suffix tree node will be 128
bits. These 128 bits are later encrypted with AES-CBC
which represents the final content stored on the suffix tree
nodes. Here, the encrypted hash values do not increase
the size of the content.

Privacy-Preserving query execution
The four queries mentioned in String Queries q will be
executed over the AES-CBC encrypted RMT hash val-
ues as outlined in Reverse Merkle tree (RMT). These hash

values compress the nucleotides available on each edge
to a fixed number of bits (size of the hash) and offer an
advantage when searching over the whole GST.

Hash Index (HI): Prior to the query, CS creates another
intermediary index on the encrypted hash values from
EGST . Since our hash function will always provide a fixed
sized output (in bits) for each node, a binary tree can
effectively speed up the search which is constructed over
the symmetrically encrypted bits of EGST . For example,
MD5 will always output the same 128-bis for the same
SALT and series of nucleotides using RMT. Encrypting
these fixed size values with AES-CBC with the same key
will produce ciphertexts which can later be utilized for
searching as the researchers will come up with the same
ciphertexts for any matching query.
The output from the AES-CBC bits are kept in a binary

tree having a fixed depth of 128 (from root to leaf) as
we use 128 bit encryption. Here, the leaf nodes will point
towards the hash value or the nodes appearing on the

Aziz et al. BMC Genomic Data (2022) 23:45 Page 11 of 16

RMT.We name this B-tree asHI as it replaces an exhaus-
tive search operation on GST (outlined in Fig. 6). Notably,
we added the positions of the suffixes from GST into the
HI using the end character $ symbol which was appended
to the genomic sequences. This positional value (i.e., $0
representing S : 0) contained the starting index of the
suffix which was necessary for all queries with a targeted
position.
We can demonstrate the efficacy of HI for the Exact

Match (EM) query as defined in Definition 1. Here, the
researcher initiates the query as s/he can have one or mul-
tiple genomic sequences to search for in the dataset D.
The researcher constructs the hash representation of the
query using the secret key and random byte array (SALT)
that was employed to make the GST stored in the CS. For
example, if the query is 010101, then the query hash will
be: Qh = h(. . . h(h(SALT || h(0)) || h(1)) . . .). Later, it will
be encrypted with the key EQ = E(Qh, key, IV) and sent to
CS for matching. The procedure to retrieve EQ is briefed
in Algorithm 2.
CS will search for this EQ in the fixed size (HI) first. If

the hash exists on the B-tree, CS returns the leaf node that
HI is referencing. Here, only the leaf nodes ofHI keep a
reference of the Reverse Merkle Tree nodes which is sent
as the final result to the researcher (in case of amatch). For
a mismatch, we will not have a node on HI for the query
hash, resultingly, do not need to check GST anymore.

Lemma 1 For a hash function with fixed output size
k, Exact Match (Definition 1) will require a worst-case
runtime ofO(log k) for any arbitrary query.

In Lemma 1 we consider the output size of the hash
function for simplicity as AES will produce the same num-
ber of bits as inputs. Nevertheless, we can extend the
method for EM (same runtime as Lemma 1) to execute
the rest of the queries. For example, a substring Match
can be an extension of EM where we will consider a query
length, |q| smaller than the sequence length (< m) and
only allowing exact matches of |q| length. This is also pos-
sible employing HI which represents the strings residing
in a GST.
Similarly, for the Set Maximal Matching (SMM-

Definition 3), the researcher and CS perform an iterative
protocol. The researcher initially searches for the whole
query following the same protocol from Fig. 6 on the HI
leading to the GST residing in CS with the specific posi-
tion. For a mismatch, it reduces the query length by one
and iterates the search until there is a match. The worst-
case running time for such operation will be in order of
O(|q| log k). PVSMM (Definition 4) is an extension of the
same protocol where we have a threshold constraint which
further reduces the computations to O(t log k) given
t > |q|.

Hiding query access pattern
Garbled Circuit (GC) allows our two-party, CS and
the researcher to execute a secure protocol between
themselves which ensures their input privacy guarantee.
In our proposed method, the encrypted HI does the
major search operation as it is outsourced on CS. How-
ever, the input from the researcher is not hidden from
CS. Such access pattern for an arbitrary query might
reveal additional information which we avoid using this
method.
In this GC protocol, the hash values are represented

as binary strings and matched against the HI using the
oblivious transfer technique. The researcher produces the
reverse Merkle hash value QH according to algorithm 2.
Here, the query sequence will be a Path as each node
will have only one child. Each query node will denote
the corresponding nucleotide in the specific position. For
example, the root will have the first nucleotide (lowest
position) as its child and the leaf node will be the last
position of the sequence.
We perform the reverse Merkle hashing on such a Path

graph where the leaf node will represent the final query
hash value. The root of this path will contain the same
secret SALT used to construct the reverse Merkle tree.
The resulting fixed-length hash value is then matched
with the binary tree, HI on the CS through a GC proto-
col. Notably, the size of the query hash and the height of
HI are the same as we use the same hash function.
Here, CS and the researcher goes to a fixed round inter-

action where each bit from the query hash serves an input
from the researcher while CS puts the bit value fromHI .
For example, in the first round, the researcher puts the
first bit of the query hash in the GC protocol. CS randomly
picks a child from the root of the HI (0 or 1) and sets it
as its input for GC. The circuit utilized here is an XNOR
operation between these two input bits which results in 1
only if the input bits are the same. Importantly, the input
bits are not revealed to any party while the output is only
available for CS. If their input bits matches then CS pro-
ceeds with the currently selected node’s children or take
its sibling. There are only 2 nodes at each level as HI is a
B-Tree.
CS then sends a request to match the next bit and both

parties repeat the procedure until a mismatch. Here, a
mismatch of the bits denotes that the CS does not have
such hash value on the GST, hence the query sequence is
not available in the dataset. In this case, CS returns that
there are not sequence on dataset D matching the query.
For a match on the leaf node, CS returns the encrypted
suffix sequence that are referenced at the HI leaf nodes.
Since the four queries can essentially reduce to matching
the hash values on the query path andHI (Lemma 1), we
do not discuss the corresponding GC protocols for each
query in detail. Shortly, SMM or TSMM will require the

Aziz et al. BMC Genomic Data (2022) 23:45 Page 12 of 16

researcher to remove the nucleotides from his/her query
and iterate the GC protocol for each query edits.
In our proposed method, the researcher and CS can

guess each other’s inputs as it is a XNOR circuit on the hash
outputs. However, the input query sequence and the data
on GST is kept hidden from both parties in case of a mis-
match. We argue that under the targeted privacy model
(Privacy model), the resulting sequences and the query
can be public to both parties. Nevertheless, we also con-
sidered a non-iterative mechanism to perform the search
which operated on the full binary tree of HI (input from
CS). Here, the complete encrypted query hash EQ from
the researcher is an input on the GC while CS inputs
HI . This method matches each hash bits obliviously and
only outputs the matching suffix; avoiding the disclo-
sure from the in-between matches. However, it incurred
a longer execution time which is further discussed in our
limitations in Discussion.

Experimental results and analysis
Before discussing the findings, we will describe the imple-
mentation and underlying dataset details:

Datasets and evaluation
Since the proposed method is scaled and evaluated
against different parameters, we use randomly distributed
synthetic datasets. We generate different datasets with
{n,m} ∈ {200, 300, . . . , 1000} and name them such as
Dn×m. We agree that genomic data of n,m in millions
will portray the true benefit of our proposed parallel con-
structions, but due to our computational restrictions, we
limited our experimental settings [18]. However, we argue
that larger datasets will denote the same trend in terms of
execution time as we increase the parallel computational
power. Our implementations are publicly available in [19].

Suffix tree construction speedup [8]
We measure the suffix tree construction speedup accord-
ing to the dataset size (n,m), number of processors p
and different memory models—distributed, shared and
hybrid. The distributed or shared model does not employ
intra-node or inter-node parallel operations whereas the
hybrid method utilizes both. It is important to note that
the results for the parallel GST construction is also avail-
able in [8] which we summarize here.
Tables 2 and 3 contains the execution time for all

three partitioning scheme—horizontal, vertical and bi-
directional. We also report the results from the three
memory architecture varying the number of processors
p = {2, 4, 8, 16}. Notably, the sequential or serial execution
is denoted by the p = 1 case which is a plain Ukkonen’s
algorithm [14].
Table 2 shows that GST building time for smaller

datasets are almost the same for all memory models and
experimental settings. However, the execution time dif-
ference starts to be clearer as we increased the dataset
size (n,m). For example, D200×200 needed 0.08 mins
on the serial execution (p = 1) whereas D1000×1000
required 14.55. The distributed model needed 6.09 min-
utes showing the added network complexity and opera-
tions required by inter-node communication. The hybrid
memory model performed better taking only 3.08 mins
with 16 processors.
Interestingly, for these smaller datasets, the shared

memory model outperforms the other memory settings.
Unlike the distributed model, the shared architecture
requires no network connectivity as it splits the work
into different cores. It required the lowest time in all set-
tings, around 2.28 minutes with 16 processors. However,
it did successfully process larger dataset, greater than 1000
nucleotides and genomes. Since the memory and proces-

Table 2 Execution time (in minutes) for Horizontal and Vertical partition scheme with processors p = {1, 2, . . . , 16}
Data

Serial Distributed Shared Hybrid

1 2 4 8 16 2 4 8 16 2 4 8 16

Horizontal Partitioning

200 0.08 0.23 0.09 0.09 0.10 0.14 0.05 0.04 0.03 0.14 0.07 0.05 0.05

300 0.27 1.04 0.23 0.2 0.23 0.38 0.15 0.11 0.08 0.37 0.16 0.12 0.12

400 0.59 2.03 0.55 0.38 0.38 1.18 0.35 0.21 0.2 1.12 0.31 0.23 0.25

500 1.53 3.14 1.32 1.06 1.01 2.27 0.57 0.36 0.28 2.09 0.52 0.38 0.41

1000 14.55 16.23 8.34 6.31 6.09 17.38 5.56 3.27 2.28 17.14 4.18 3.12 3.08

Vertical Partitioning

200 0.08 0.19 0.08 0.05 0.03 0.16 0.07 0.04 0.02 0.14 0.05 0.03 0.02

300 0.27 0.56 0.28 0.17 0.09 0.48 0.22 0.16 0.08 0.39 0.13 0.10 0.06

400 0.59 1.41 1.05 0.36 0.16 1.44 1.01 0.34 0.19 1.21 0.32 0.21 0.13

500 1.53 3.07 1.49 1.08 0.37 3.18 1.49 1.08 0.36 2.35 0.58 0.40 0.24

1000 14.55 25.24 12.25 9.06 5.20 22.56 13.11 7.2 4.37 18.22 6.31 4.49 3.10

Aziz et al. BMC Genomic Data (2022) 23:45 Page 13 of 16

Table 3 GST construction time (in seconds) using bi-directional partition scheme with processors p = {1, 4, 8, 16} [8]
Data

Serial Distributed Shared Hybrid

1 4 8 16 4 8 16 4 8 16 32

200 4.8 94.2 90 87 43.8 42.6 38.4 70.8 73.2 75.6 1.51

300 16.2 121.8 107.4 106.2 72 48.6 43.2 88.8 75 75.6 1.37

400 35.4 168.6 148.2 124.8 102.6 54 57.6 114 87 96 1.36

500 91.8 231.6 151.8 154.8 145.2 76.2 62.4 146.4 103.8 105 1.36

1000 873 1135.2 428.4 291.6 856.8 202.2 154.8 635.4 312 214.2 1.36

sors in a shared model is fixed which can be extended
in distributed setting by adding new machines, larger
datasets will require the later approach.
In Table 2, we show the results from vertical partition-

ing, having an extra step of path graph addition. This
addition is not present on the horizontal partitioning. This
additional step increased the execution time, taking 25.24
minutes to process D1000×1000, compared to 16.23 mins
with the horizontal partitioning. The bi-directional par-
titioning results are shown in Table 3. Compared to the
prior two data partitioning schemes, the tree build cost
is reduced here as there are smaller sub-trees to join in
this case. For example, with four processors (p = 4) and
n = m = 1000, each processor will get an input of 25× 25
genome dataset, leading to four subsets of 100 × 25 and
25 × 100 partitions for vertical and horizontal schemes,
respectively.
In Table 4, we report the execution time for individ-

ual operations: tree building, path graph addition and tree
merge. Here we report the maximum time for each oper-
ation from each run since they were run in parallel. It is
noteworthy that these operations are the building blocks
for the execution time posted in Tables 2 and 3. Table 5
summarizes the speedup results for dataset D1000×1000.
Speedup is defined as Tpar/Tseq where the shared model
performed better than the distributed one. However, the
distributed model’s results are comparable for p > 2 set-
tings. Notably, the shared architecture could not process
the dataset, D10,000×10,000 due to memory constraints and
excluded from the results. This limitation was not preset
for both distributed and hybrid setting as they were able
to construct the GST.
One of the limitations of the proposed framework is

the size of the resulting suffix tree. Since the node con-
tents are hashed and encrypted, it also increases the

memory requirements as we utilized file-based mem-
ory to handle queries. For example, for a dataset of
{500 × 500, 1000 × 1000, 2000 × 2000, 5000 × 5000}
takes around {109, 433, 1754, 11356} megabytes of storage
space. Notably, this storage accounts for the hashed tree
and the AES-CBC encrypted node values on the Merkle
tree. Furthermore, we opted to experiment with a rela-
tional database (MySQL) to save the encrypted tree, which
is detailed in our code repository [19].

Query execution
Experimental setup
In this section, we analyze and discuss the execution time
of the four queries in private and non-private settings as
defined in String Queries q. We utilized an Amazon EC2
cloud server (specification g4dn.xlarge) in Oregon,
US as the cloud server and the researcher was located in
Winnipeg, Canada. The average network latency between
the CS and the researcher was around 49ms. The key
components of the result analysis are as following:

1. Execution time for all queries with worst-case inputs,
2. Effect of dataset size and query length
3. The impact of GST andHI , and
4. The runtime comparison between hashing and GC

We targeted the worst-case input queries as it will high-
light the maximum execution time for each type of query.
For example, for exact matches (EM), we randomly picked
a query sequence from the dataset. As any mismatch
on the HI will forcefully reduce the computations, we
chose to pick available sequences for Query 1. For SMM
and TSMM Queries (3 and 4), we preferred a random
query sequence which was not present in the dataset. As
for a mismatch, SMM (and TSMM) will redo the search
altering the query sequence. This will show the maxi-

Table 4 Maximum Execution time (in seconds) of Tree Building (TB), Add Path (AP) and Tree Merge (TM) for dataset, D1000

p
Horizontal Vertical Bi-directional

TB AP TM TB AP TM TB AP TM

4 113.35 - 70.02 292.97 2.7 66.8 4.01 0.37 3.85

8 47.38 - 85.4 138.87 2.9 61.1 0.62 0.16 1.8

16 15.6 - 98 64.4 3.2 57.6 0.12 0.07 1.2

Aziz et al. BMC Genomic Data (2022) 23:45 Page 14 of 16

Table 5 Results on the speedup for dataset, D1000×1000 for all memory models and partitioning schemes with processors
p = {2, 4, 8, 16}
Method

Distributed Shared Hybrid

4 8 16 4 8 16 4 8 16

Horizontal 1.19 1.61 2.80 1.11 2.02 3.33 2.31 3.24 4.69

Vertical 1.74 2.31 2.39 2.62 4.45 6.38 3.48 4.66 4.72

Bi-directional 0.77 2.04 2.99 1.02 4.32 5.64 1.37 2.80 4.08

mum execution time required. Alternatively, if we picked
a sequence from the dataset (similar to EM), it was not
necessary to traverse the HI and it will output the same
execution time as EM.
Therefore, our targeted four queries can essentially be

reduced to EM. For example, we do not discuss the
exact substring matches in this section as it took the
same time as the EM. We also limit the execution time
for two datasets D1000 and D500 as the data dimension
will increase the size of the GST. Therefore, we examine
the scalability issues with different query lengths |q| ∈
{300, 400, 500} and (n,m) ∈ {(1000, 1000), (500, 500)}.
Execution Time for GST (w/o privacy)
Initially, we analyze the execution time of the targeted
queries on plaintexts without any privacy guarantee in
Table 6. Here, we only execute the queries on the gen-
eralized suffix tree (GST) as they are outsourced on CS
and simulate the researcher on the same server to avoid
the random network latency. The execution time from
the Table 6 clearly shows that longer query sequences
(i.e., |q| = 500) require more time than smaller queries.
As we are searching on the suffix tree, our GST index-
ing presents a runtime linear in the query length of |q|.
Notably, GST allowed us to remove the runtime depen-
dency with the number of sequences or nucleotide (n or
m) which is often higher for genomic datasets.
One interesting observation here is the scalability prop-

erty of GST on different sized datasets. As we consid-
ered two different datasets D1000 and D500 with n,m =
{1000, 500}, it seems that the runtime does not increase
significantly. Ideally, traversing the GSTs from D1000 or
D500 for a query should not be different but the increased

number of nodes on memory adversely affects the query
execution.

Execution time forHI (with privacy)
Since the query length |q| can also be arbitrarily large, we
reduce its impact on execution time by employing HI .
This index HI , built on the GST allows us only to search
up to the hash output length |H| rather than |q|. We see
its effect in Table 7, as for different |q|’s, the execution
time for EM did not increase which was the opposite for
plaintext GST as shown in Table 6.
Since we considered the worst-case inputs (non-

matching query sequences) for SMM and PVMM, both
types of queries required more matching requests on the
cloud server. These iterative query executions increased
the runtime incrementally. The effect of the dataset size is
also analogous with our earlier argument as the time vary
slightly for different sized datasets. We do not show the
results for SMM over the garbled circuit as they required
over an hour each on the worst-case inputs.
We also benchmark with recent work from Shimizu et

al. [11] which utilized positional Burrows-Wheeler Trans-
formation with Oblivious Transfer (OT-secure protocol)
for input privacy. From the results in Table 6, it is evi-
dent that our Merkle hash along with HI provides a 4×
speedup compared to the earlier work as it takes 160.85
seconds to execute a set maximal match on D1000 (our
method required 36.76s). However, since this benchmark-
ing method only used OT rather than more expensive
GC operations, it was faster than the GC protocol. The
implementations from Sotiraki et al. [12] was not avail-
able publicly which is why we could not add it to our
benchmarking results.

Table 6 Exact Matching, SMM and TSMM (Query 1, 3 and 4) using GST considering different datasets and query lengths (time in
milliseconds)

Query Length |q| D1000 D500

EM SMM TSMM EM SMM TSMM

300 0.5 140 94 0.3 80 70

400 0.5 140 150 0.4 130 120

500 0.6 210 220 0.5 190 180

1000 1.1 680 720 - - -

Aziz et al. BMC Genomic Data (2022) 23:45 Page 15 of 16

Table 7 Secure Exact Matching (EM), SMM and TSMM (Query 1, 3 and 4) usingHI considering different datasets and query lengths
(time in milliseconds). QP, GC, |q| denotes query processing time, Garbled Circuit, and Query Length respectively

|q|
Reverse Merkle Hash withHI GC Shimizu et al. [11]

D1000 D500 D1000 D500 D1000 D500

QP EM SMM PVSMM EM SMM PVSMM EM EM SMM SMM

300 0.79 41.4 11599 2862 37.1 11100 2761 63246 63583 50358 43163

400 0.84 43.9 15337 3901 36.9 15385 3760 63194 62639 64867 55609

500 0.9 42.7 18563 4836 37.2 18477 4875 63439 62048 70754 67965

1000 1.58 45.2 36761 9368 - - - 63391 - 160854

Discussion
In this section, we discuss some of the core results, limita-
tions and some potential future works as well:

Parallel construction of GST: GST provides an effi-
cient index to the genomic data which can be used in
many string-based search queries, fundamental to the
utility of genomic data. However, the best sequential algo-
rithm is linear to the sequence length which can prove
to be significant for a large dataset with longer genomic
sequences n,m. Therefore, constructing such an expen-
sive tree-based data structure is handled by the proposed
parallel mechanism, which is required to be executed only
once while pre-processing any dataset.

Storage complexity of GST: On contrary, we use a file-
based GST for two fundamental reasons: a) higher stor-
age requirement for the suffix tree, and b) fixed main
memory in comparison to persistent disk memory. This
also warrants the usability of cloud servers, which offer
less-expensive storage solutions. Here, GST warrants an
expensive storage cost as the number of suffixes increases
linearly in order of the length of the sequence (m). For
example, a genomic sequence of length m has m + 1 suf-
fixes which increases for increasing values of n,m. Also,
for m genomes (bi-allelic SNPs), in the worst case, it can
create 2m+1 − 1 nodes on the suffix tree. Resultingly, we
incorporate another fixed-size index HI on GST, which
acts as the principal component while searching and can
fit into the main memory.

Privacy guarantee from encrypted hash value: The
privacy of the data relies on the symmetric AES cryp-
tosystem along with the random SALT bytes kept on
the root node of Reverse Merkle Hashing. We did not
use any asymmetric public-key encryption scheme due
to the resulting ciphertext size expansion. Nevertheless,
the recently improved homomorphic encryption schemes
might be beneficial in this task and provide additional
security guarantee [20, 21] which is an interesting future
work.

Privacy Guarantee from GC: In our proposed method
(Hiding query access pattern), GC plays its part in match-
ing the bit values of the query hash and node values on
HI . Here, the researcher and CS are unaware of each
party’s inputs unless there is a match. However, it still
reveals the encrypted query for a query sequence that
exists on HI . This could be avoided with a more rig-
orous GC protocol where the whole query EQ and HI
will be taken as inputs. However, searching the whole
query obliviously were not computationally feasible and
we did not report it here. This process can be efficient
with leveled execution of the searching on HI which can
be investigated in the future.

Output privacy: To protect the genomic data against any
malicious researchers, we can perturb the outputs from
CS with some privacy guarantee. One method to attain
output privacy is by adding noise to the query results, and
these techniques have been studied in the literature such
as anonymization [22], differential privacy [3]. However,
we did not opt for these strategies as they will thwart the
exact results from any query and validity is quintessential
in any scientific research. The realistic model in genomic
research also assumes the researchers to be honest as
they adhere and understands the privacy requirements of
genomic data.

Conclusion
Executing string queries on genomic data is not a new
research area; however, a privacy-preserving approach for
string queries has received little attention in the literature.
The primary contribution of this paper is a hash-based
mechanism to outsource and execute privacy-preserving
queries on genomic data. Due to the expensive construc-
tion operation, a parallel generalized suffix tree building
is proposed that utilizes both distributed and shared pro-
cessing capabilities and external memory. The proposed
parallel constructions and privacy-preserving query tech-
niques can also be generalized for other data structures
(e.g., prefix trees [23], PBWT [11]) and thus can be useful
for different genomic data computations. We also ana-
lyzed the performance using different datasets and sample

Aziz et al. BMC Genomic Data (2022) 23:45 Page 16 of 16

string queries. Experimental results show that the pro-
posedmethods aremore efficient than the state-of-the-art
techniques for string query execution.

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12863-022-01053-x.

Additional file 1: Supplementary Materials

Acknowledgement
The authors thank the reviewers and editor for their valuable feedback. The
research would not be possible without the University of Manitoba Computer
Science Computing Clusters and other funding bodies.

Authors’ contributions
All authors approved the final manuscript. MMA has designed, implemented,
and evaluated the methods. MMA wrote the majority of the paper and NM
and PT provided detailed edits and critical suggestions.

Funding
The research is supported in part by the CS UManitoba Computing Clusters
and Amazon Research Grant. NM was supported in part by the NSERC
Discovery Grants (RGPIN-04127-2022) and Falconer Emerging Researcher Rh
Award.

Availability of data andmaterials
Please check [19] for the open-source implementation and the required data
(https://github.com/mominbuet/ParallelGST).

Declarations

Ethics approval and consent to participate
Not Applicable

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 13 October 2021 Accepted: 25 April 2022

References
1. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen

A, Byrne CJ, Heuer ML, Larsson E, et al. The cBio cancer genomics portal:
an open platform for exploring multidimensional cancer genomics data.
AACR. 2012;2(5):401–404.

2. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome
and whole-genome sequencing approaches cost-effective? a systematic
review of the literature. Genet Med. 2018;20(10):1122–30.

3. Aziz MMA, Sadat MN, Alhadidi D, Wang S, Jiang X, Brown CL,
Mohammed N. Privacy-preserving techniques of genomic data—a
survey. Brief Bioinforma. 2017.

4. Bonomi L, Huang Y, Ohno-Machado L. Privacy challenges and research
opportunities for genomic data sharing. Nat Genet. 2020;52(7):646–54.

5. Naveed M, Ayday E, Clayton EW, Fellay J, Gunter CA, Hubaux J-P, Malin
BA, Wang X. Privacy in the genomic era. ACM Comput Surv (CSUR).
2015;48(1):6.

6. Akgün M, Bayrak AO, Ozer B, Sağıroğlu MŞ. Privacy preserving
processing of genomic data: A survey. J Biomed Inf. 2015;56:103–11.

7. Mahdi MSR, Al Aziz MM, Mohammed N, Jiang X. Privacy-preserving
string search on encrypted genomic data using a generalized suffix tree.
Inform Med Unlocked. 2021;23:100525.

8. Aziz MMA, Thulasiraman P, Mohammed N. Parallel generalized suffix tree
construction for genomic data. In: Martín-Vide C, Vega-Rodríguez MA,

Wheeler T, editors. Algorithms for Computational Biology. Cham: Springer
International Publishing; 2020. p. 3–15.

9. Farach M, Ferragina P, Muthukrishnan S. Overcoming the memory
bottleneck in suffix tree construction. In: Proceedings of the 39th Annual
Symposium on Foundations of Computer Science. USA: IEEE Computer
Society; 1998. p. 174.

10. Yao AC-C. Protocols for secure computations. In: FOCS, vol 82. USA: IEEE
Computer Society; 1982. p. 160–4.

11. Shimizu K, Nuida K, Rätsch G. Efficient privacy-preserving string search
and an application in genomics. Bioinformatics. 2016;32(11):1652–61.

12. Sotiraki K, Ghosh E, Chen H. Privately computing set-maximal matches in
genomic data. BMC Med Genomics. 2020;13(7):1–8.

13. Foster I. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. USA: Addison-Wesley Longman Publishing
Co., Inc.; 1995.

14. Ukkonen E. Online construction of suffixtrees. Algorithmica. 1995;14(3):
249–60.

15. Merkle RC. Method of providing digital signatures. Google Patents. 1982.
US Patent 4,309,569.

16. Gupta P, Kumar S. A comparative analysis of sha and md5 algorithm.
Architecture. 2014;1:5.

17. Lindell Y, Pinkas B. A proof of security of yao‘s protocol for two-party
computation. J Cryptol. 2009;22(2):161–88.

18. Computing Resources. www.cs.umanitoba.ca/computing. Accessed 4
Dec 2019.

19. Aziz MMA. Implementation for Parallel Private GST. https://github.com/
mominbuet/ParallelGST. Accessed 25 Mar 2022.

20. Gentry C, et al. Fully homomorphic encryption using ideal lattices. In:
Stoc, vol 9; 2009. p. 169–78.

21. Morshed T, Alhadidi D, Mohammed N. Parallel linear regression on
encrypted data. In: 2018 16th Annual Conference on Privacy, Security and
Trust (PST). IEEE; 2018. p. 1–5.

22. Wang S, Mohammed N, Chen R. Differentially private genome data
dissemination through top-down specialization. BMC Med Inf Dec
Making. 2014;14(S1):2.

23. Chen L, Aziz MM, Mohammed N, Jiang X. Secure large-scale genome
data storage and query. Comp Methods Prog Biomed. 2018;165:129–37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/s12863-022-01053-x
https://github.com/mominbuet/ParallelGST
www.cs.umanitoba.ca/computing
https://github.com/mominbuet/ParallelGST
https://github.com/mominbuet/ParallelGST

	Abstract
	Background
	Methods
	Results
	Keywords

	Introduction
	Methodology
	Problem architecture
	Parallel GST construction aziz2020parallel
	Private storage and queries
	String Queries q

	Parallel GST construction aziz2020parallel
	Data partitioning scheme aziz2020parallel
	Distributed memory model aziz2020parallel
	Shared memory model aziz2020parallel
	Merging GSTs aziz2020parallel
	Communication and mapping aziz2020parallel

	Privacy preserving query execution
	Merkle tree
	Reverse Merkle tree (RMT)
	Cryptographic hash function
	Suffix tree storage
	Privacy model
	Privacy-Preserving outsourcing
	Privacy-Preserving query execution
	Hash Index (HI):

	Hiding query access pattern

	Experimental results and analysis
	Datasets and evaluation
	Suffix tree construction speedup aziz2020parallel
	Query execution
	Experimental setup
	Execution Time for GST (w/o privacy)
	Execution time for HI (with privacy)

	Discussion
	Parallel construction of GST:
	Storage complexity of GST:
	Privacy guarantee from encrypted hash value:
	Privacy Guarantee from GC:
	Output privacy:

	Conclusion
	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s12863-022-01053-x.
	Additional file 1

	Acknowledgement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

