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First‑degree relationships and genotyping 
errors deciphered by a high‑density SNP array 
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Abstract 

Background:  Two individuals with a first-degree relationship share about 50 percent of their alleles. Parent–offspring 
relationships cannot be homozygous for alternative alleles (genetic exclusion).

Methods:  Applying the concept of genetic exclusion to HD arrays typed in animals for experimental purposes or 
genomic selection allows estimation of the rate of rejection of first-degree relationships as the rate at which two 
individuals typed for a large number of Single Nucleotide Polymorphisms (SNPs) do not share at least one allele. An 
Expectation–Maximization algorithm is applied to estimate parentage. In addition, genotyping errors are estimated 
in true parent–offspring relationships. Samples from nine candidate Duroc sires and 55 Iberian dams producing 214 
Duroc × Iberian barrows were typed for the HD porcine Affymetrix array.

Results:  We were able to establish paternity and maternity of 75 and 85 piglets, respectively. Rate of rejection in true 
parent–offspring relationships was estimated as 0.000735. This is a lower bound of the genotyping error since rate of 
rejection depends on allele frequencies. After accounting for allele frequencies, our estimate of the genotyping error 
is 0.6%. A total of 7,744 SNPs were rejected in five or more true parent–offspring relationships facilitating identification 
of “problematic” SNPs with inconsistent inheritance in multiple parent–offspring relationships.

Conclusions:  This study shows that animal experiments and routine genotyping in genomic selection allow to 
establish or to verify first-degree relationships as well as to estimate genotyping errors for each batch of animals or 
experiment.
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Background
Next Generation Sequencing (NGS), a term used for 
massive parallel sequencing of several hundred thou-
sand to millions of DNA fragments simultaneously, has 
enabled massive discovery of novel single nucleotide pol-
ymorphism (SNP) genetic markers [1]. Today, high den-
sity (HD) SNP arrays allow interrogating a genome for 

hundreds of thousands of SNPs at a time. Subsequently, 
HD SNP arrays have been used to interrogate human, 
animal and plant genomes for SNPs associated to disease 
and production traits [2, 3].

In livestock production, genotyped individuals in a 
population are often much more related than in human 
research. In most cases, individuals with first-degree rela-
tionships, i.e., parent–offspring or full-sib relationships, 
are part of the same selection candidates in genomic 
selection or crossbreeding programs. For optimum con-
tribution selection (OCS), restricting the relationship 
between selected parents is crucial to restrict inbreeding 
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in the progeny and maximize genetic gain [4]. There-
fore, for genomic breeding value estimation, the genetic 
relationships between individuals based on markers 
densely distributed across the genome need to be accu-
rately established across individuals [5]. In practice, this 
requirement may be hindered by instances of incor-
rect labelling or registration of individuals with their 
DNA samples. In addition, virtually every genetic study 
includes genotyping errors, quantified by the Quality 
scores probability of error provided by genomics com-
panies, resulting from calling algorithms that misiden-
tify and misclassify the individual’s genotype [6]. It is 
likely that genotyping errors vary between experiments 
due to variation in DNA quality or lab sample handling. 
Genotyping errors are usually not reported in scientific 
studies.

The objective of this study is to investigate the rate of 
rejection of first-degree relationships of individuals in a 
population using an HD SNP array. The second objective 
of this study is to demonstrate the use of HD SNP arrays 
in detecting genotyping errors after parent–offspring 
relationships are resolved. The third objective is to iden-
tify SNPs that repeatedly result in genotyping errors in 
multiple true parent–offspring relationships.

Methods
Genome‑wide rate of rejection of first‑degree relationships 
among all individuals
A first-degree relative is an individual who shares approx-
imately 50 percent of their alleles with a particular other 
individual. There are two first-degree relationships: 
parent-offspring, and full-sibs. Under strict Mendelian 
inheritance, individuals with a first-degree parent–off-
spring relationship cannot be homozygous for alterna-
tive alleles at a given locus. For example, an individual 
offspring cannot be homozygous CC at a locus, when a 
parent is GG at the same locus. Applying this concept to 
a population in which individuals are genotyped with an 
HD SNP array allows the rejection of parent–offspring 
first-degree relationships based on this rule. Full-sibs, on 
the other hand, can be homozygous for alternative alleles 
when both parents are heterozygous, but this probability 
is small, at 0.125.

We define genome-wide rate of rejection of first-degree 
relationships as the rate at which two individuals geno-
typed for a large number of SNPs have alternatives alleles, 
i.e., the number of markers for which two individuals are 
homozygous for alternative alleles divided by the total 
number of SNPs genotyped with an HD SNP array. The 
rate of rejection of a first-degree relationship between 
two individuals i and j is thus defined as:

where Nsnp is the total number of SNPs in the array; for 
each SNP, si is a dummy variable with value 1 if the first-
degree relationship is rejected for the i-th marker (i.e., 
individuals are homozygous for alternative alleles at that 
locus); it is 0 otherwise.

Estimates of τij corresponding to each relationship 
can be used to detect or confirm first-degree relation-
ships and genotyping errors. In Eq.  (1), τij = 0 implies 
that individuals i and j are not homozygous for alter-
native alleles at any of the SNP markers in the array, 
therefore, they have a parent–offspring first-degree 
relationship; τij > 0 implies there is not a parent–off-
spring first-degree relationship. However, full-sibs with 
a true first-degree relationship can be homozygous for 
alternative alleles when both parents are heterozygous, 
therefore τij > 0. In addition, when genotyping errors 
occur, individuals i and j may appear to be homozy-
gous for alternative alleles at some of the SNP mark-
ers in the HD SNP array when in reality they are not, 
such that τij ≈ 0. In that case, it would mean a rejec-
tion of a true parent–offspring first-degree relationship. 
Because genotyping errors do occur, a method needs 
to be developed that can distinguish values of τij ≈ 0 
that result from genotyping errors  from values of τij > 0 
resulting from a true rejection of a parent–offspring 
first-degree relationship.

Values of τij can be calculated for all possible relation-
ships between all pairs of individuals in the population; 
in a population with ni individuals, the total number of 
relationships is (ni2 – ni)/2. The binomial density models 
the probability of each outcome according to:

where p(τ) is the probability of the rate of rejection, τ, 
at the number of SNPs rejecting first-degree relation-
ships, δ =

∑Nsnp

i=1 si.

Expectation–Maximization to estimate first‑degree 
relationships
Given the distribution of the rate of rejection of first-
degree relationships in a population,  τ, when τij > 0, 
mixing of several distinct distributions can be identi-
fied: one corresponding to binomial probabilities τg 
resulting from genotyping errors, and others corre-
sponding to binomial probabilities τr resulting from 
rejections of first-degree relationships. Here, the rate 
of genotyping errors is a lower bound of the true rate 
of genotyping errors, since genotyping errors are only 
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identified in SNP markers for which the individuals are 
homozygous for alternative alleles; genotyping errors 
in individuals that do not lead to a rejection of a first-
degree relationship will remain undetected. In the data-
set it is assumed that estimates of rates of rejection 
following Eq. (1) when τij > 0 should belong either to the 
distribution of τg or to the distribution of τr, i.e., a true 
first-degree relationship is rejected because of geno-
typing errors (the values are close to zero, τij ≈ 0) vs. a 
first-degree relationship is rejected because it does not 
exist (the values are farther away from zero, τij > 0). In 
order to determine to which of the two distributions a 
relationship belongs, the dataset has to be first subdi-
vided into known relationship groups. In our example, 
we consider a crossbreeding experiment with candidate 
sires, dams and offspring. The data can now be subdi-
vided into the following relationship groups: dam-off-
spring, sire-offspring, offspring-offspring, dam-dam, 
sire-sire, and sire-dam. First, we are interested in iden-
tifying dam-offspring, or sire-offspring relationships 
to establish maternities and paternities of our experi-
mental crossbred population. A given pair of individu-
als from the dam-offspring or the sire-offspring group 
has a probability γ of belonging to the distribution of τg 
of true parent–offspring relationships. The likelihood 
function of the i-th relationship is:

where δi is the number of SNPs rejecting the first-
degree relationship. The joint likelihood function for 
all the relationships, nr, between all pairs of individu-
als within the dam-offspring or within the sire-off-
spring group is:

This likelihood has three unknowns: γ, τg, and τr. Maxi-
mizing this equation is not straightforward because Eq. (2) 
has an addition term, which makes using logarithms 
impractical. We can solve Eq.  (3) by applying an Expec-
tation–Maximization algorithm. This method requires 
starting values for τg and τr. The expectation for the i-th 
relationship is:

The binomial probabilities are extremely small when 
the total number of SNPs is very large, therefore, it is 
convenient to manipulate these equations to:
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The maximization step is:

Parameter γ, i.e., the probability that τij belongs to the 
distribution of τg of true parent–offspring relationships is 
estimated following:

The process is iterative and parameters τ’g and τ’r esti-
mated in one iteration are used for the next iteration as 
τg and τr, respectively. Once convergence is reached, the 
i-th parent–offspring relationships are assigned as true 
when

Once true parent–offspring relationships are iden-
tified, a lower bound of the estimate of the genotyp-
ing error is τg.  When this method is applied to the 
offspring-offspring relationship group, also full-sibs 
can be detected. In that case, the procedure does not 
attempt to estimate genotyping errors but will assign 
relationships according to two distributions with bino-
mial parameter τ: one distribution with full-sibs and 
another distribution with any other relationship. The 
EM follows the same steps as for parent–offspring rela-
tionships as described above. 

Dataset of Duroc × Iberian Pigs
The animal material from this study came from an exper-
iment investigating production parameters in a com-
mercial Duroc × Iberian pig cross [7]. In Spain, purebred 
Iberian pig meat (in particular dry-cured products) from 
pigs kept extensively in a production system called ‘mon-
tanera’ where they roam the Mediterranean forest and 
eat acorns is the most valuable meat product [8]. How-
ever, because of limited land availability and low produc-
tion levels, Iberian pigs are regularly crossed with Duroc 
producing either 50% or 75% Iberian fattening pigs. In 
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2019, 50% crossbred Iberian pigs constituted 80% of the 
total Spanish Iberian pig production; 72% of those consti-
tuted Duroc × Iberian pigs fed intensively on concentrate 
[9]. The dataset consisted of nine candidate Duroc sires, 
55 Iberian dams, and 214 Duroc × Iberian barrows. The 
true pedigree was unknown.

Genotyping with the Porcine Affymetrix HD array
A total of 288 samples were genotyped with the HD por-
cine Affymetrix array (658,692 SNPs). One of the sam-
ples failed. Best Practices Workflow was applied with 
the following conditions in the Axiom Analysis Suite 
version 5.1.1.1: DQC: ≥ 0.82; QC call rate: ≥ 97; Average 
call rate for passing samples: ≥ 98.5; Percent of passing 
samples: ≥ 95. Of the 287 samples only 281 passed the 
QC-Call rate. There were 603,809 SNPs that passed the 
condition for the call rate. From those, only 546,220 auto-
somal SNPs mapped to SScroffa v11.1 were used for esti-
mating rate of rejection of first-degree relationships. The 
genotyping was carried out at Centro Nacional de Gen-
otipado (CeGen) at the University of Santiago de Com-
postela, Spain.

Estimation of paternities, maternities and genotyping 
errors
The methods to estimate paternities, maternities, geno-
typing errors were as described in the Methods section. 
Source code in R language (http://​www.r-​proje​ct.​org/) is 
provided as an additional file 1.

Results
Estimation and distribution of the rate of rejection 
of first‑degree relationships
In our dataset of Duroc × Iberian crossbreds, no relation-
ship resulted in τij = 0. Since we were aware that the data-
set included some true dams and sires together with their 
offspring, these results indicate that all true first-degree 
relationships were rejected because of genotyping errors; 
indeed, there were relationships with τij ≈ 0. The distri-
bution of the rate of rejection of first-degree relationships 
τij, corresponding to all individuals and each relationship, 
in all relationship groups, is given in Fig. 1. Because sev-
eral peaks can be distinguished, this figure suggests mix-
ture of different underlying distributions corresponding 
to the distribution of the rate of rejection due to geno-
type errors τg, and to the distribution of τij corresponding 

Fig. 1  Distribution of the rate of rejection for all relationships in a crossbred experiment

http://www.r-project.org/
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to true rejection of first-degree relationships τr, in the dif-
ferent relationship groups (Fig. 1).

The distinction between the distributions of τg and τr 
becomes clearer when data is separated by relationship 
group: dam-offspring, sire-offspring, offspring-offspring, 
dam-dam, sire-sire, and sire-dam (Fig.  2). The distribu-
tion of τij within the dam-offspring and within the sire-
offspring groups shows a clear separation between rates 
of rejection of parent–offspring first-degree relationships 
τij very close to zero (τij ≈ 0), and between rates of rejec-
tion of first-degree relationships τij with higher values 
(τij > 0). In the parent–offspring groups, when the proba-
bility that two individuals are homozygous for alternative 
alleles at a given locus is very close to zero, their values 
correspond to genotyping errors (i.e., the distribution of 
τg), while higher τij values correspond to true rejection 
of first-degree relationships (i.e., the distribution of τr). 
The distributions of τg and τr are more overlapping in 
the offspring-offspring group. This is expected from the 
observation that true full-sibs can be homozygous for 
alternative alleles when both parents are heterozygous, 

albeit at a low probability of 0.125. A clear distinction 
between values of τij very close to zero and those far-
ther away from zero can also be seen in the distribution 
of τij in the dam-dam and sire-sire groups (Fig. 2). These 
values indicate the presence of one first-degree relation-
ship in the sire-sire group and a number of first-degree 
relationships in the dam-dam group. In further analyses, 
it appeared that some samples were repeated; this may 
explain the observed sire-sire and dam-dam first-degree 
relationships. In the sire-dam group, no first degree rela-
tionship are detected, which is expected in parents from 
a cross-breeding experiment since dams and sires belong 
to two different breeds. The rate of rejection is very large 
showing the differences in genetics between the breeds.

Expectation–Maximization to establish first‑degree 
relationships
Because due to the existence of genotyping errors τij = 0 
cannot be used as the only criterion on which to accept 
first-degree relationships, an Expectation–Maximiza-
tion method was developed to establish whether values 

Fig. 2  Distribution of the rate of rejection of first-degree relationships within dam-offspring, sire-offspring, offspring-offspring, sire-sire, dam-dam, 
and sire-dam relationship groups in a crossbred experiment
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of τij belong either to distribution τg (τij ≈ 0; genotyp-
ing errors) or to distribution τr (τij > 0; true rejection of 
first-degree relationships). Relationships with values of 
τij that belong to distribution τg are true first-degree rela-
tionships. Figure 3 illustrates the convergence of the E-M 
algorithm for dam-offspring, sire-offspring, and offpring-
offspring relationships. Convergence for all parameters 
took place in just two to three iterations. Initial values 
for τg and τr were chosen such that they were close to the 
peak of the corresponding distributions in Fig. 2. When 
the chosen initial values for τg and τr were not close to the 
corresponding peak of the distribution, parameters were 
not converging.

Applying the Expectation–Maximization algorithm, 
we established paternity of 75 and maternity of 99 pig-
lets. We identified that 14 offspring out of 99 appeared 
to have two mothers. We could establish that the two 
mothers were the same individual, and blood for DNA 
extraction had been sent twice and with different iden-
tification to our lab. Therefore, we established 85 dam-
offspring relationships. The reason why only 75 and 
85 piglets were associated to sire or dam candidates, 

respectively, was that DNA of the true parents was not 
included in the dataset for all offspring, since those 
DNA samples had not been supplied by the farm. In 
addition, we established 3,802 full-sib relationships 
among the offspring-offspring relationship group. This 
figure is too large which indicates that the method can-
not separate properly full-sibs from half-sibs singularly 
in a pig breeding farm, when sires or dams are close 
relatives (e.g., different sires in a herd can be brothers, 
or different dams in a herd can be sisters). This is illus-
trated by the overlap in the histogram of the offspring-
offspring group in Fig. 2.

In summary, we analyzed samples of 288 individuals. 
Genotyping of one of the samples did not work, and six 
samples failed the threshold set for the calling rate. Sta-
tistical analysis detected 14 duplicated samples of dams. 
Of 9 candidate sires and 55 candidate dams, 7 sires and 
38 dams were parents of the offspring. The sire with the 
largest number of offspring had 22 offspring; the dam 
with the largest number of offspring had 6 offspring. 
There were 27 piglets with paternity and maternity simul-
taneously identified.

Fig. 3  Convergence of the Expectation–Maximization algorithm to estimate first-degree relationships using Dam-Offspring, Sire-Offspring, and 
Offspring-Offspring relationships
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Estimation of genotyping errors
After establishing relationships with τij ≈ 0 that 
belong to distribution τg, we established that the 
genotyping error estimated jointly in sire-off-
spring and dam-offspring relationship groups was 
0.000735. This is a lower bound of the true number 
of genotyping errors since genotyping errors are 
only identified for SNP markers in parent–offspring 
relationships for which individuals are homozy-
gous for alternative alleles; other genotyping errors 
involving heterozygous animals in either parent or 
offspring remain undetected. The true genotyping 
error depends on the allele frequency of the marker. 
For markers with a very low allele frequency, the 
rate of rejection approaches the genotyping error. 
In this situation, true rejection is difficult to occur 
because the homozygote corresponding to the allele 
with very low frequency is very scarce; therefore,  
rejection can only be attributed to genotyping error.  
In our experiment, the genotyping error is estimated 
at 0.006 (0.6%).

Detection of SNPs with a high rate of rejection 
of first‑degree relationships in true parent–offspring 
relationships
In our dataset, a total of 69,882 rejections of true rela-
tionships corresponding to 7744 SNP markers were 
observed in the parent–offspring groups. The genome-
wide distribution of those SNPs is given in Fig. 4. We can 
now identify SNPs that repeatedly rejected first-degree 
relationships in true parent–offspring pairs. The major-
ity of the 7744 SNPs rejected first-degree relationships in 
true parent–offspring only a few times, however, some of 
the SNPs rejected first-degree relationships particularly 
often (Fig. 5). We identified 3,224 SNPs rejecting five or 
more true parent–offspring relationships (Fig.  5); these 
SNPs were considered ‘failing’ and are reported in addi-
tional file 2. For example, SNP with Affymetrix identifi-
cation Affx-115138382 (AX-116496912) and mapped to 
position 11,597,555 on SSC14 rejected 108 true parent–
offspring relationships. Fig. 6 shows the cluster provided 
by the Axiom suite analysis of the genotypes of all par-
ents and offspring for this SNP; only two individuals are 

Fig. 4  Genome-wide number of rejections for SNPs rejecting true parent–offspring relationships
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heterozygous. This is an indication that this SNP does not 
follow autosomal Mendelian rules of inheritance; since 
the two animals are crossbreds, the observed homozy-
gous genotypes could only come about when both their 
sire and dam are homozygous for the same allele. These 
results could be attributed to genotyping errors, but also 
to wrong (non-autosomal) mapping locations, structural 
variations, etc.

For the analyses performed in the present study, SNPs 
were not filtered for departure of Hardy–Weinberg equi-
librium (HW) and/or Minimum Allele Frequency (MAF). 
Since the offspring are a result of a cross between Ibe-
rian × Duroc, it is expected that SNPs are not necessarily 
in HW equilibrium. There were 122,615 autosomal and 
mapped SNPs with MAF < 0.05 in the total data set, cor-
responding to a proportion of 0.224 (122,615/546,220). 
Only 165 out of a total of 7,744 SNPs that rejected true 
parent–offspring relationships had a MAF < 0.05, corre-
sponding to a proportion of 0.021 (165/7,744). As afore-
mentioned, there is a reduced capacity of markers with 
low allele frequency to reject true parent–offspring rela-
tionships because the chances of being heterozygous for 

alternative alleles is very low (one of the two homozygotes 
is at very low frequency). SNPs at intermediate frequen-
cies are more likely to reject first-degree relationships.

Discussion
The present study shows the successful application 
of an Expectation–Maximization (EM) algorithm to 
establish or to verify first-degree parent–offspring rela-
tionships when relationships are unknown or uncer-
tain, in an animal population that is genotyped with 
a High-Density (HD) SNP Array. This method has a 
wide range of applications. In livestock populations, 
first-degree relationships are nearly always present. 
Although the advent of genomic methods meant that 
pedigree information necessary for breeding value esti-
mation can now be replaced by genomic relationships 
in genomic best linear unbiased prediction (GBLUP) 
[10], and the inbreeding coefficient of individuals 
necessary to control economic losses from inbreed-
ing depression [11] can be estimated from molecular 
marker data [12], accurate pedigree information is still 
key to animal populations where molecular information 

Fig. 5  Histogram of the number of times a given SNP is rejected true parent–offspring relationships
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is not routinely available (e.g., [13]). However, collect-
ing accurate pedigree information may be demanding 
because of gaps in data recording, loss of records, inad-
vertent errors in animal labelling or registration, inabil-
ity to cost-effectively identify animals individually, or 
the inability to assign parents to offspring. For example, 
individual identification of small fish is often demand-
ing, such that fish are commonly kept in families until 
they are large enough to be individually tagged [14]. 
Assigning parents to offspring is not straightforward in 
multi-sire breeding schemes, such as those employed in 
cattle ranching operations where breeding and calving 
is unassisted and, therefore, it is not possible to cor-
rectly assign paternity (and sometimes maternity) to a 
given calf [15]. Paternity and maternity identification 
errors may substantially negatively impact estimated 
breeding values, genetic trends, inbreeding, and result 

in the inability to identify truly superior animals in a 
population [16]. Furthermore, parentage identifica-
tion is important to companion animals to evaluate 
inbreeding and genetic diversity, pedigree structure, 
and for registration purposes [17], to free-living animal 
populations to evaluate population and kinship struc-
ture and genetic diversity [18], and for forensic human 
identification [19].

While the first parentage verification methods used 
blood groups [20], this was  replaced by an international 
standard of the International Society of Animal Genet-
ics (ISAG) for parentage verification and identity testing 
following DNA typing based on microsatellite markers 
[21], and more recently also based on SNP markers [22]. 
Microsatellites are polymorphic codominant genetic 
markers containing repeated nucleotide sequences, with 
2–10 nucleotides per repeated unit, that are present 

Fig. 6  Cluster for SNP Affx-115138382 (AX-116496912) that rejected 108 times true first-degree relationships
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across the genome. Although they have been used and 
are still used widely for parentage verification and 
identity testing, some problems persist: microsatellite 
markers are not highly polymorphic in all species, the 
scoring of markers is not straightforward or automated, 
and they require a rather large (initial) investment in 
terms of labor and financial resources [23]. These prob-
lems were largely overcome by the development of SNP 
markers which have only just been successfully applied 
in parentage verification in livestock [24], fish [25], com-
panion animals [17], wild animals [18], and humans 
[19].

Because microsatellites are more polymorphic than 
the bi-allelic SNPs, parentage verification is accom-
plished by a larger number of SNPs than microsatel-
lites in a panel. Between approximately 40 and 100 
SNPs are equivalent to between 14 and 20 microsat-
ellites; ISAG recommends a minimum number of 100 
SNPs for parentage testing [26]. Microsatellite and 
SNP panels for parentage verification are success-
ful and particularly useful when HD SNP panels are 
too expensive for routine use, e.g., in smallholder sys-
tems [27]. However, the Expectation–Maximization 
(EM) method applied to all SNPs in an HD SNP Array 
described in the present study has several additional 
advantages in populations where HD SNP Arrays are 
routinely applied, e.g., for genome-wide association 
studies (GWAS) and/or genomic selection, or when 
there are no cost limitations. Firstly, whereas micro-
satellite and SNP panels for parentage identification 
are designed and verified in different species and 
made available internationally (e.g., the Bovine ISAG 
SNP Parentage Panel based on 200 bovine SNP mark-
ers selected by ISAG) or may be tailored to specific 
breeds, the EM method can be applied to HD geno-
typed animals without prior evaluation and verifica-
tion. Secondly, parentage test panels do not take into 
account genotyping errors. The EM method is easily 
applied to evaluate (a lower bound of ) genotyping 
errors in individual experimental datasets, by iden-
tifying true parent–offspring that are homozygous 
for alternative alleles. This method can be applied 
to investigate genotyping errors in different datasets 
using the same array. In addition, the nature of geno-
typing errors can be further investigated. For exam-
ple, we identified “problematic” SNPs that particularly 
often rejected true first-degree relationships. Those 
should be eliminated from the data set for GWAS or 
Genomic Selection, but they should also be further 
investigated in order to understand why they do not 
follow autosomal Mendelian inheritance rules.

The method described in this study can be easily 
applied to animal populations for which a SNP array 

is available for the species in question. Although 
the present study was performed with an HD SNP 
array, arrays at lower densities are expected to be 
capable to draw similar conclusions and will be 
cheaper. Routine application of genomic selection 
requires at least a low-density array. Verification 
or detection of first-degree relationships, together 
with a measure of the genotyping errors of each 
batch, may facilitate detection of errors and assure 
the quality of genotyping. The required number 
of SNPs needed to detect if any given relationship 
in a group of individuals belongs to either τg or τr 
can be approximated by computing the statistical 
power using the normal approximation to the bino-
mial distribution (https://​www.​stat.​ubc.​ca/​~rollin/​
stats/​ssize/​b1.​html). For example, for a group of 300 
individuals in which no assumptions can be made 
about candidate parents or offspring, the number 
of combinations (tests) of all possible relationship 
pairs is 300 × 299 / 2 = 44,850. This figure is needed 
for adjusting the significance level to multiple test-
ing. Thus, a significance level of 0.01 is adjusted to 
0.01/44,850 using the Bonferroni adjustment. For 
a statistical power of 0.99 at a global significance 
level of 0.01 with τg = 0.000735 and τr = 0.01, the 
number of SNPs required is 1,611 for 300 individu-
als. Therefore, detection of parent–offspring rela-
tionships should be possible with arrays of a low, 
medium or a high density unless the number of 
individuals is very high.

A simple statistic proposed in this study, rate of 
rejection of first-degree relationships, is helpful to ver-
ify or to detect paternities and maternities when test-
ing a large number of SNPs. It is also shown that the 
rate of rejection allows estimation of different types 
of relationships, and even genetic differences between 
groups of animals when sires and dams belong to dif-
ferent breeds. This statistic is based on the simple 
exclusion rule that two individuals that are homozy-
gous for alternative alleles cannot have a parent–off-
spring relationship. A more complete assessment 
including likelihoods of all possible first, second and 
third-degree relationships has been proposed by Huis-
man [10]. That work is aimed at reconstructing mul-
tigenerational pedigrees with a reduced number of 
SNPs. However, the use of Huisman’s [10] approach 
with full arrays either at high or low density and a large 
number of animals is computationally impractical with 
today’s computer capacities. In addition, our approach 
based on many thousands of SNPs allows accurate 
estimation of genotyping errors and identification of 
problematic SNPs wrongly rejecting many true par-
ent–offspring relationships.

https://www.stat.ubc.ca/~rollin/stats/ssize/b1.html
https://www.stat.ubc.ca/~rollin/stats/ssize/b1.html
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Conclusions
SNP arrays can be used to test or to verify paternities 
using the rate of rejection of first-degree relationships. 
The same material can be used to estimate genotyp-
ing errors due to the large number of SNPs tested in 
parent–offspring relationships. This approach helps 
to identify SNPs inconsistent with Mendelian rules of 
inheritance in multiple parent–offspring relationships.
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