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Re-wiring and gene expression changes 
of AC025034.1 and ATP2B1 play complex roles 
in early-to-late breast cancer progression
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Abstract 

Background:  Elucidating the dynamic topological changes across different stages of breast cancer, called stage 
re-wiring, could lead to identifying key latent regulatory signatures involved in cancer progression. Such dynamic 
regulators and their functions are mostly unknown. Here, we reconstructed differential co-expression networks for 
four stages of breast cancer to assess the dynamic patterns of cancer progression. A new computational approach 
was applied to identify stage-specific subnetworks for each stage. Next, prognostic traits of genes and the efficiency 
of stage-related groups were evaluated and validated, using the Log-Rank test, SVM classifier, and sample clustering. 
Furthermore, by conducting the stepwise VIF-feature selection method, a Cox-PH model was developed to predict 
patients’ risk. Finally, the re-wiring network for prognostic signatures was reconstructed and assessed across stages 
to detect gain/loss, positive/negative interactions as well as rewired-hub nodes contributing to dynamic cancer 
progression.

Results:  After having implemented our new approach, we could identify four stage-specific core biological path‑
ways. We could also detect an essential non-coding RNA, AC025034.1, which is not the only antisense to ATP2B1 (cell 
proliferation regulator), but also revealed a statistically significant stage-descending pattern; Moreover, AC025034.1 
revealed both a dynamic topological pattern across stages and prognostic trait. We also identified a high-perfor‑
mance Overall-Survival-Risk model, including 12 re-wired genes to predict patients’ risk (c-index = 0.89). Finally, breast 
cancer-specific prognostic biomarkers of LINC01612, AC092142.1, and AC008969.1 were identified.

Conclusions:  In summary new scoring method highlighted stage-specific core pathways for early-to-late progres‑
sions. Moreover, detecting the significant re-wired hub nodes indicated stage-associated traits, which reflects the 
importance of such regulators from different perspectives.

Keywords:  Prognostic biomarker, ER-positive breast cancer, Differential network, Stage, Systems biology, Re-wiring, 
Dynamic changes
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Background
Breast cancer is one of the most prevalent cancers among 
women all around the world. According to the World 
Health Organization (WHO) reports in 2018, it includes 
a high-frequency cancer rate, [1]. To take more appro-
priate treatments in the clinic for breast cancer patients, 
several computational/non-computational studies have 
been conducted to improve prognostic staging systems 
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through assessment of biomarkers, including estrogen 
receptor status (ER) and human epidermal growth fac-
tor receptor 2 status (HER2) for breast cancer patients, 
or using the predictive recurrence models, such as 
Oncotype DX [2–4]. Therefore, the surveys on detecting 
novel prognostic biomarkers, including protein-coding 
(PC) /non-coding (NC) RNAs relating to cancer dynam-
ics across stages, would be of great interest for more pre-
cise therapeutic decisions, as well as avoiding metastasis 
in breast cancer [3, 5, 6].

Multiple predisposing and triggering factors are 
involved in cancer progression, including genetics, epi-
genetics, and environmental driver events [7, 8]. Such 
hidden events adversely affect gene expression or gene 
regulatory associations, contributing to mechanistic 
molecular/cellular disorders [9]. Negative loss/gained 
functions of genes or changes among gene expression 
interactions (co-expression re-wiring) in biological net-
works could propagate and develop advanced cancer 
stages [10, 11]. In the case of cancer complexities, dys-
regulated pathways including DNA damages leading to 
Epithelial-Mesenchymal Transition (EMT), cell pro-
liferation, morphogenesis, as well as dissemination of 
tumor cells can emerge during different breast cancer 
stages [12–14]. Therefore, the implementation of the 
systems biology approaches on cancer studies for a bet-
ter perceiving of such complexities is promising [15, 16]. 
Among different approaches, differential co-expression 
analysis can be employed for the identification of the 
involved key gene signatures that may not be detectable 
through differential expression analyses or co-expres-
sion analyses [9, 17–19]. In which, characterization of 
re-wired subnetworks can reveal the reprogramming of 
gene expression regulations across different disease con-
ditions [6, 9, 20]. Therefore, using assessing re-wiring 
topological traits through systems biology approaches 
would result in understanding latent biological insights 
of breast cancer.

In the present study, we focused on the comprehen-
sive assessment of dynamic modular variations, re-
wiring, among gene interactions resulting from cancer 
progression in estrogen-receptor-positive (ER+) breast 
cancer patients (315 patients included). We identified 
four stage-specific subnetworks which revealed core 
pathways for each stage of breast cancer. The stage- and 
breast cancer-specificity of subnetworks were assessed 
through a new computational approach. To identify 
breast cancer-specific prognostic biomarkers, we imple-
mented the Log-Rank test and Kaplan-Meier curve for 
breast cancer, as well as other 32 TCGA cancer types. 
We could detect stage-associated gene signatures, apply-
ing the Kruskal-Wallis and Post-Hoc tests. Furthermore, 
we applied the VIF-feature selection method to identify 

an Overall-survival-risk model consisting of a few genes 
to predict patients’ risk. Finally, co-expression networks 
were reconstructed for four stages of breast cancer, and 
the re-wiring among prognostic genes was assessed 
across stages. The gain, loss, and reverse interaction-hub 
nodes were detected across stages. The survival results 
were validated, using SVM classification, hierarchical 
clustering, Log-Rank test.

Results
The outline of our study was illustrated in Fig. 1 (The sup-
plementary material was provided in the Supplementary 
material file).

Differential co‑expression network (DCEN) reconstruction
After normalization and gene filtering, the DCENs for 
four stages of breast cancer were reconstructed based on 
stage grouping (Supplementary Table S1). Concerning 
the therapeutic importance of HER-2 status of ER-pos-
itive patients, we reconstructed the differential network 
between HER2 positive and negative and extracted sub-
networks, but we did not detect any HER2-related sub-
network. Moreover, we assessed the difference between 
HER2 positive and HER2 negative employing t-test, PCA 
analysis, and hierarchical clustering. There was no sig-
nificant difference between them (Supplementary Table 
S2, 3, Supplementary Fig. S1, S2). Finally, we also imple-
mented the differential expression (DE) analysis between 
HER2 positive and HER2 negative and found merely one 
differentially expressed gene.

Breast cancer related and stage‑specific subnetworks
Hierarchical clustering was applied to DCENs for four 
stages to extract all re-wired subnetworks (Supplemen-
tary Fig. S3). The name of subnetworks was indicated by 
color. Most breast cancer-related and stage-specific sub-
networks were detected for each stage, using the Breast-
CancerStageSpecific score (BCSS) scores (1< BCSS  scorei 
< 4, i indicate stages) (Supplementary Table S4,S5,S6,S7). 
The overall re-wiring changes between every two con-
ditions (four stages and normal tissue) were assessed 
(Fig. 2).

In Fig. 2, the circles indicate names of subnetworks and 
black squares indicate the re-wirings of genes belonging 
to a particular subnetwork across two conditions (x and y 
axes indicate a stage or normal condition). In the re-wiring 
heatmaps, the red color indicates the positive correlations, 
and the blue color indicates negative correlations among 
genes (Fig. 2,a,b,c,d). We also compared the gene expres-
sion change between two conditions, using mean expres-
sion heatmaps besides re-wiring heatmaps in Fig. 2c,d; In 
which, the brown color indicates gene expression inten-
sity. The molecular interactions showed faded positive/
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Fig. 1  A comprehensive assessment of breast cancer progression outline. The first step is data cleaning and normalization, the second step 
is Differential co-expression network (DCRN) reconstruction for four stages, and the third step is the computational approach for scoring and 
extracting breast cancer-related stage-specific (BCSS) subnetworks for each stage. In the fourth step, the survival analyses were implemented 
for four BCSS subnetworks, and a risk model fitted to data. In step five, the stage-related genes were detected; in step six, the topological 
changes, called re-wiring, among prognostic genes were assessed across stages. In step seven, the core biological pathways for stage-specific 
subnetworks were detected; in step eight, the breast cancer-specific prognostic genes were detected, and finally in step nine, the computational 
validation were implemented
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negative associations or reversed ones in cancerous tis-
sue in comparison to normal (Fig. 2a, b). While the mean 
expression of subnetworks did not reveal any change, 
the subnetworks of stage І (Bisque4, FloralWhite, Plum2, 
and YellowGreen) and stage IV (Plum, LightSteelBlue1, 
LightGreen, Salmon, IndianRed4, MediumOrchid, and 
LightPink3) showed the prominent re-wiring intensities 
compared to other stages, distinctly for stage IV (Fig. 2c, 
d). We could detect the highest BCSS scores for the Flo-
ralWhite in stage I (BCSSscore = 2.92), Orange in stage 
II (BCSSscore = 3.12), FloralWhite2 in stage III (BCSSs-
core = 2.69), and the Indianred4 in stage IV (BCSSscore 
=2.02) (Supplementary Table S6). Therefore, they indi-
cated the selected breast cancer-related stage-specific 
(BCRSS) subnetworks for stages I, II, III, and IV, respect-
fully. BCRSS subnetworks were functionally enriched 
(Fig. 3).

We could detect ‘DNA Repair’, ‘Collagene/ECM Regu-
lation’, and ‘Histone Modification’ pathways for stage I, 
‘Lipid/Glucose Metabolism’, ‘Differentiation/Growth’, and 
‘Cancer-Related’ pathways for stage II, ‘Filipodum’, ‘SMAD/
Bone’, and ‘Hormone’ pathways for stage III, and ‘Morpho-
genesis’, ‘Angiogenesis’, and ‘PH-Regulation’ for stage IV 
(Fig. 3a, b, c, d).

Overall survival (OS) analyses
We could identify 50 prognostic genes including 19 
genes (PC and NC) in stage I, four genes (PC) in stage 
II, 15 genes (PC and NC) in stage III, and 12 genes (PC 
and NC) in stage IV. The Kaplan-Meier curves and Log-
rank P-values of c21orf62, SF3B3, and OSTM1 were 
illustrated (Fig. 4j, l, n); In which, their high expressions 
were associated with the patient’s low survival rate. 
The expression trends of 50 prognostic genes (Sup-
plementary Table S7) were classified into three groups 
of the stage-descending, stage-ascending, and outset-
cancer group (Fig. 4i, k, m). The outset-cancer category 
showed a high expression level between normal and 
stage I (Fig. 4). Based on the literature review, 15 out of 
50 genes are reported as prognostic genes in multiple 
studies on breast cancer (Supplementary Table S7). To 
detect the stage-associated genes, we implemented the 
Kruskal-Wallis and Post-Hoc tests on 50 genes, and we 
reached SF3B3, ADGRG1, PGM3, SEMA3G, CAVIN4, 
AL139274.2, and PCAT19 which could fairly cluster the 
stage of samples (Supplementary Fig. S4).

Stage‑rewiring networks
The stage-rewiring networks of 50 prognostic genes 
were reconstructed (Fig. 5). Dynamic conditions (differ-
ential networks) included Stage I-Normal (co-expres-
sion in stage I minus co-expression in Normal), Stage 
II-Stage I, Stage III-Stage II, and Stage IV-Stage III 
(Fig.5 a, b, c, d). Stage I-Normal (gain = 14, loss = 83) 
and stage IV-stage III (gain = 45, loss = 3) differential 
networks showed more re-wiring among genes in con-
trast to stage II-stage I (loss = 11) and stage III-stage II 
(loss = 1) differential networks. Comparing stage I to 
normal, more interactions were lost (grey interactions). 
And, we could detect more gain interactions in stage IV 
vs. III (red interactions). Furthermore, we could iden-
tify loss-hub nodes in stage I and gain-hub nodes in 
stage IV (larger node size indicates hub nodes).

OS predictive model
We identified 12 significant covariates in Overall-sur-
vival-risk model including AC004540.2, GPC1, ACTN2, 
LINC01612, LRRC37A11P, SRARP, ADGRG1, PCAT19, 
ITGB5, GPC1, SEMA3G, SF3B3 (likelihood-ratio-test 
P-value = 3.764E-07). The identified model could pre-
cisely stratify patients into three groups of the low, 
medium, and high risk (Log-rank p-value = 0.00001) 
(Fig. 6a). The hazard ratio values of covariates and p-val-
ues were reported in Supplementary Table S7 and S8, 
in which the SF3B3 has the highest hazard ratio value 
(HR = 6.9), indicating its importance in patients’ low 
survival and also confirmation for ascending expression 
trend across stages (Fig.  4c,l). The concordance index 
(c-index), demonstrating the high performance of our 
survival model in obtaining patients’ risk scores, is 0.89.

Prognostic validation
The prognostic genes were validated by an external data-
set and also in the Gepia web server (OS of 50 prognostic 
genes in 33 TCGA cancer types) (Supplementary Table 
S11). We further observed that 23 of our genes were 
validated in Kidney renal clear cell carcinoma (KIRC) 
and 18 genes in Brain Lower Grade Glioma (LGG), and 
13 genes were validated in breast cancer (Supplemen-
tary Table S11). LncRNAs LINC01612, AC092142.1, and 
AC008969.1 were prognostic just in breast cancer; There-
fore, they may be nominated as breast cancer-specific 

Fig. 2  Overall re-wiring view of breast cancer-related subnetworks. For simplicity, each subnetwork was assigned by color and they were illustrated 
by circles. x and y axes for each heatmap show different stages or the normal condition. Each subnetwork was separated by a black line. And, the 
squares highlighted re-wiring changes between two conditions. In the re-wiring heatmaps, the red color indicates positive associations, the blue 
color indicates negative associations and the yellow color indicates weak associations among genes. In the mean expression heatmaps, the brown 
intensity indicates the mean expression of subnetworks

(See figure on next page.)



Page 5 of 15Khoshbakht et al. BMC Genomic Data            (2022) 23:6 	

Fig. 2  (See legend on previous page.)
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prognostic non-coding biomarkers (Fig.  6b). We also 
validated the stage specificity of the final stage-specific 
subnetworks in the ER-negative group. For every stage, 
the Zsummary values were lower than 2, and the Medianrank 
values were high enough to conclude that subnetworks 
were stage-specific in ER-positive samples (Supplemen-
tary Table S4). We could not validate the specificity of the 
identified subnetworks in stage four of ER-negative data 
due to the very limited number of samples.

Clustering/classification
The outset-cancer validation was implemented using the 
SVM classifier. The accuracy, precision, and specification 
were 94.26. The hierarchical clustering of out-set cancer 
genes for normal samples and stage I was represented in 
Supplementary Fig. S4. The classification and clustering 
indicate the genes’ potential in discriminating early-stage 
samples from normal samples.

Stage progression‑related biomarker
We have implemented five evaluating indices to identify 
the most important genes involved in the progression of 
breast cancer, including 1) being prognostic, 2) pattern 
change during stages (Ascending/descending), 3) being 
as a hub gene, 4) being novel, and 5) having any changes 
in re-wiring status. Finally, we selected the lnRNA 
AC025034.1 (Figs. 4,5, Table 1).

Discussion
Although there are several computational methods in 
cancer progression studies, as well as there are different 
stage-related treatments for breast cancer in the clinic, 
patients remained at high risk of cancer development and 
metastasis. Therefore, it is essential to implement new 
strategies to detect more crucial signatures feasible in the 
clinic; Amongst, topological-related approaches received 
less attention in the field of biomarker/risk model detec-
tion, specifically, hidden dynamic regulators active in 
breast cancer stages.

In this study, we conducted a comprehensive assess-
ment of differential co-expression patterns called re-wir-
ing, across stages (Fig. 1). We introduced a new scoring 
method to find breast cancer-related stage-specific 
subnetworks involved in cancer regulatory dynamics. 
Moreover, the ascending/descending oncogenes involved 
in cancer staging were detected. Prognostic signature 
and their re-wiring across breast cancer stages were 

computationally detected and visualized; Amongst, an 
essential biomarker, AC025034.1, which is the antisense 
of an oncogene, ATP2B1, was detected. Finally, a high-
performance risk model was detected using re-wired 
nodes (genes).

From computational and biological points of view, 
not only did our detected subnetworks reveal high re-
wiring among stages/normal conditions, but also they 
represented the pivotal biological roles in cancer stages 
(Figs.  2,3). On the contrary, the re-wired subnetworks 
did not indicate statistically mean expression differences; 
Such results indicate the importance of the topological 
methods in finding cancer-related subnetworks, even 
though they are not differentially expressed (Fig. 2c,d).

For the HER2 subtype, we could not detect any re-
wired subnetwork. We have identified several up- and 
down-regulated genes between HER2 positive/negative 
groups which are involved in shared or differentiated 
signaling/metabolic networks. However, we could not 
identify any HER2-related differential subnetwork along 
four stages. This may be due to the heterogeneous nature 
of the disease and also the sensitivity of transcriptomics 
data in similar phenotypes. On the other hand, this may 
indicate that HER2+ and – groups have similar dynamic 
transcriptomics patterns.

Generally, the first stage of cancer is of great interest 
to scientists and physicians. Of note, in previous studies, 
the cancer-related phenomenons, such as “Dysregulation 
of ECM” as the tumor microenvironment-related event, 
as well as epigenetic perturbations of “Histone modifica-
tions” were reported as driver events in cancer initiation, 
but they were not specifically studied for the first stage of 
breast cancer [7, 21]. These findings were in line with our 
specific biological pathways found for stage I, as well as 
Bartkova, J., et al.’s study, which demonstrated the activa-
tion of “DNA repair pathways” as a body barrier against 
genetic instability in the early stages of breast cancer [12]; 
Bartkova’outcome reflects the natural body response 
against cancer. Accordingly, the occurrence of genetics, 
epigenetics, and dysregulation of tumor microenviron-
ment might suggest several biological events result in 
cancer progression in the first stage (Fig. 3a); Therefore, 
different treatment strategies, including genetic/epige-
netic-related ones might be crucial to suppress cancer 
progression in the first stage. Similar to stage I, Stage II as 
an early stage is important in detection in the clinic. Cur-
rie, E., et  al. discussed in their study the cancer-related 

(See figure on next page.)
Fig. 3  Functional geneset enrichment analysis of breast cancer-related stage-specific (BCRSS) subnetworks. Each color of bar charts represents 
a biological process term. The bar length indicates the minus log(P-value). a) indicates biological pathways of BCRSS subnetwork for stage 
(FloralWhite). b) indicates biological pathways of BCRSS subnetwork for stage II (Orange). c) indicates biological pathways of BCRSS subnetwork for 
stage III (FloralWhite2). d) indicates biological pathways of BCRSS subnetwork for stage IV (IndianRed4)
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Fig. 3  (See legend on previous page.)
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traits of differentiation loss and gaining mesenchymal 
status, EMT, leads to an increase in the migratory poten-
tial for tumor cells to metastasize secondary sites [22]; 
These pathways were detected in our findings for stage 
II (Fig.  3b). Therefore, we concluded that such tumor 
arousal at the second stage is the clue of tumor efforts 
to survive and prepare for metastasis even in the early 
stages. Additionally, such findings are consistent with the 
hypothesis of the metastasis parallel progression model 
in Klein’s study [23]. Generally, in the late stages (stage 
III,IV), we expect cancer cells to behave more invasively. 
Therefore, we expect the activation of more aggressive 
pathways in breast cancer. The appearance of “Filopodia” 
as a protrusion in the cell membrane, which helps tumor 
cells move easily, and the activation of the “SMAD signal-
ing pathway”, may indicate the proof of tumor prepara-
tions for the metastasis foundation in stage III (Fig. 3. c) 
[8, 13, 24]. Finally, the last stage, indicating the presence 
of the secondary tumor, was related to “Angiogenesis” 
and “Morphogenesis” in several studies and our study as 
well, which could be proof of the importance of our top-
ological-based scoring method in detecting stage-related 
subnetworks [25–27]. Such invasive pathways could 
confirm the biological irregularity in the latter stage, in 
which the power of seeding and growth of disseminated 
tumor cells are at the highest level (Fig. 3d). Due to the 
heterogeneity of cancer development and parallel metas-
tasis progression, detected pathways might be identified 
in other stages too; but, we reported these pathways as 
the core pathways for every stage of breast cancer.

We also implemented statistical tests to detect stage-
associated oncogenes; In which, two groups were of more 
interest due to their ascending/descending dynamic pat-
tern through cancer progression (Fig.4). Stage-associated 
gene signatures, such as SF3B3 and PGM3 indicated 
ascending trends across stages (Fig.  4c, g). Contra-
rily, genes, such as DMBT1 and AC025034.1 showed 
descending patterns (Fig.  4a,f ). The ascending/descend-
ing expression trends across stages in cancer indicate 
potential oncogenes that dynamically affect tumor pro-
gression. Therefore, early-stage suppression/induction 
of such genes may be recommended to control cancer 
development and better treatment responses. Moreover, 
such stage-related patterns were not reported in previous 
studies, and we tried to emphasize their oncogenic func-
tion during cancer progression and their dynamic effects 

on patients’ survival. Among stage-associated genes, 
SF3B3 is a splicing factor in the cellular transcriptional 
process, and its upregulation relevance to low survival 
of ER-positive breast cancer patients was demonstrated 
by Gökmen-Polar, which their study supports our results 
as well (Fig. 4l) [28]. As another ascending pattern gene, 
PGM3 is one of the hexosamine biosynthetic pathway 
enzymes that reveal a critical role in tumor progression 
in breast cancer [29]. Although the up/down-regula-
tion reports in breast cancer on SF3B3 and PGM3 cor-
roborate our findings, there is no report concerning the 
ascending trend of these genes across stages.

We know, the tumor microenvironment provides a 
safe condition for tumor cells during cancer progres-
sion [30]. Therefore, the interplay between dysfunctional 
immune surveillance and tumor microenvironment may 
play a pivotal role in cancer development. DMBT1, as a 
tumor suppressor and archetypal link between inflam-
mation and cancer, may provide essential clues about 
how innate immunity relates to regenerative processes 
in cancer [31]. Concordant downregulation of DMBT1 in 
breast cancer supports its potential for cancer progres-
sion across stages and might be a new target for immune 
therapy. (Fig.  4a). Likewise, we identified CCL22 as the 
highest validated prognostic signature in 12 TCGA can-
cers (Fig. 6b, the highest bar); Moreover, we know it acts 
as a chemokine contributing to the modification of tumor 
microenvironment and resistance to the immune system 
[32]. Therefore, it could be a shared therapeutic target for 
immune therapy in many cancers, particularly in ER-pos-
itive breast cancer.

We also investigated four dynamic networks during 
cancer progression (Fig.  5). The re-wiring among prog-
nostic genes may reveal the dynamic potential hub nodes 
emerging across stage transitions. Such gain/loss interac-
tions, and weak associations in Fig. 4 for stage I, stage II, 
stage III, and stage IV suggest the hidden perturbations in 
gene regulation programs leading to re-wiring. Amongst, 
PCAT19, lncRNA, is the hub node that has lost most of 
its interactions while transitioning the healthy state to 
stage I (Fig. 5a). However, this node re-wires in stage IV 
and gains strong positive interaction with AL139274.2. 
Meanwhile, we identified a significant downregulation 
of AL139274.2 in transition normal to stage I (Fig.  4i). 
We know, AL139274.2 is antisense to tumor suppres-
sor ZNF292. Therefore, we concluded it might associate 

Fig. 4  Stage-associated genes. The sections of a, b, e, and f indicate stage-descending prognostic genes (P indicates Kruskal-Wallis test p-value). 
The sections of c, d, g, and h indicate stage-ascending prognostic genes (P indicates the Kruskal-Wallis test P-values).  The sections of i, k, and m 
indicate box-plots for the outset-cancer group; The  t-test P-values (P) were reported. the sections of j, l, and n indicate Kaplan-Meier curves and 
P-values for the Log-Rank test. Patients were separated by the median value of a gene. ‘Low’ indicates gene expression lower than the median and 
‘High’ indicated the gene expression higher than the median. In all parts the significance level was 0.05

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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with the induction of ZNF292 activity in stage I as a body 
barrier against cancer initiation. But, ascending expres-
sion trend of AL139274.2 across stages indicate tumor 
potentials against the body (Fig.  4i). Therefore, inducing 
AL139274.2 in stage I might activate tumor suppressor 
ZNF292.

We selected the LncRNA AC025034.1 as the most 
important biomarker in this study due to Table  1 

indices. AC025034.1 was a loss-interaction hub node 
in stage I which lost its interactions in stages II and 
III and finally gained an interaction in stage IV with 
IGDCC4 (small yellow node in Fig.  5a,d). We know 
it is inversely correlated (antisense) to the ATP2B1 
(PMCA1). In which, ATP2B1 upregulation has been 
reported in tumorigenic breast cancer cell lines previ-
ously [33]. As AC025034.1 and ATP2B1 have a negative 

Fig. 5  Stage-rewiring network. Red lines indicate gain interactions, grey lines indicate loss interactions, and the yellow nodes indicate important 
re-wired genes. a) re-wiring in stage I vs. normal condition. b) re-wiring in stage II vs. stage I. c) re-wiring in stage III vs. stage II. d) re-wiring in stage 
IV vs. stage III
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association, the descending mean expression pattern 
of AC025034.1 (Fig.  4f ) may suggest the upregulation 
of ATP2B1 across stages. Accordingly, the early-stage 
control of AC025034.1 would also compensate for the 
ATP2B1 function in cancer cells. Our findings empha-
size the dual and complex role of re-wiring and gene 
expression changes between AC025034.1 and ATP2B1 
across stages.

Finally, we could identify an Overall-Survival-risk 
model (Fig.  6a). This model may be used to predict 
patients’ risk scores in the early stages. Moreover, it 
can be employed for more precise therapeutic decisions 
like the Oncotype DX (21 gene recurrence model) or 
MammaPrint (70 gene signature test) in the clinic [3, 
4], however, to apply our model in the clinic, we need 
more breast cancer cohorts for further validations.

Conclusions
In summary, comprehensive studying of stage transi-
tion pathways (early-to-late) may indicate activation 
of stage-specific core pathways and stage-associated 
oncogenes during cancer progression. Using rewired-
related gene signatures could be led to latent dynamic 
regulators which reveal dual behaviors of being a re-
wired hub node and stage-associated oncogene. These 
results elucidate the impressive functions of such regu-
lators from different perspectives.

Methods
We aimed to assess the topological and expression 
changes of genes involved in cancer progression, simulta-
neously. To reach our purpose, we designed several steps. 
The steps were illustrated in Fig. 1.

Fig. 6  Overall-survival-risk model and prognostic genes in 33 TCCGA cancer types. a) Kaplan-Meier curve and Log-Rank P-value for the predictive 
Overall-survival-risk model, b) 33 TCGA cancers were assessed. The height of bar charts indicates the number of cancers that a gene was 
significantly prognostic for it

Table 1  Novel biomarker selection

Ascending/descending 
expression pattern

Novelty Hub property Prognostic property Re-wiring status

AC025034.1 yes yes In stage I yes In 2 stages

PCAT19 no yes In stage I yes In 2 stages

AL139274.2 no yes In no stage yes In 1 stage

SF3B3 yes no In stage II yes In 3 stages
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Samples and expression data
The RNA-seq transcriptomics and clinical metadata for 
ER-positive breast cancer patients and normal cases (315 
samples) were prepared out of the database of The Can-
cer Genome Atlas (TCGA) [34], including 40 patients in 
stage I, 92 in stage II, 55 in stage III, 15 stage IV, and 113 
samples from normal tissues surrounding the tumor site 
(Supplementary Table S1). We included 23 HER2 positive 
and 171 HER2 negative samples, as well as 180 ER-nega-
tive samples for assessment of subnetwork preservation.

Preprocessing, normalization, and differential analysis
The preprocessing was completed in several steps. In the 
first step, we removed zero expression genes or genes 
with Not-Available (NA) values. In the second step, 
genes the Count Per Million values (CPM) of which were 
less than 0.5 were filtered out. The most variable genes 
remained in the last step by filtering the first quartile 
of the coefficient of variation. After preprocessing, the 
expression data were normalized to remove the techni-
cal effect by Trimmed Mean of M-values (TMM) by the 
EdgeR package in R [35, 36]. Finally, we implemented 
connectivity filtering on the adjacency matrix to extract 
strongly connected genes [37]. Also, the differentially 
expressed genes (DEGs) were computed by the EdgeR 
package for all stages (FDR < 0.05).

Differential co‑expression network (DCEN) reconstructions
To reconstruct the differential co-expression network for 
each stage, we categorize samples into two groups for 
each stage, according to Table S1. The adjacency matrix 
was calculated using the Pearson correlation coefficient. 
To extract highly connected subnetworks, we filter out 
genes featuring low connectivity score (connectivity 
< 0.1) according to eq. (1) [37].

where ki is the connectivity score of the node i. Also, aij 
is the edge weight or the correlation coefficient of genes 
i and j.

Finally, the differential network for every stage was 
reconstructed using the DiffCoEx method [10].

Subnetwork extraction
We clustered four DCENs, using the hybrid hierarchi-
cal clustering method. Moreover, the subnetworks were 
merged with heights lower than 0.2. The hybrid method 
is a bottom-up algorithm that can better determine far 
cluster members and is a mixture of Partition A round 
Medoids (PAM) and hierarchical clustering [38]. The 

(1)ki =
∑

i �=j
aij

extracted subnetworks included highly connected pro-
tein-coding and non-coding genes.

Subnetwork scoring
To identify breast cancer related and stage-specific sub-
networks for every stage, we calculated BreastCancer-
StageSpecific score (BCSS) to prioritize the identified 
subnetworks and select the most important subnetwork 
for each stage, according to eq. (2):

Where i indicates stage and j indicates subnetwork. 
The SSscore is the stage-specificity score, BCRscore is 
the breast cancer-relation score, and BCRNRscore is the 
breast cancer-related non-coding RNA score. All scores 
are introduced in the following sections. The subnetwork 
with maximum value was selected as the stage-specific 
breast cancer-related subnetwork.

Stage‑specificity score (SSscore)
To score stage-specificity of all identified differential 
subnetworks, the topological properties of subnetworks 
were assessed, using two combined statistics of Zsummary 
and  Medianrank (Supplementary Table S4) [39]. Then, a 
permutation test was performed to check the non-ran-
domness of the stage-specificity results. The combined 
statistics include 12 statistics that assess the different 
aspects of similarity and dissimilarity of a subnetwork 
in multiple conditions. Assessment of Zsummary which 
includes connectivity and density features that show the 
interaction pattern of genes in subnetworks. The subnet-
works with Zsummary < 2 are less preserved (stage-specific), 
If 2 < Zsummary < 10, subnetwork is moderately stage-spe-
cific, and if Zsummary > 10, the subnetwork is not stage-
specific, [39]. Moreover, the higher Medianrank indicates 
higher stage-specificity. The subnetworks with low Zsum-

mary and high Medianrank scored as high stage-specific 
selection for each stage, individually. The SSscore calcu-
lated according to eq. (3).

Where i indicates stage,   j indicates subnetwork. The 
scores were rescaled between zero and one.

Breast cancer‑relation score (BCRscore)
DisGeNET database was downloaded, and protein-cod-
ing genes for breast cancer were queried. Fisher’s exact 
test was implemented for every stage subnetworks and 

(2)
BCSS scorei = SSscorei

j + BCRscorei
j + BCRNRscorei

j

(3)
SSscorei

j = (1−
(

rescale
(

Zsummary

))

+ rescale(Medianrank))
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the most breast cancer-relevant subnetworks were nomi-
nated (P-value< 0.05) [40, 41] (Supplementary Table S5). 
The breast cancer-relation scores were calculated accord-
ing to eq. (4).

Where i indicates stage and j indicates subnetwork. The 
scores were rescaled between zero and one.

Breast cancer‑relation non‑coding score (BCRNCRscore)
The manual literature review strategy and Lnc2Catlas 
webserver were implemented to determine breast can-
cer non-coding RNAs and their biological functions [42]. 
The BRNCRscore was calculated according to eq. (5). The 
validation list of non-coding signatures is in supplemen-
tary Table S7.

Where i indicates stage and j indicates subnetwork.

Gene set enrichment analysis
ClueGO plugin in Cytoscape was applied to facilitate bio-
logical interpretations of top score subnetworks and their 
association to common signaling pathways, biological func-
tions, and cellular compartments (P-value< 0.05) [43, 44].

Overall survival analyses, stage‑rewiring network 
reconstruction, and trend assessment
The survival analysis was conducted on stage-specific 
subnetworks to detect the prognostic genes using the 
Log-Rank test and Kaplan-Meier curves (P-value< 0.05) 
[45] (Supplementary Table S7). We also performed the 
stepwise feature selection to detect covariates with Vari-
ance Inflating Factor (VIF) less than10. Finally, to develop 
an Overall-survival-risk model to stratify patients into 
low, meditate, and high-risk groups, the predictive cox-
PH model of 12 covariates was fitted to the survival data 
(Supplementary Table S8,S9,S10). In this step, we fit-
ted the model and extracted the hazard ratios (HRs). 
We computed the first and third quartiles of HRs. The 
patients with HRs less than the first quartile were cat-
egorized as the low-risk group, the patients with HR 
between the first and third quartiles were categorized 
as the medium-risk group, and finally, patients with 
HRs greater than the third quartile were categorized as 
the high-risk group. Then, the concordance index was 
employed to assess the Overall-survival-risk model per-
formance. Additionally, we evaluated the normality dis-
tribution of 50 prognostic genes using the Shapiro-Wilk 
test, as well as Kruskal–Wallis and Post-Hock test to 

(4)
BCRscorei

j = rescale
(

−Log
(

Fisher′sExactTestPvalue
j
i

))

(5)BCRNCRscore
j

i
=

Number of NC − RNAs reported in breast cancer
j

i

Totall number of non − coding RNAs in the subnetwork
j

i

determine stage-associated prognostic biomarkers (Ben-
jamini-Hochberg adjustment, P-value< 0.05). They were 
categorized into three groups of ascending, descending, 
and outset-cancer groups. The ascending/descending 
groups were called stage-associated biomarkers.

To identify changes in the regulation of 50 prognos-
tic gene expression programs across stages, we recon-
structed the co-expression networks for every four stages 
and the normal condition. And, we filter out the interac-
tion weights using cutoff < 0.7 (significant high correla-
tions remained). Finally, the ‘loss’, ‘gain’, and ‘reversed’ 
associations for edges were identified.

Validation
The GSE3494 was normalized using the RMA method. 
We assessed the OS status of our prognostic genes 
using the median as the cutoff. The overall survival of 
50 prognostic genes was also assessed by GEPIA and 
SurvExpress webserver for all 33 cancers in TCGA (cut-
off = median) [46, 47] (Supplementary Table S7). To 
investigate the outset-cancer group genes in discriminat-
ing normal and stage I, the hierarchical clustering and 
support vector machine (SVM) classification was imple-
mented. The five-fold cross-validation method with lin-
ear kernel was used (training percentage = 80) [48]. To 
assess the stage-specificity of final detected subnetworks 
for every stage for ER-positive patients, the Zsummery and 
Medianrank values were computed for every stage of ER-
negative patients as well (Supplementary Table S4).
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