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Abstract

Background: Effective matching of genotypes and environments is required for the species to reach optimal
productivity and act effectively for carbon sequestration. A common garden experiment across five different
environments was undertaken to assess genotype x environment interaction (GxE) of coast redwood in order to
understand the performance of genotypes across environments.

Results: The quantitative genetic analysis discovered no GxE between investigated environments for diameter at
breast height (DBH). However, no genetic component was detected at one environment possibly due to stressful
conditions. The implementation of universal response function allowed for the identification of important
environmental factors affecting species productivity. Additionally, this approach enabled us to predict the
performance of species across the New Zealand environmental conditions.

Conclusions: In combination with quantitative genetic analysis which identified genetically superior material, the
URF model can directly identify the optimal geographical regions to maximize productivity. However, the finding of
ideally uncorrelated climatic variables for species with narrow ecological amplitude is rather challenging, which
complicates construction of informative URF model. This, along with a small number of tested environments, tended
to overfit a prediction model which resulted in extreme predictions in untested environments.

Keywords: Climate change, Clonal forestry, Universal response function, Genotype x environment interaction,
Sequoia sempervirens

Background
Global climate change is expected to alter the net primary
productivity of all terrestrial ecosystems over the next few
decades. Understanding the effects on plant productivity,
not only of the sequestration of carbon from elevated CO2
levels but also of interactions between carbon, nitrogen
andwater availability, is essential for the future sustainable
management of natural resources [1]. Forest ecosystems
have an important role in the global carbon cycle by
storing carbon in the soil, live biomass, litter and dead-
wood. The amount of carbon stored is estimated to be
around 45% of all terrestrial carbon [2]. The annual car-
bon uptake of forest ecosystems is approximately 2.3 Pg of
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C per year, which represents approximately 33% of anthro-
pogenic carbon emissions from fossil fuels and changes in
land use [2, 3].
Changes in climate observed globally over a number

of years are expected to continue and are likely to affect
the types of trees that can be grown in particular envi-
ronments [4]. Effective management of genetic resources
for sustainable productivity and carbon sequestration of
forests requires a good understanding of the full range
of species genetic variability over a wide range of envi-
ronments. Common garden experiments can be used to
compare genetically distinct strains, families or popula-
tions under identical environmental conditions [5] and
to dissect genetic divergence and phenotypic plasticity
[6]. A number of common garden studies on various
species have found significant proportions of phenotypic

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-020-0821-1&domain=pdf
http://orcid.org/0000-0001-5504-3735
mailto: Jaroslav.Klapste@scionresearch.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
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variability in production traits (such as height or diam-
eter) are caused by differences in climatic adaptation
between populations along environmental gradients such
as latitude [7–10] or altitude [11]. In the northern hemi-
sphere, trees from southern/low elevation locations are
consistently taller than trees from northern/high eleva-
tion areas, and these differences are associated with the
number of frost-free days in the location of origin [7].
Therefore, planting populations from southern/low ele-
vations in colder/higher environments may be required
to compensate for global warming [12, 13] in order for
species to remain effective production-wise and for car-
bon sequestration [14, 15]. Wang et al. [16] proposed
universal response function as a combination of response
and transfer function to capture these trends and make
a well-informed decision about the optimal combination
of genetic resources and growth conditions to maximise
forest productivity under future predicted climate.
Coast redwood (Sequoia sempervirens (Lamb. Ex D.

Don) Endl.) is a forest tree species that can sequester
large amounts of carbon depending on the silvicultural
regime used and the proportion of heartwood present
[17], and its natural forests show a positive net car-
bon balance even under elevated stress conditions caused
by drought [18]. Understanding the genotype x envi-
ronment interaction (GxE) of this species may lead to
higher productivity and efficient carbon sequestration
when optimal population for a suitable environment
is identified.
Coast redwood naturally occurs along a narrow coastal

strip (∼50 km width) of western North America rang-
ing from Southern Oregon (OR) in the north to Southern
California (CA) in the south [19]. Many sites in its nat-
ural range receive little summer precipitation, however,
as most of its range occurs in Californian coastal fog
belt, fog water is an important source of moisture for
this forest ecosystem [20]. One study found that 45 m
high adult trees require approximately 600 litres of water
per day [20]. Ambrose et al. [21] found that coast red-
wood invests more resources in producing above-ground
biomass than in a robust root system development, and
concluded the species is susceptible to drought stress. The
related species giant redwood (Sequoiadendron gigan-
teum (Lindl.) J.Buchholz) has instead invested into more
robust root system on account of reduces above-ground
biomass production as a strategy to cope with drought.
Coast redwood has few pest and diseases. Parts of red-
wood trees such as leaves, branchlets, roots and wood are
rarely damaged by non-human animals presumably due
to the volatile essential oils and tannins content. While
there is a number of insects infesting coast redwood trees,
none of them is capable of causing the death of mature
trees [22]. Coast redwood leaves, branchlets, roots and
wood are also notably decay-resistant, likely due to volatile

essential oils (monoterpenoids and sesquiterpenoids) and
tannins [19].
The objective of this study was to examine the geno-

type x environment interaction (GxE) of coast redwood
by comparing tree growth among a number of different
environments across New Zealand. We examined GxE
interaction within a genetic framework using a range-wide
collection of clones planted across 11 environments [23].
We used broad-sense heritability to assess the propor-
tion of phenotypic variance explained by genotype, and
the genetic correlation among sites to examine plasticity
for two traits: productivity measured indirectly as stem
diameter at breast height (DBH, 1.4 m), and the occur-
rence of epicormic sprouts (EPI). We also investigated
population response regarding environmental parameters
at both origins and planted sites through the implemen-
tation of Universal response function. The implications of
the gained knowledge on where to plant productive coast
redwood for carbon are discussed.

Results
Detection of population clusters and their correlations
with environmental variables
A cluster analysis based on geographical covariates and
climatic variables generated only two significant clus-
ters of genotypes, which were separated by location from
the northern and southern parts of the US geographical
distribution (data not shown). The second-best scenario
defined by critical score detected 23 clusters (Fig. 1),
which represented geographically unique and climatically
homogeneous regions (Fig. 2 - right plot). The latter sce-
nario was used in the subsequent analysis to obtain a
more detailed insight into factors contributing to natural
selection and genetic divergence.

Genetic parameter estimates
An analysis of each of the five sites (Additional file 1:
Table S1) found virtually no genetic component at the
Taupō site, and this site was therefore removed from all
downstream analysis. We hypothesize that the lack of a
genetic expression was likely from the significant site limi-
tations on productivity at the Taupō site. These limitations
will be discussed further in the discussion.
The multi-site variance component analysis of the four

remaining sites generated statistically significant genetic
components and heritabilities in both traits analysed. The
genetic variance was partitioned into populations and
genotype-within-population components, both of which
were found to be statistically significant for the two traits
(Table 1). The genotypic variance was prevalent in EPI but
not in DBH, where differences between populations gen-
erally showed a larger proportion of genetic variance com-
pared with the genotype-within-population variance. The
population-level broad-sense heritability for DBH ranged
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Fig. 1 Optimal number of clusters. Optimal number of clusters defined by partitioning around the medoids clustering (PAMK) based on
geographical coordinates and climatic variables

from 0.24 to 0.40 while the genotype-level broad-sense
heritability ranged from 0.09 to 0.25. The population-level
broad-sense heritability for EPI ranged from 0.01 to 0.02
while the genotype-level heritability ranged from 0.09 to
0.18 (Table 1).

Genotype x environment interaction
Broad-sense genetic correlations between environments
(Tables 2 and 3) were used to investigate the interaction
between populations and environment (PxE). Important
population genetic components were found for DBH,
which resulted in high and statistically significant genetic
correlations between environments at the population level
ranging from 0.98 to 0.99 (Table 2). These results did not
indicate any important PxE interaction across the investi-
gated environments at the population level, but the mod-
erate genetic correlations were determined at a genotype
level for the same trait, ranging from 0.60 to 0.91 (Table 2).
The highest genetic correlation was found between the
Awaho and Taranaki sites, confirming the results found
in a previous analysis [23]. No statistically significant
genetic correlation between sites at the population level
was found for EPI, which reflected the negligible popu-
lation variance components (Table 3 - above diagonal).
However, broad-sense genetic correlations between sites
at the genotype level were high and were mostly statisti-
cally significant (Table 3 - below diagonal). An exception

was between the Awaho and Ngapuke farms sites, where
the correlation was 0.42 (Table 3). These results indicated
mostly only subtle changes in genotype ranking in EPI
among sites except for the Awaho and Ngapuke farms
sites, which caused large shifts in ranks. Changes in geno-
type ranking were also investigated, and the performance
of some individuals was found to be more stable than oth-
ers (Figs. 3 and 4), indicating high genotype differences in
sensitivity to different environments.

Universal response function
We investigated climate variables on the prediction of
productivity through Universal response function (URF)
[16]. Since the coast redwood occupies relatively uniform
environment centered in a fog belt within the Californian
coastal area, most of the climatic variables investigated in
this study showed high pairwise positive or negative cor-
relations (Table 4) which resulted in URF model singular-
ity. Therefore only two climatic variables with a moderate
correlation of -0.55 (Tmax and precipitation) were consid-
ered in the final URF model. The proportion of variance
explained by the model in term of R2 reached 0.972. The
statistically most significant variables were Tmax and pre-
cipitation at the planted sites in New Zealand as well as
their squared terms. The square term of Tmax was only
significant climatic variable at origin (Table 5). The high-
est contribution to the variance explained by the URF
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Fig. 2Map of sample distribution. Geographical distribution of sites across New Zealand (left) and distribution of population in coast redwood
sample (colours represent population clusters defined by PAMK algorithm) (right) (Figure created in this study using R packages "ggplot2" [24] and
"maps" [25])

Table 1 Variance components and broad-sense heritability estimates

Trait Param. Awaho Taranaki Moupiko Ngapuke f.

Pop 0.41 (0.15-0.98) 0.35 (0.06-1.00) 0.24 (0.08-0.66) 0.46 (0.21-1.17)

Gen 0.35 (0.26-0.49) 0.28 (0.20-0.38) 0.23 (0.15-0.33) 0.15 (0.08-0.23)

Rep 0.00 (0.00-0.01) 0.00 (0.00-0.01) 0.01 (0.00-0.06) 0.02 (0.00-0.11)

DBH Rep(Block) 0.00 (0.00-0.01) 0.00 (0.00-0.01) 0.00 (0.00-0.02) 0.00 (0.00-0.02)

Error 0.65 (0.60-0.72) 0.68 (0.62-0.73) 0.74 (0.68-0.81) 0.64 (0.51-0.85)

H2 - Pop. 0.29 (0.14-0.50) 0.30 (0.10-0.53) 0.24 (0.09-0.41) 0.40 (0.22-0.58)

H2 - Gen. 0.25 (0.16-0.33) 0.19 (0.12-0.29) 0.18 (0.11-0.26) 0.09 (0.05-0.16)

Pop 0.02 (0.00-0.07) 0.02 (0.00-0.09) 0.02 (0.00-0.07) 0.01 (0.00-0.12)

Gen 0.11 (0.06-0.17) 0.08 (0.05-0.14) 0.15 (0.10-0.24) 0.06 (0.11-0.27)

Rep 0.00 (0.00-0.04) 0.02 (0.00-0.10) 0.02 (0.00-0.10) 0.00 (0.00-0.03)

EPI Rep(Block) 0.01 (0.00-0.04) 0.01 (0.00-0.04) 0.01 (0.00-0.04) 0.01 (0.00-0.03)

Error 0.87 (0.79-0.95) 0.87 (0.80-0.95) 0.81 (0.74-0.90) 0.83 (0.75-0.90)

H2 - Pop. 0.02 (0.00-0.07) 0.02 (0.00-0.08) 0.01 (0.00-0.07) 0.02 (0.00-0.10)

H2 - Gen. 0.11 (0.06-0.16) 0.09 (0.05-0.14) 0.16 (0.10-0.23) 0.18 (0.11-0.25)

Variance components, broad-sense heritabilities and their 95% confidence limits for each site and trait obtained from multi-environment model
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Table 2 Genetic correlations for DBH

DBH Awaho Taranaki Motupiko Ngapuke farms

Awaho 1 0.99 (0.89-0.99) 0.99 (0.91-0.99) 0.99 (0.93-0.99)

Taranaki 0.91 (0.80-0.98) 1 0.99 (0.84-0.99) 0.99 (0.89-0.99)

Motupiko 0.64 (0.43-0.80) 0.66 (0.44-0.81) 1 0.98 (0.90-0.99)

Ngapuke farms 0.75 (0.49-0.92) 0.74 (0.49-0.92) 0.60 (0.31-0.85) 1

Between sites broad-sense genetic correlations at population (above diagonal) and genotype (below diagonal) level and their 95% confidence limits for DBH

model showed Tmax and precipitation at planted sites
(Table 5). The URF model was implemented as a tool
to predict the performance of the best cluster identi-
fied on the basis of quantitative genetic analysis across
New Zealand using Tmax and precipitation information
(Fig. 5) extracted from WorldClim database [26]. We
found reasonable predictability within an area of planted
sites (North Island and the north part of South Island)
while poor performance was observed outside tested areas
in the south of South Island (Fig. 6).

Discussion
Genetic background
Extensive natural distributions of forest trees over highly
variable environments predispose the adaptive traits of
forest trees to exhibit the effects of strong local natu-
ral selection. This effect can result in different pheno-
typic responses from different populations when com-
pared using common garden experiments [28–30]. This
is likely to be the case for DBH in coast redwood, which
shows a considerable difference in phenotypic expression
among populations when tested outside its natural distri-
bution [23] and confirmed across more sites in this study.
Interestingly, the differences in total DBH (a measure
of productivity) between populations were larger com-
pared to the within-population component (Table 1). This
result indicates that natural selection has a strong effect.
In contrast, previous studies of indigenous stands of this
species in North America using molecular markers found
high genetic variation within populations while only sub-
tle variation between populations [31] and only weak and
statistically non-significant level of genetic differentiation
due to population structure in terms of Wright’s fixation
index FST (0.0031) [32]. These findings correspond to the

general notion that growth aligns with forest tree adaptive
traits, as growing fast maximises the competitive ability
of individual trees for a light interception in a forest [33].
Significant differences in productivity among populations
have also been found in other forest tree species, such
as poplars [9, 10] and European beech [30] by compar-
ing genetic differentiation of quantitative traits between
populations (QST) and genetic differentiation between
populations based on selectively neutral markers (FST)
[34, 35]. In this study, diameter at breast height (DBH) was
the only attribute representing tree growth. Studies across
other forest tree species found strong/moderate correla-
tions between DBH and tree height or volume [36–39]
which provides evidence of using DBH as an ideal proxy
phenotype for other essential attributes. However, there
is decent genetic variability found in DBH - tree height
relationship due to differences in individual’s response to
environment and competition [40].
Genetic variance and interaction of the genetic and

environmental components were investigated at both
the population and genotype level. The population-level
broad-sense genetic correlations between sites for DBH
exceeded 0.7, so the PxE interaction was considered to
be non-significant [41]. Since the investigation of geno-
type by environment (GxE) requires the presence of both
genetic and environmental variance, the Taupō site was
removed from the analysis due to lack of genetic compo-
nent.We hypothesize that it was due to the low productiv-
ity at the site, which we discuss further below. Similar to
our study, the missing genetic component was found for
drought tolerance in Norway spruce when tested outside
the range of species natural distribution [42]. Some GxE
interactions at the genotype-within-population level were
found when broad-sense genetic correlations between

Table 3 Genetic correlations for EPI

EPI Awaho Taranaki Motupiko Ngapuke farms

Awaho 1 0.70 (-0.45-0.95) 0.60 (-0.55-0.92) 0.78 (-0.35-0.97)

Taranaki 0.83 (0.54-0.95) 1 0.31 (-0.76-0.86) 0.80 (-0.50-0.97)

Motupiko 0.78 (0.50-0.94) 0.85 (0.55-0.97) 1 0.66 (-0.55-0.95)

Ngapuke farms 0.42 (0.09-0.74) 0.73 (0.44-0.92) 0.80 (0.50-0.94) 1

Between sites broad-sense genetic correlations at population (above diagonal) and genotype (below diagonal) level and their 95% confidence limits for EPI
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Fig. 3 Genotype by environment interaction in DBH. Rank change of the genotype performance for DBH across four environments

sites decreased slightly below 0.7 in most cases, except
Awaho - Taranaki and Awaho - Ngapuke farms. The exis-
tence of a GxE interaction at the genotype level when
suboptimal sites were involved in the evaluation is pos-
sibly due to the sensitivity of coast redwood growth to
inbreeding depression. Inbred individuals may perform
well under optimal conditions, but their productivity will
decrease relative to outbred individuals under stressed
conditions [43–45]. Moreover, thanks to intensive vege-
tative propagation through epicormic sprouts, coast red-
wood in natural forest stands have been known for the
creation of polycormons up to at least 40 meters [31, 46],

highlighting the likelihood of the occurrence of inbreed-
ing. The results of this study suggest that young genotypes
with unknown pedigrees should, therefore, be tested in
moderately stressed environments to eliminate them for
use in pedigreed progeny tests [44].
Some individuals were found to have large changes

in ranking across environments compared with others
(Figs. 3 and 4). We postulate that these individuals may
originate from inbreeding. The molecular marker-based
analysis could be used to determine whether or not
this is the case. Coast redwood is a spontaneous poly-
ploid, presumably developed through genome duplication

Fig. 4 Genotype by environment interaction in EPI. Rank change of the genotype performance for EPI across four environments
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Table 4 Correlations between climatic and geographical variables

Long. Lat. Tmax. Tmin. Precip. Radiation WVP Wind speed

Long. 1 0.84 0.59 0.57 0.09 0.83 0.52 -0.16

Lat. 0.95 1 0.51 0.68 0.48 0.98 0.75 -0.02

Tmax. -0.93 -0.93 1 0.92 -0.30 0.60 0.82 0.02

Tmin. -0.89 -0.95 0.88 1 0.07 0.78 0.97 0.24

Precip. 0.66 0.51 -0.55 -0.62 1 0.48 0.24 0.54

Radiation -0.96 -0.94 0.91 0.96 -0.75 1 0.83 0.12

WVP -0.92 -0.98 0.94 0.98 -0.55 0.95 1 0.21

Wind speed -0.87 -0.90 0.82 0.97 -0.76 0.96 0.93 1

Correlation between climatic variables (Tmax - mean daily maximum temperature, Tmin - mean daily minimum temperature, Precip - annual precipitation, WVP - water
vapour pressure) and geographical coordinates (Lat - latitude, Long - longitude) at locations of origin (below diagonals) and at planted sites (above diagonals)

[47], which can introduce obstacles to the generation of
genomic resources. However, several studies have success-
fully developed and implemented genetic markers in this
species [32, 48]. Current development of high-throughput
genotyping technologies [49] can generate a significant
number of markers to construct marker-based relation-
ship matrices, even in wild populations [50] and thus
allow for the investigation of individual inbreeding coef-
ficients [51]. Besides, this genomic information can be
used to infer genetically relevant population structures,
which could substitute the cluster analysis and provide a
more realistic estimate of population genetic variance, as
well as an inference about the adaptive potential of stud-
ied traits through comparison of genetic differentiation
detected in quantitative traits and neutral genetic markers
(QST versus FST).
The appearance of epicormic sprouts on trees was found

to be strongly influenced by genotype, but this was less

obvious when fitting the population component. This pat-
tern was the opposite of that observed for DBH and could
imply that the EPI trait is not under natural selection.
The production of epicormic sprouts presents a means of
regenerating the understorey after wildfires [52] which are
unlikely to be confined in such a way that causes strong
local natural selection. This reasoning is supported by
the fact that the ability to produce epicormic sprouts was
observed across the whole sample set. The broad-sense
heritability for EPI ranged from 0.08 to 0.19, which was
low but consistent with previous studies [23, 53]. The low
heritability indicates that environmental factors influence
the phenotypic expression more than genetics, or that the
main part of genetic variance has been already fixed. An
experimental study that focused on the effect of pruning
O’Hara and Berrill [54] found that the genetic component
diminished a few years after the initiation of epicormic
sprouts.

Table 5 Universal response function

Variable Estimate t-val P-val R2

Intercept 114 (0.996) 114.98 <0.0001

Tmax_US 16.59 (12.47) 1.331 0.186197 0.09

Tmax_US2 39.57 (11.23) 3.524 0.000634 0.11

Tmax_NZ -483.94 (27.23) -17.769 <0.0001 0.95

Tmax_NZ2 1146.77 (25.31) 45.312 <0.0001 0.95

Tmax_US*Tmax_NZ 36.22 (114.81) 0.315 0.7531 0.00

Prec_US 22.46 (12.74) 1.763 0.0808 0.01

Prec_US2 9.77 (10.93) 0.894 0.3734 0.01

Prec_NZ -974.91 (27.68) -35.218 <0.0001 0.88

Prec_NZ2 -869.41 (24.82) -35.03 <0.0001 0.92

Prec_US*Prec_NZ 26.72 (116.40) 0.230 0.8189 0.00

R2 0.972

The results from universal response function using climatic variables: mean daily maximum temperature at origin (Tmax_US), mean daily maximum temperature at planted
site (Tmax_NZ), total annual precipitation at origin (Prec_US) and total annual precipitation at planted site (Prec_NZ)
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Fig. 5 Climate variables distribution across New Zealand. Distribution of climate variables (mean daily maximum temperature - left; total annual
precipitation - right) implemented in Universal response function for coast redwood clusters (Figure created in this study using R package "raster"
[27])

Fig. 6 Predicted performance of the genetically best material (Cluster 19) across New Zealand. Predicted DBH [mm] using maximum temperature
and precipitation implemented in Universal Response Function (Figure created in this study using R package "raster [27])
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This investigation of the PxE interaction found high but
non-significant broad-sense genetic correlations across
environments at the population level, which is assumed to
be connected to a negligible variance component estimate
for the effect of populations. The GxE interaction gen-
erally showed stable expression in terms of broad-sense
genetic correlations between environments at a genotype
level. A strong GxE interaction was found only between
the Awaho and Ngapuke farms sites (Table 3). The differ-
ences in genotype ranking across these two sites can be
related to a different level of phenotypic expression.While
the Ngapuke farms site showed the highest broad-sense
heritability for EPI, the Awaho site showed the lowest
(Table 1). However, the persistence of an estimable genetic
component should be re-evaluated when the trees are
older [54].

Environmental cues
The analysis of individual sites showed significant genetic
components at four of the five sites examined. Virtually
no genetic component was found in either of the stud-
ied traits at the Taupō site (Additional file 1: Table S1).
Trees at the Taupō site received ∼100 - 350 mm more
annual precipitation than the other sites (Table 6) but
had sandy pumice soil that would drain rapidly, and the
volcanic soils in the region typically have low nutrients
[55]. The low water retention of sandy soils can create
elevated stress through lack of water accessibility during
summer drought. Water accessibility is a significant factor
affecting coast redwood growth [23], and fog is an impor-
tant source of moisture for naturally occurring US coast
redwood forest stands [20, 56]. Additionally, the fog has
been identified as a significant direct and indirect source
of nitrogen to coast redwood trees [57]. The presence of
drought stress causes a decrease in stem water potential
and increases in the occurrence of stem embolisms, which
is more pronounced in coast redwood compared with
giant redwood [21]. Interestingly, their study also failed

in finding any population differences in growth under
stressed conditions; however, they investigated longitudi-
nal rather than coast - inland pattern.We hypothesize that
the lack of an estimable genetic component at Taupō could
be caused by the fast-drying, free-draining soil which can
cause water limitations for coast redwood, perhaps con-
tributed to by the relatively poor rooting system of the
species compared with others in the Sequoia genus [21].
Larger sized estimates of genetic components/heritability
can generally be reached under optimal growing condi-
tions, where the expression of underlying genetics is also
optimal or close to optimal. Any sub-optimal conditions
such as environmental stress can result in the reduc-
tion and potential disappearance of the expression of the
underlying genetic potential and the reduction in the esti-
mated genetic component [42, 58]. Hence, it is likely that
the conditions at the Taupō site are limiting for the growth
of planted coast redwood in New Zealand.
Our study attempted to identify the climate variables

that affect coast redwood productivity in New Zealand
through the implementation of the universal response
function. However, the potential of universal response
function (URF) to achieve this goal was rather lim-
ited due to the fact that coast redwood occupies eco-
logically relatively uniform environment and most of
the investigated climate variables were highly correlated
(Table 4 - above diagonals). Consequently, the UFR model
resulted in the singularity issue when more than two
variables were included. Therefore, exploration of co-
linearity between variables is required to avoid any singu-
larity in the URF model when species occupies environ-
mentally/geographically narrow space. Our final model
contained only two variables that show only moderate
correlation (mean daily maximum temperature and total
annual precipitation). The limited number of variables
included in the URF model can restrict the informative-
ness of the model to predict species productivity reliably.
It is worth to mention at this point that we used climatic

Table 6 Description of planted sites

Climate var. Awaho Taranaki Taupō Motupiko Ngapuke farms

Soil type Silt loam Fine sandy loam Sand Silt loam Hill soil

Rooting [m] 1.2 1.35 0.34 0.82 0.57

Soil order Recent Allophanic Pumice Brown Pallic

Tmax.[C◦] 16.6 16.5 15.4 15.3 13.9

Tmin [C◦] 7.2 7.8 5.5 5.9 4.9

Rain. [mm] 1506 1740 929 1564 2007

Solar rad. 173483 173278 165250 172300 168396

Water vapour press. 1.05 1.16 0.91 0.99 0.90

Wind speed 4.5 4.6 4.1 3.8 4.7

Environmental conditions at investigated sites: soil type, estimated rooting depth, soil order, mean annual rainfall (Rain.), mean daily maximum temperature (Tmax) and
mean daily minimum temperature (Tmin)
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data available inWorldClim database [26]. There are other
potentially useful resources of climate variables such as
FAO agroclimatic databases and mapping tools [59] or
NASA’s distributed active archive centres (DAAC) [60].
The implemented URF model indicated the climate

variables (mean daily maximum temperature and total
annual precipitation) at planted sites as the most sig-
nificant factors affecting productivity in New Zealand
along with the quadratic term of mean daily maximum
temperature at the origin. In contrary, an only a weak sig-
nal was detected in climate variables at origin (Table 5).
The non-significance of climate variables at origin can be
related to a relatively small number of tested genotypes
per each level of climate variable despite a broader range
of magnitudes compared to climate variables at planted
sites. Additionally, the environmental variables represent
coarse level environmental variables and do not reflect
potentially important intra-annual climatic dynamics (e.g.
number of dry days between precipitation events, pre-
cipitation event duration and intensity), which could be
important factors for growth and stress for individual
provenances. Research with other tree species has found
some genotypes are more sensitive to microsite and cli-
mate than others [61]. The dendrochronological study
conducted in situ on standing Californian coast redwood
trees found a latitudinal pattern in climate sensitivity with
a strong contrast between cooler northern rainforests and
warm and dry southern forests. A negative relationship
between radial growth and cloudiness of the local envi-
ronment was found in trees growing in northern or cen-
tral latitudes whereas a negative relationship was found
between growth and dry summers in trees located at
southern latitudes. Cloudiness is thought to reduce the
amount of sunlight in reaching the surface of the nee-
dles, which reduces photosynthesis and leads to less radial
growth [62].
Additionally, total annual precipitation is coarse envi-

ronmental parameter as it does not reflect the variability
in precipitation distribution and intensity throughout the
year, which may be more critical for plant adaptation to
cope with summer drought. In coast redwood’s natural
range, fog water is a significant water source, especially
for coastal populations [45]. It has been estimated that
fog contributes 25 to 50% of total annual water input for
coast redwood ecosystems, and decreases with increas-
ing distance from the ocean [20, 63]. Conversely, New
Zealand rarely gets summer fog, let alone the frequency
of coastal California. Thus, it is unlikely to be a signifi-
cant water site for the five sites at any time of the year.
Unlike California, the majority of areas in New Zealand
regularly receive precipitation throughout the year due to
its maritime climate - although less precipitation during
summer. It is unknown if New Zealand’s maritime climate
and regular precipitation act as an effective substitute

for fog water during the summer, and if New Zealand
grown redwood is more water-stressed during this period.
Anekonda et al. [64] found a strong correlation between
canonical variables inferred from growth increment, and
respiratory variables, implying respiration may be cor-
related with growth. Estimates of the efficiency of each
individual tree’s energy metabolism showed that highly
productive genotypes are less energy-efficient compared
with less productive genotypes, something that appears to
be contradictory.
The universal response function [16, 65] has already

been implemented to predict population performance
outside the range of species’ natural distribution in the
case of Douglas-fir in Central Europe [66] or white spruce
in Canada [67]. TheURF developed in this study explained
88% of the variation in data which is very similar to our
results. Additionally, the authors found that conditions
at planted sites are more significant compared to condi-
tions at population origin, which is similarly found in our
study. Chakraborty et al. [66] found the advantage of the
empirical models such as URF over the climate envelope
models and recommended their implementation, espe-
cially in case of productivity predictions outside of species’
natural distribution.
The URF model was implemented to predict the pro-

ductivity of genetically superior material identified in
quantitative genetic analysis (Cluster 19) across New
Zealand. The results show the best performance at the
north of North Island (Northland) as well as the coastal
line along the east coast of North Island. These regions
were identified in the previous study using data from
permanent sample plots analyse by multiple regression
model [68]. However, the predictions outside the range
of the tested environments produced unreliable estimates,
especially in the southwest of South Island. This can be
attributed partially to the lack of tested environments as
well as to the limited number of environmental variables
included in the URF model. We expect that the inclusion
of more tested environments would allow for better esti-
mation of co-linearity between environmental variables at
tested sites and thus their better selection for the final
model. Therefore, more detailed exploration of genotype x
environment interaction through universal response func-
tion would require a larger sample size tested across more
environments.

Conclusion
The current study provides evidence of the ability to
detect a heritable component of phenotypic variation
in productivity, as measured with DBH, and epicormic
sprouts in a sample of coast redwood outside its natu-
ral conditions. However, also environmental conditions
under which genetic component was suppressed were
detected. The investigation of genotype x environment
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interaction did not discover any serious interaction of
population/genotype with the environment. However,
some combinations of sites showed slight effects in geno-
type ranking, specifically for particular genotypes which
were attributed to possible selfing. Nevertheless, such
hypothesis will need to be approved by the implementa-
tion of genetic markers. The implementation of universal
response function allowed for the identification of impor-
tant environmental factors affecting species productivity.
Additionally, this approach enabled us to predict the per-
formance of species across the New Zealand environmen-
tal conditions. In combination with quantitative genetic
analysis which identified genetically superior material, the
URF model can directly identify the optimal geographical
regions to maximize productivity. However, the finding
of ideally uncorrelated climatic variables for species with
narrow ecological amplitude is rather challenging, which
complicates construction of informative URFmodel. This,
along with a small number of tested environments, tended
to overfit a prediction model which resulted in extreme
predictions in untested environments.

Methods
Plant material
Coast redwood material was collected in 1984 from 98
locations along the west coast of USA representing most
of its natural distribution, i.e. from Curry County (OR)
to Monterey County (CA) (Fig. 1) [23]. Seedlings were
collected where possible, with saplings or stump sprouts
obtained if no seedlings were available. A total of 198
genotypes representing all 98 different geographical loca-
tions were clonally propagated. Of these, a set of 182 geno-
types representing 85 locations (1 - 6 genotypes/location
(Additional file 1: Table S2)) was imported into New
Zealand in 2000, clonally propagated and used to estab-
lish a series of clonal trials across New Zealand between
2003 and 2006. A more detailed description of the mate-
rial can be found in [23]. All individuals were phenotyped
for diameter at breast height (DBH) and epicormic sprouts
(EPI). Ageing from the different types of material is likely
to have differed, but the data on the origin of the cut-
tings was not available, so this will be confounded with the
results.

Trial sites
Eleven field trials were established, and data from five of
these trials having the most complete sample data rep-
resentation are analysed here. Three sites were in the
North Island and two in the South Island of New Zealand
(Fig. 2). Details of the sites are given in Table 6. The
sites represented a range of environmental conditions.
The Awaho and Taranaki sites were situated on fertile soils
with abundant precipitation, which corresponded to coast
redwood’s optimum growth conditions. The Ngapuke

farm site had a much lower annual precipitation and was
planted on a northwest slope that dries out in summer.
The Taupō site received more precipitation than two of
the other sites but had sandy soil. Previous analyses [23]
have been undertaken on only two sites. Each genotype
at each site was represented by several identical copies
(ramets) planted in incomplete block design.

Climatic variables
Climatic variables such as mean daily minimum temper-
ature [C°] and mean daily maximum temperature [C°],
annual precipitation [mm], solar radiation [kJ m−2 day−1],
water vapour pressure [kPa] and wind speed [m/s] were
extracted from WolrdClim database version 2 (http://
worldclim.org/version2) [26] as monthly averages across
1970–2000 period. The variables related to temperature,
solar radiation and wind speed were averaged across
months while precipitation was summed across months
for downstream analysis.

Statistical evaluation
Each location was represented by 1 - 6 trees (Addi-
tional file 1: Table S2), so population structure was
inferred by using partitioning around the medoids clus-
tering algorithm implemented using the "pamk" func-
tion available in the "fpc" R package [69]. The geo-
graphical coordinates (latitude, distance from the coast
and elevation) and climatic variables (annual precipita-
tion, annual daily temperature maximum and minimum)
(Additional file 1: Table S2) were used as inputs to cre-
ate groups of genotypes from geographically discrete and
environmentally homogeneous regions. Genetic param-
eters, such as genetic variance (including both additive
and non-additive components), broad-sense heritability
and genetic correlations between different environments
were estimated through a multivariate generalised mixed
model based onMonte CarloMarkov Chain sampling [70]
as follows:

Y = Xβ + Zp + Zg + Zr + Zr(b) + e

where Y is a matrix of phenotypes, β is the vector of fixed
effects (intercept), p is the vector of random population
effects following var(p)∼N(0,G1), where G1 is variance-
covariance structure of population effects following G1=⎡
⎢⎣

σ 2
p1 . . . σp1pn
...

. . .
...

σpnp1 . . . σ 2
pn

⎤
⎥⎦ ⊗

I, where σ 2
p1 and σ 2

pn are population

variances for the 1st and nth environment, σpnp1 and σp1pn
are population covariances between the 1st and nth envi-
ronment,

⊗
is the Kronecker product and I is the identity

matrix. The vector g is vector of random genotype within
population effects following var(g)∼N(0,G2), where G2 is

http://worldclim.org/version2
http://worldclim.org/version2
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variance-covariance structure of genotype within popu-

lation effects following G2=

⎡
⎢⎣

σ 2
g1 . . . σg1gn
...

. . .
...

σgng1 . . . σ 2
gn

⎤
⎥⎦⊗

I, where

σ 2
g1 and σ 2

gn are genotype within population variances
for the 1st and nth environment. The vector r is vector
of random replication effects following var(r)∼N(0,G3),
where G3 is variance-covariance structure of replica-

tion effect following G3=

⎡
⎢⎣

σ 2
r1 . . . σr1rn
...

. . .
...

σrnr1 . . . σ 2
rn

⎤
⎥⎦⊗

I, where

σ 2
r1 and σ 2

rn are replication variances for the 1st and
nth environment. The vector r(b) is vector of ran-
dom block nested within replication effects following
var(r(b))∼N(0,G4), where G4 is the variance-covariance
structure for block nested within replication effects fol-

lowing G4=

⎡
⎢⎣

σ 2
r(b)1 . . . σr(b)1r(b)n
...

. . .
...

σr(b)nr(b)1 . . . σ 2
r(b)n

⎤
⎥⎦ ⊗

I, where σ 2
r(b)1

and σ 2
r(b)n are block nested within replication variances for

the 1st and nth environment. The vector e is vector of ran-
dom residuals (effect of ramet within genotype) following
var(e)∼N(0,R), where R is residual variance-covariance

structure following R=

⎡
⎢⎣

σ 2
e1 . . . σe1en
...

. . .
...

σene1 . . . σ 2
en

⎤
⎥⎦⊗

I, where σ 2
e1

and σ 2
en are residual variances for the 1st and nth envi-

ronments, X and Z are the incidence matrices assigning
fixed and random effects to measurements in matrix Y.
Broad-sense heritability at population level was estimated
as follows:

H2
p = σ 2

p
σ 2
p + σ 2

g + σ 2
e

where σ 2
p is posterior mode of population variance, σ 2

g
is posterior mode of genotype variance and σ 2

e is poste-
rior mode of residual variance. Similarly, the broad-sense
heritability at genotype level was estimated as follows:

H2
g = σ 2

g

σ 2
p + σ 2

g + σ 2
e

The broad-sense genetic correlation between sites at the
population level to define population x environments
interaction was estimated using Pearson product-moment
estimate as follows:

rGEp = σpipj√
σ 2
piσ

2
pj

where σpipj is posterior mode of population covariance
between ith and jth environment, σ 2

pi and σ 2
pj are poste-

rior modes of population variance at environments i and
j, respectively. Similarly, the broad-sense genetic correla-
tion between sites at genotype level to define genotype x
environment interaction was estimates as follows:

rGEg = σgigj√
σ 2
giσ

2
gj

where σgigj is posterior mode of genotype covariance
between ith and jth environment, σ 2

gi and σ 2
gj are poste-

rior modes of genotype variance at environments i and j,
respectively. All analyses were performed in R ’base’ pack-
age [71] with implementation of ’MCMCglmm’ package
[70]. The phenotypic data were standardised to havemean
0 and variance 1 [72]. The number of iterations was set
to 500,000 and burn-in period was 50,000 runs. Thinning
was set to 10.
The graphical investigation of GxE at the individual level

was investigated through the construction of boxplots.
The individuals were ranked in each environment regard-
ing their performance, and average clonal ranking was
estimated as arithmetical mean of genotype ranks across
investigated environments. Box of each genotype then
represents the dispersion of pair-wise change in rankings
between environments. In this way, we can investigate
behaving of individuals generally ranked as the best, poor
or average.
The universal response function was constructed by

using climatic variables at origin as well as at planted sites
following [16]:

Yij = b0+b1X1i+b2X2
1i+b3X2j+b4X2

2j+b5X1iX2j+eij
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