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Abstract

Background: Genomic evaluation, based on the use of thousands of genetic markers in addition to pedigree and
phenotype information, has become the standard evaluation methodology in dairy cattle breeding programmes over
the past several years. Despite the many differences between dairy cattle breeding and poultry breeding, genomic
selection seems very promising for the avian sector, and studies are currently being conducted to optimize avian
selection schemes. In this optimization perspective, one of the key parameters is to properly predict the accuracy of
genomic evaluation in pure line layers.

Results: It was observed that genomic evaluation, whether performed on males or females, always proved more
accurate than genetic evaluation. The gain was higher when phenotypic information was narrowed, and an
augmentation of the size of the reference population led to an increase in accuracy prediction with regard to
genomic evaluation. By taking into account the increase of selection intensity and the decrease of the generation
interval induced by genomic selection, the expected annual genetic gain would be higher with ancestry-based
genomic evaluation of male candidates than with genetic evaluation based on collaterals. This advantage of genomic
selection over genetic selection requires more detailed further study for female candidates.

Conclusions: In conclusion, in the population studied, the genomic evaluation of egg quality traits of breeding birds
at birth seems to be a promising strategy, at least for the selection of males.
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Background
Genomic evaluation, based on thousands of genetic mark-
ers in addition to pedigree and phenotype informa-
tion [1], has become the standard evaluation method-
ology in dairy cattle breeding programmes over the
past years. It has allowed for the improvement of the
accuracy of estimated breeding values (EBV) of young
bulls and, consequently, their much earlier utilization.
Thereby, the generation interval as well as the pheno-
typing costs have been reduced because of the cessa-
tion of the progeny testing of bulls [2]. More recently,
avian breeders have started to implement genomic selec-
tion in their selection schemes. Indeed, despite the many
differences between dairy cattle breeding and poultry
breeding, genomic selection is deemed very promising
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for the avian sector, especially for layer selection [3–5].
However, to optimize avian selection schemes, one of
the key parameters is to properly predict the accuracy of
genomic evaluation.
One of the most important factors directly affecting

evaluation accuracy is the makeup of the reference pop-
ulation. From the very beginning, genomic evaluation
implied that the size of the reference population should
not be too small [1, 2, 6]. However, it has also been shown
that increasing the size of the reference population does
not directly improve evaluation accuracy [7, 8]. Indeed,
the close relationship of the reference population with the
candidate population is more critical than the size of the
reference population. The evaluation becomesmore accu-
rate as candidate haplotypes become increasingly well
represented in the reference population [7, 9–12]. Aside
from the makeup of the reference population, the number

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-020-0820-2&domain=pdf
http://orcid.org/0000-0001-6914-9936
mailto: pascale.le-roy@inrae.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Druet et al. BMC Genetics           (2020) 21:17 Page 2 of 11

of training generations to use is another important ques-
tion. Indeed, it has been shown that evaluation accuracy
is impacted by the number of training generations used
[13, 14], depending on the heritability of the traits.
The present study assesses the relevance of genomic

evaluation in comparison with genetic evaluation in order
to predict the breeding values of selection candidates for
egg quality traits in a pure line of layers. The main objec-
tive was to evaluate the expected genetic gain with respect
to those traits in order to move from genetic to genomic
evaluation.

Results
Five egg quality traits related to eggshell quality and inter-
nal egg quality were studied: egg weight (EW), eggshell
colour (ESC), eggshell strength (ESS), albumen height
(AH) and eggshell shape index (ESshape).
Two phenotypic datasets were used. The first one,

referred to as CC, contains data recorded from young hens
(30 to 50 weeks old) bred in collectives cages. The second
one, referred to as IC, contains data recorded from older
hens (60 to 80 weeks old) bred in individual cages.
Three cases scenarios were studied. Case 1: evaluation

at birth, Case 2: evaluation at 60 (CC) or 80 (IC) weeks of
age, Case 3: evaluation at 140 (CC) or 160 (IC) weeks of
age.

Genetic parameters
Heritabilities remained steady whether REML was car-
ried out with BLUP or with ssGBLUP and independently
of the dataset under analysis, e.g., complete or partial
(cases 1, 2 and 3). These results were observed what-
ever the trait or age (CC or IC). Differences ranged from

0% for ESshape in IC to 5% for EW in IC, and values
were always higher with ssGBLUP than with BLUP (data
not shown). Similar results were obtained for repeata-
bilites. Genetic correlations were even more stable than
heritabilities or repeatabilities. Consequently, variance-
covariance matrices were set for the rest of the study.
The variance-covariance matrix obtained with genomic
evaluation through the use of the complete dataset,
i.e., REML carried out with the maximum amount of
information, was used to perform subsequent BLUP
and ssGBLUP.
Estimates of genetic parameters, obtained using ssG-

BLUP through the use of the complete dataset, are given
in Table 1. EW, ESC and ESshape were highly heritable,
while heritability (resp. repeatability) of ESS and AH were
more moderate. For all traits, heritability was higher in
CC than in IC and was of the same order of magnitude
as repeatability in IC. This result may be due to an over-
estimation of additive genetic variance, which was partly
confounded by common environmental effect in CC, as
discussed before (see “Statistical model” section). Genetic
correlation between EW and AH was positive and mod-
erate, and showed no significant difference between CC
and IC (resp. 0.37 and 0.35) (Table 1). Genetic corre-
lations between ESshape and ESS, or between ESshape
and AH, were also positive and moderate, but signifi-
cantly higher in IC (resp. 0.28 and 0.20 in CC, and 0.45
and 0.41 in IC). Genetic correlation between AH and ESS
was slighlty lower (0.12 in CC and 0.21 in IC). EW and
ESshape were weakly correlated (0.12 in each dataset),
while ESC was not correlated with other traits in CC but
ESC was weakly correlated with ESS (0.16) and ESshape
(-0.16) in IC.

Table 1 Genetic parameters for studied traits, estimated with ssGBLUP

Traits EW ESC ESS AH ESshape

Collective Cages dataset

EW 0.64 (0.02) 0.02 (0.02) 0.00 (0.02) 0.37 (0.02) 0.12 (0.02)

ESC 0.01 (0.01) 0.59 (0.02) -0.02 (0.02) 0.03 (0.02) -0.03 (0.02)

ESS -0.02 (0.01) 0.05 (0.01) 0.27 (0.02) 0.12 (0.01) 0.28 (0.02)

AH 0.17 (0.01) 0.02 (0.01) -0.00 (0.01) 0.34 (0.01) 0.20 (0.02)

ESshape 0.02 (0.01) -0.06 (0.01) 0.18 (0.01) 0.12 (0.01) 0.48 (0.02)

Individual Cages dataset

EW 0.45/0.69 (0.00) 0.02 (0.01) 0.14 (0.01) 0.35 (0.01) 0.12 (0.01)

ESC 0.02 (0.05) 0.40/0.57 (0.00) 0.16 (0.01) 0.08 (0.01) -0.16 (0.01)

ESS 0.02 (0.05) 0.08 (0.03) 0.23/0.37 (0.03) 0.21 (0.00) 0.45 (0.01)

AH 0.10 (0.04) 0.02 (0.03) 0.01 (0.00) 0.26/0.36 (0.01) 0.41 (0.01)

ESshape -0.03 (0.02) -0.07 (0.01) 0.16 (0.01) 0.10 (0.02) 0.42/0.56 (0.00)

In diagonal: heritability/repeatability; upside diagonal: genetic correlations; downside diagonal: phenotypic correlations. Standard errors are in parentheses
Traits: EW: Egg Weight; ESC: Eggshell Colour; ESS: Eggshell Strength; AH: Albumen Height; ESshape: Eggshell shape index
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(G)EBVs relative accuracy for male candidates
CC traits
As expected, relative accuracy estimates (Additional file 1)
significantly increased from case 1 to case 3 with the
amount of phenotypic information available. In case 1,
relative accuracy estimates were not homogeneous and
varied depending on the trait. Accuracies for EW and
ESshape tended to be low, with relative accuracy between
0.22 (EW genetic C2) and 0.24 (ESshape genetic C2), even
though these traits were more heritable than ESS or AH,
for which the relative accuracy was approximately 0.32
(AH genetic C2). These differences were less present in
case 2 and no longer existed in case 3.
The results of the comparison between genetic evalua-

tion and genomic evaluation are shown in Table 2, which
gives the ratio of the relative accuracy of BLUP and ssG-
BLUP for each case studied. A value of 1 indicates no
difference, values below 1 indicate that genomic evalua-
tion is more accurate, while values above 1 indicate that
genetic evaluation is more accurate.
Evaluations carried out at birth (case 1) were the ones

showing the greatest extent of difference between genetic
evaluation and genomic evaluation. Results proved highly
trait-dependent and ranged from 1.39 (ESC C1), e.g. a
39% gain in accuracy with genetic evaluation compared
with genomic evaluation, to 0.56 (ESshape C2), e.g., a 44%
gain in accuracy with genomic evaluation compared with

Table 2 Ratio of relative accuracy from BLUP to ssGBLUP with
respect to CC traits for candidates

Trait Candidates Case 1 Case 2 Case 3

EW C1 1.05 1.05 1.05

C2 0.75 0.96 -

F 0.61 0.92 -

ESC C1 1.39 1.00 1.01

C2 0.78 0.92 -

F 0.88 0.97 -

ESS C1 0.87 0.89 1.01

C2 0.99 0.90 -

F 0.82 0.92 -

AH C1 0.90 0.93 1.02

C2 0.87 0.95 -

F 0.77 0.88 -

ESshape C1 0.73 0.87 1.01

C2 0.56 0.82 -

F 0.83 0.91 -

Traits: EW: Egg Weight; ESC: Eggshell Colour; ESS: Eggshell Strength; AH: Albumen
Height; ESshape: Eggshell shape index
Candidates: C1: male candidates from G1; C2: male candidates from G1 and G2; F:
female candidates from G2
Case 1: evaluation at birth; Case 2: evaluation at 60 weeks of age; Case 3: evaluation
at 140 weeks of age

genetic evaluation. There were strong disparities between
C1 results, with a mean of 0.99, and C2 results, with a
mean of 0.79. Overall, for C2, genomic evaluation allowed
for greater accuracy, which can be explained by the size of
the reference population. This advantage of genomic eval-
uation over genetic evaluation was also trait-dependent.
In the evaluations carried out with respect to ances-

try and contemporary relatives (case 2), the differences
between genetic evaluation and genomic evaluation were
less significant, with values ranging from 1.05 (EW C1) to
0.82 (ESshape C2), and a global mean of 0.93. Differences
between C1, with a mean of 0.95, and C2, with a mean of
0.91, were not as significant as they were in case 1, but still
existed. As in case 1, the use of ssGBLUP allowed for a
relative increase in accuracy.
Evaluations carried out in case 3 showed little difference

between BLUP and ssGBLUP, with a mean close to 1.

IC traits
As was the case with CC, accuracy estimations were dif-
ferent for each trait (Additional file 2), depending on the
evaluation scenario. The evolution of accuracy was also
linked to the amount of phenotypic information available.
Here again, the increase in relative accuracy with

genomic evaluation, compared to genetic evaluation, was
observed in case 1 and in case 2 (Table 3). This increase
was more significant for IC traits than it was for CC traits,

Table 3 Ratio of relative accuracy from BLUP to ssGBLUP with
respect to IC traits for candidates

Trait Candidates Case 1 Case 2 Case 3

EW C1 0.85 0.89 1.01

C2 0.65 0.78 -

F 0.77 1.01 -

ESC C1 0.84 0.99 1.01

C2 0.72 0.65 -

F 0.85 1.01 -

ESS C1 0.98 0.90 1.01

C2 0.95 0.80 -

F 0.69 1.01 -

AH C1 0.87 0.88 1.01

C2 0.73 0.77 -

F 0.79 1.00 -

ESshape C1 0.70 0.88 1.00

C2 0.95 0.88 -

F 0.83 1.01 -

Traits: EW: Egg Weight; ESC: Eggshell Colour; ESS: Eggshell Strength; AH: Albumen
Height; ESshape: Eggshell shape index
Candidates: C1: male candidates from G1; C2: male candidates from G1 and G2; F:
female candidates from G2
Case 1: evaluation at birth; Case 2: evaluation at 80 weeks of age; Case 3: evaluation
at 160 weeks of age
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both in case 1 (mean = 0.82) and case 2 (mean = 0.84). The
global gain in accuracy observed in genomic evaluations
carried out on C2, in comparison to those carried out on
C1, was similar to the gain noticed for CC traits.
Evaluations carried out in case 3 showed no differences

between BLUP and ssGBLUP, with a mean very close to 1,
as was the case for CC.

(G)EBVs biases and dispersion for male candidates
The bias statistics exhibit an expected value of 0 if eval-
uation is unbiased. In both CC and IC (Additional files 3
and 4), biases were low and most often negative, indi-
cating an underestimation of (G)EBVs when using partial
datasets. The biases increased as the amount of phe-
notypic information decreased, from approximately 0 in
case 3 to -0.11 in case 1. Biases were slightly higher with
genomic values, compared to genetic values, in any given
trait situation. The differences between traits or between
candidate population C1 and candidate population C2
varied, without any clear tendency observed.
Unbiased estimators are supposed to have a regression

slope equal to 1. Such unbiased estimators were observed
in case 3, with regression coefficients estimated between
0.94 and 1.00 in CC and between 0.97 and 1.04 in IC
(R-square values were approximately 0.98). This was the
case for both genetic evaluation and genomic evaluation
(Additional files 5 and 6).
In both CC and IC, the slopes decreased below 1 every

time the amount of phenotypic information decreased.
There was no significant difference between genetic eval-
uation and genomic evaluation: if slopes were closer to 1
when using genetic evaluation on CC traits, it was quite
the opposite in the case of IC traits. Conversely, dispersion
appeared to be significantly higher in CC than in IC: in the
case of IC, slopes remained above 0.7, with few exceptions,
even in case 1, while they often decreased below 0.7 in the
case of CC (R-square values were between 0.25 and 0.30
in case 1, and between 0.40 and 0.50 in case 2). The slopes
were also strongly linked to the evaluated traits, regardless
of the candidate population.

(G)EBVs relative accuracy for female candidates
CC traits
As was the case for males, accuracy estimations of
(G)EBVs for females were not homogeneous, depending
on the trait (Additional file 1): some traits were evaluated
with greater accuracy than others, and accuracy evolution
was not the same for all traits, depending on the scenario.
However, these differences were not the same as those
noticed with males. This could be a consequence of differ-
ent genetic determinism of traits in females, for example,
the impact of Quantitative Trait Loci carried by sexual
chromosomes (females are ZW, and males are ZZ). Rela-
tive accuracy of (G)EBVs was nonetheless generally higher

for females in comparison with males, especially in case 2
where females had their performances taken into account.
Furthermore, genomic values were always more accu-

rate than genetic values and, as with males, the gain
increased when the amount of phenotypic information
was low (Table 2). Indeed, evaluations carried out at
birth (case 1), showed a significant increase in accuracy
with ssGBLUP evaluation compared to BLUP evalua-
tion. The mean of ratios was close to 0.78, i.e. a 22%
gain in accuracy with genomic evaluation compared with
genetic evaluation. Regarding evaluations carried out in
case 2, where the performances of the females were taken
into account, this value was only 0.92, i.e., an 8% gain
in accuracy.

IC traits
Aswas the case for CC, correlations weremoderate (Addi-
tional file 2) and varied depending on the trait in case 1,
while they were always very high (with aminimum of 0.93)
in case 2, where the performances of the females were
taken into consideration.
In case 1, the increase in accuracy noticed with ssG-

BLUP evaluation in comparison with BLUP evaluation
(Table 3) was of the same order of magnitude as for
CC, with a mean of ratios close to 0.79. In case 2,
this value was between 1.00 and 1.01, depending on
the trait.

(G)EBVs biases and dispersion for female candidates

As was the case for males, and both in CC and IC
(Additional files 3 and 4), biases were low and often neg-
ative (with an exception in case 1 EW and ESC). This
indicated an underestimation of (G)EBVs when evalu-
ating partial datasets. A similar increase in biases was
observed for females when the amount of phenotypic
information decreased. Here again, no clear relation-
ship could be noticed between traits and biases, nor
between the type of evaluation carried out (genetic or
genomic) and biases, contrary to what was observed
with males.
Regarding the regression coefficients in both CC and

IC (Additional file 5 and 6: Tables), the results were
similar to those observed using male candidates (R-
square values were between 0.25 and 0.30 in case 1
and approximately 0.95 in case 2). Except for ESshape
in case 1, the regression coefficients decreased below
1 every time the amount of phenotypic information
decreased, i.e., results in case 2 were less biased than those
in case 1.
As was the case for males, there was no significant

difference between genetic evaluation and genomic eval-
uation, and dispersion seemed higher for CC than for
IC. Once again, slopes were strongly linked to the trait
evaluated in any given case.
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Discussion
Genetic parameters
Estimates of heritability, repeatability and genetic corre-
lations (Table 1) were in accordance with the literature
[4, 15]. Moderate to high heritability coefficients enable
significant expected genetic gains through selection with
respect to the five egg quality traits. Selection carried out
in order to increase eggshell strength should lead to an
increase in albumen height, which is favourable to a com-
bined selection of these traits. Increasing eggshell strength
should also lead to an increase in egg short length at a
given weight, which is unfavourable: e.g., the egg would be
less ovoid. Finally, genetic correlations of eggshell colour
to other traits are negligible, with the exception of eggshell
strength in IC.

Relevance of genomic evaluation for male candidates
In case 1 and in case 2, the results generally highlighted a
greater accuracy of the evaluation of male candidates with
ssGBLUP than with BLUP, in any given scenario, and par-
ticularly regarding IC traits. The difference between CC
results and IC results can be explained by the nature of
the data: indeed, IC data, referring to the hen itself and
not just to the full sisters, allowed for the construction of
a more accurate evaluation model. Otherwise, the results
obtained in case 3 showed that the information about the
grand-daughters had little impact on the evaluation. The
fact of not using the performances of the grand-daughters
does not seem to have any direct negative impact on
evaluation accuracy.
The results observed in scenarios using C2 candi-

dates tend to confirm those obtained using C1 candi-
dates, and sometimes even amplified them. The difference
between C1 results and C2 results could be explained
by the increase in the size of the reference popula-
tion, which went from 3 batches for C1 to 5 batches
for C2, still with the same number of candidates. This
increase in the size of the reference population had an
impact on evaluation, with more candidate haplotypes
represented in the reference population, as shown by
Rabier et al. [9].

Relevance of genomic evaluation for female candidates
The differences between traits, and the relationship
between phenotypic information and accuracy noticed
with males were also observed with females. Genomic
evaluation provided more accurate evaluations than
genetic evaluation, except for case 2, where IC traits were
used. GEBV accuracy was capped at approximately 0.70
in CC, while it approached 1 in IC. This difference was
because in CC, phenotypes are not related to a single bird,
but to a cage of full sisters, which means that instead
of being performed on the female, the evaluation was
performed on its family.

Evaluations performed on a candidate population of
females in IC (case 2) showed the relative accuracy of
(G)EBV, which came close to 1. This result was because
the performances of the females were taken into account
for the evaluation: the addition of genomic information
did not increase the gain in accuracy. Furthermore, as
opposed to male candidates, females had very few daugh-
ters with performances: the lack of information about the
performances of the daughters had little impact on the
estimation of the value of the females.

Towards the use of genomic evaluation of egg quality traits
In both CC and IC, the reliability of genetic evaluation
or of genomic evaluation varied greatly depending on the
trait. This heterogeneity in the impact on the evaluation
can be explained by the differences found in the genetic
architecture of the traits [16]. Indeed, when a trait is influ-
enced by few QTLs with large effects, it would be poorly
predicted with ssGBLUP, which assumes a common vari-
ance for all SNP effects. Moreover, a trait may be more
or less influenced by non-additive effects, i.e., dominance
and epistasis, which were not taken into account in the
present study.
With regard to the comparison between genomic eval-

uation and genetic evaluation, with the same amount of
phenotypic information used, genomic evaluation proved
more accurate than genetic evaluation most of the time.
As expected, the increase in accuracy of genomic eval-
uation was greater when phenotypic information was
restricted.
Regarding the size of the reference population, it was

observed that adding a generation, from C1 to C2, had
an effect on the evaluation, as Weng et al. (2016) [13]
showed. Augmentation of the reference population from 1
to 2 generations increased evaluation accuracy, especially
when there was little phenotypic information available.
These results are very interesting for the poultry indus-

try. Indeed, genomic evaluation and selection of males
at birth would allow for their use at their sexual matu-
rity, i.e., 6 months of age. For CC traits, there would
be a significant loss in evaluation accuracy, although
the loss would remain acceptable for IC. Depending
on the weight of each trait in the breeding goal, this
strategy would allow for a significant genetic gain for
the global objective through an increment in selection
pressure, i.e., it would be feasible to increase the num-
ber of male candidates for selection from 200 to 2000
and to reduce the generation interval from 18 months
to 6 months.
The genomic evaluation and selection of females at birth

would also allow for their use at their sexual maturity, i.e.,
6 months of age. However, our results highlighted the fact
that, for females, switching from selection at 18 months of
age to selection at birth would result in a significant loss
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in evaluation accuracy. Moreover, in the case of females,
selection pressure should not be significantly increased.

Conclusions
Our results indicate that it seems advantageous to move
from genetic selection at 18 months of age to genomic
selection at birth (2 weeks in practice: the time to
obtain genotypes and to calculate GEBVs), at least with
respect to egg quality traits and as far as males are
concerned. This strategy must be studied in greater
detail for females in order to assess whether the imple-
mentation of genomic evaluation at birth would be an
interesting option.

Methods
Animals
For the purpose of this study, we have used the data of
a pure line of Rhode Island layers selected by the breed-
ing company Novogen (Plédran, France). The hens were
hatched in 12 batches, born between 2008 and 2015,
which corresponds to four generations (G0 to G3, Fig. 1),
with three successive hatches per generation spaced 30
weeks apart. The genealogical information of all of the
birds was recorded in the pedigree file, which concerned
2273 breeders: 514 sires and 1759 dams.
In each hatch, chicks were bred in a brooding area

until the age of 18 weeks, and then transferred to collec-
tive cages of five full sisters for females (2997 collective
cages) and to individual cages for males (200 males out of
2000 chicks were kept for the selection). Egg quality was
recorded twice during this period, at 30 and 50 weeks of
age. This step allowed for the makeup of our first pheno-
typic dataset, referred to as CC for collective cages, with a
total of 14985 hens and 27915 eggs measured.
Then, at 60 weeks of age, a genetic evaluation was per-

formed as a first selection, and 150 males and 650 hens
were transferred to individual cages until the end of their

careers at the age of 80 weeks. Egg quality was mea-
sured on a weekly basis. A total of 7982 hens, with 74976
performances, were concerned. This step allowed for the
makeup of our second phenotypic dataset, referred to as
IC for individual cages.
At the end of their careers, animals were slaughtered in

poultry slaughterhouse.

Genotypes
In this population, 2374 birds were genotyped using
the 600K Affymetrix® Axiom® HD genotyping array [17].
Blood samples were collected from the brachial veins of
the animals and DNA was extracted. For the first two
generations, all male candidates were genotyped by Ark-
Genomics (Edinburgh, UK) during the research project
UtopIGe [16]. From the G2 generation onward, male
and female reproducers were genotyped at the high-
throughput genotyping platform Gentyane (Clermont-
Ferrand, France).
Each animal was genotyped for 580961 SNP markers.

According to the fifth annotation release of the Gallus
gallus genome [18], these SNPs were distributed over
macro-chromosomes (1 to 5), intermediate chromosomes
(6 to 10), micro-chromosomes (11 to 28 and 33), one link-
age group (LGE64), two sexual chromosomes Z and W,
and a group of 3724 SNPs with unknown locations.
Genotypes were filtered through four successive steps:

individuals with a call rate <95% were removed (0 ani-
mals excluded), SNPs with a MAF <0.05 were removed
(258772 SNPs), SNPs with a call rate <95% were removed
(7549 SNPs), and SNPs whose genotype frequencies devi-
ated significantly from the Hardy-Weinberg equilibrium
(P< 10−4) were removed (12538 SNPs). Animals showing
pedigree incompatibilities were also removed (12 indi-
viduals excluded). Thus, 302102 SNPs and a total of
1214 genotyped males and 1148 genotyped females were
retained for the study.

Fig. 1 Population structure
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Traits
In this paper, traits are named according to Animal Trait
Ontology for Livestock [19]. Five egg quality traits related
to eggshell quality and internal egg quality were studied:
egg weight (EW), eggshell colour (ESC), eggshell strength
(ESS), albumen height (AH) and eggshell shape index
(ESshape). Summary statistics of the traits are provided in
Table 4.

Trait measurements
At 30 and 50 weeks of age for CC, and once a week for IC,
the eggs produced on the farm were collected and quality
traits were measured by the company Zootests (Ploufra-
gan, France). The first step consisted in measuring egg
short length (SLE in mm) and EW (in g), before calcu-
lating ESshape as follows: ESshape = SLE/10

(EW/10)1/3 . Then,
eggshell colour was measured using aMinolta chromame-
ter (Nieuwegein, The Netherlands) and three traits were
recorded: redness of eggshell a*, yellowness of eggshell b*
and lightness of eggshell L*. Eggshell colour was then cal-
culated as follows: ESC = 100−(L∗−a∗−b∗). Third, shell
strength was measured using a compression instrument
to evaluate the static stiffness of the shell. Eggs were com-
pressed between two flat plates moving at constant speed.
ESS is the maximum force recorded before eggshell frac-
ture (in N, multiplied by 100). Finally, the egg was broken
and AH (in mm) was measured using a tripod.
Equations for ESC and ESshape were those used by

Novogen for egg quality control.

Choice of environmental effects to introduce into themodel
and elimination of outliers
For each trait, egg measurements were adjusted for envi-
ronmental effects using the SASő 9.4 GLMprocedure. The

objective was to check which environmental conditions
had significant effects on the traits and to remove outliers.
The environmental effects tested were the hatch, the cage
location in the poultry house during hatching, i.e., the bat-
tery and the cage location along the battery, the waiting
time between sampling and egg measurement and the age
of the hen.
All of these environmental effects were below the sig-

nificance level (P < 0.05), which means that they could
be retained in the model of analysis. Raw data were then
adjusted using the estimates of all of these effects, and out-
liers were deleted. The values presenting a deviation from
the sire family mean of greater than 5 phenotypic standard
deviations (0.4% of the CC performances and 0.01% of the
IC performances) were considered as outliers.
Ultimately, a total of more than 25500 records for

CC and more than 65800 records for IC were retained
(Table 4). All distributions of adjusted phenotypes were
symmetrical (data not shown).

Genetic and genomic evaluations
Performances were centered (by subtracting the general
mean) and standardized (by dividing by the standard
deviation) before evaluation. Multi-trait evaluations were
performed for the five traits using BLUP (EBV) and single-
step GBLUP (GEBV) methodologies [20, 21]. BLUP was
used as the reference method for genetic evaluations. ssG-
BLUP was used because a majority of our phenotypes
came from non-genotyped birds (13837 hens were phe-
notyped, but not genotyped, of 14985 total hens), and
this method allows those data to be accounted for in our
evaluation. Before EBVs and GEBVs estimation, variance-
covariance matrices were estimated using REML for both
BLUP and ssGBLUP.

Table 4 Summary statistics on phenotypic data

Traits EW (g) ESC (withoutunits) ESS (N ∗ 100) AH (mm) ESshape (mm.g−1)

Collective Cages dataset

Number of records 27915 27932 25578 26447 25538

Mean 59.9 81.2 3785.3 5.5 1.1

Standard deviation 4.56 9.12 691.50 1.24 0.02

Min 41.00 35.36 870.00 1.10 1.04

Max 82.00 109.98 6620.00 11.70 1.17

Individual Cages dataset

Number of records 74976 73033 65890 72107 67308

Mean 60.0 78.4 3671.7 4.7 1.1

Standard deviation 4.79 9.82 741.73 1.28 0.02

Min 41.70 30.55 682.00 0.90 1.02

Max 82.80 109.29 7187.00 9.00 1.17

Traits: EW: Egg Weight; ESC: Eggshell Colour; ESS: Eggshell Strength; AH: Albumen Height; ESshape: Eggshell shape index
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To perform those evaluations, the BLUPF90 family of
programmes [22] was used. Variance-covariance matri-
ces were first estimated using REMLF90 to obtain a good
starting point for AIREMLF90. AIREMLF90 was then
used to validate these variance-covariance components
(the components have changed little between the two pro-
grammes) and estimate the standard errors of genetic
parameter estimates. EBVs and GEBVs were then esti-
mated using BLUPF90 [22].

Statistical model
The statistical model was the same for all of the traits and
took into account the fixed and covariable environmental
effects described before, plus the random genetic effects
of the animal. For CC evaluations, each egg measured was
associated with one cage of five full sisters, without know-
ing which hen laid which egg. As the measurements were
repeated twice in CC, each hen had the expectation of
two measured eggs, but it was not possible to take into
account the common environmental effects of the hen.
An “egg-animal” model, without common environmental
effects, provided slightlymore accurate (G)EBV than a sire
model (data not shown). The inclusion of a “cage” ran-
dom effect was also tested (instead of the fixed effects,
which described the geolocation in the poultry building).
The estimation of this variance-covariance component
was very low, but the computation time was significantly
higher with this model. The “egg-animal” model was then
retained, and the heritability estimation was calculated
as the ratio between the animal variance and the sum of
animal and residual variances. Conversely, for IC evalua-
tions, several measurements were available for each hen,
and random common environmental effects of the hen
were taken into account in the model. The heritability
coefficient was therefore estimated as the ratio between

the animal variance and the sum of animal, common
environmental and residual variances, and the repeata-
bility coefficient was considered as the ratio between the
sum of animal and common environmental variances and
the sum of animal, common environmental and residual
variances.

Candidate populations
To assess the relevance of genetic evaluation and of
genomic evaluation, the statistical properties (described
below) of estimated breeding values, EBVs and GEBVs, of
selection candidates were used.
A male candidate must have a genotype and have

progeny tested. Two male candidate populations were
considered: C1 and C2 (Fig. 2). In both, the number of
sires in IC was smaller than in CC. This is due to the selec-
tion being carried out before moving them from CC to
IC and to the fact that in IC, only sires having at least 8
daughters with performances were used.
The first male candidate population (C1) comprised

birds from generation G1 that had daughters (G2) and
grand-daughters (G3) with performances. This group was
made up of 174 sires in CC and 78 sires in IC. A second
male candidate population (C2) was considered in order
to increase the reference population, therefore changing
from three hatches for C1 to five hatches for C2, i.e., it
comprised birds from the last hatch of G1 and the two first
hatches of G2 (which was the limit to have male progeny
with performances), which led to a total of 175 sires in CC
and 93 in IC.
In addition to these male populations, a female can-

didate population (F) was formed using genotyped hens
from G2 (Fig. 2). This group comprised 442 females in CC
which were thenmoved to IC. The difference between this
population and the male population was that IC females

Fig. 2 Candidate populations
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had performances available for evaluation and had few
daughters (between 0 and 19 daughters/hen; 1.6 daugh-
ters/hen on average). As opposed to males, females were
genotyped starting from G2, which means that it was not
possible to have two female candidate populations.

Reliability of prediction
To assess the reliability of genetic evaluation and genomic
evaluation, the estimated breeding values, EBVs and
GEBVs, had to be compared to the true breeding val-
ues (TBVs) of candidates. However, TBV is never known
when working with a real dataset. Moreover, it could not
be approximated using Daughter Yield Deviation (DYD)
[23], since our candidates had very few offspring. There-
fore, to estimate the accuracy and bias of prediction of our
evaluations, the LR method [24] was used.
The LR method uses correlation between complete and

partial datasets to estimate the accuracy, since the amount
of change expected in consecutive genetic evaluations
was described as a function of their respective accuracies
[25]. This method completes cross-validation approaches
with semiparametric elements, based on the mixed model
equations, to estimate the “population” accuracy. Popula-
tion accuracy is relevant to compare the predictive ability
of models and to maximize genetic progress.
The LR method relies on three statistics to estimate the

accuracy and biases of an evaluation:

• The correlation between (G)EBVs from complete and
partial evaluations to estimate relative accuracy

• The difference of means between (G)EBVs from
complete and partial evaluations to estimate biases

• The slope of the linear regression of (G)EBVs from
complete evaluation on (G)EBVs from partial
evaluation to estimate the over- or underdispersion
of estimates

To compare genetic evaluation and genomic evaluation
using the same amount of data, a fourth statistic was used:
the ratio between the relative accuracy of EBVs and the
relative accuracy of GEBVs. This statistic allows quantifi-
cation of the increase in accuracy expected when moving
from genetic evaluation to genomic evaluation.

Application to data
All available pedigrees, phenotypes, and genotypes for
GEBV estimation, from G0 to G3, constitute the complete
dataset. Two cases of partial datasets were studied based
on the amount of phenotypic information available when
the evaluation was carried out:

• Case 1: The evaluation was carried out at birth of the
candidates without considering the performances of
their contemporary relatives nor the performances of
the candidates, in the case of females. The evaluated

population was limited to the candidates and their
ancestors: all individuals had pedigree information;
female ancestors had phenotypes; male ancestors and
male (or female) candidates had genotypes for GEBV
estimation.

• Case 2: The evaluation was carried out at 60 weeks of
age for CC and at 80 weeks of age for IC, without
considering the performances of the progeny of
candidates. This case corresponds to the scheme
classically used in layer selection. The evaluated
population included the candidates, their
contemporary relatives and their ancestors: all
individuals had pedigree information; female
ancestors, female contemporary relatives or
candidates had phenotypes; male ancestors had
genotypes for GEBV estimation; candidates, male or
female, had genotypes for GEBV estimation.

Moreover, for C1 male candidates, the potential gain
was also assessed taking into account the performances
of their grand-daughters. In that case, the pedigrees and
phenotypes of G3 hens were removed from the complete
dataset to obtain a partial dataset (case 3).
The differences in significativity between relative accu-

racies, e.g., correlations as defined above, were assessed
using the Hotelling-Williams test [26]. This test is used to
compare two dependent correlations that share a common
variable. The null hypothesis means that the two com-
pared correlations are equal. The test statistics under the
null hypothesis follow the Student’s t-distribution at n-3
degrees of freedom, with n being the number of observa-
tions. Observed correlations were compared two-by-two
for EBVs and GEBVs at a significance threshold of 5%.
In layers, candidates are compared within a hatch: com-

parisons are never made between individuals from differ-
ent generations for the purposes of selection. However,
biases and dispersion statistics were presented here to
illustrate the evolution of quality of evaluation according
to cases 1 to 3.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12863-020-0820-2.

Additional file 1: Estimates of (G)EBVs relative accuracy in candidate
populations with respect to cC traits. Traits: EW: Egg Weight; ESC: Eggshell
Colour; ESS: Eggshell Strength; AH: Albumen Height; ESshape: Eggshell
shape index. Candidates: C1: male candidates from G1; C2: male candidates
from G1 and G2; F: female candidates from G2. Multi-trait evaluations were
performed for the five traits using BLUP (EBV) and ssGBLUP (GEBV)
methodologies. Case 1: evaluation at birth; Case 2: evaluation at 60 weeks
of age; Case 3: evaluation at 140 weeks of age. In parentheses are groups
determined by the Hotelling-Williams test at a confidence level of 95%.
Groups a, b and c are used when EBVs correlations are compared to other
EBVs correlations; d, e, f are used when GEBVs correlations are compared to
other GEBVs.
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Additional file 2: Estimates of (G)EBVs relative accuracy in candidate
populations with respect to iC traits. Traits: EW: Egg Weight; ESC: Eggshell
Colour; ESS: Eggshell Strength; AH: Albumen Height; ESshape: Eggshell
shape index. Candidates: C1: male candidates from G1; C2: male candidates
from G1 and G2; F: female candidates from G2. Multi-trait evaluations were
performed for the five traits using BLUP (EBV) and ssGBLUP (GEBV)
methodologies. Case 1: evaluation at birth; Case 2: evaluation at 80 weeks
of age; Case 3: evaluation at 160 weeks of age. In parentheses are groups
determined by the Hotelling-Williams test at a confidence level of 95%.
Groups a, b and c are used when EBVs correlations are compared to other
EBVs correlations; d, e, f are used when GEBVs correlations are compared to
other GEBVs.

Additional file 3: Bias of (G)EBVs in candidate populations with respect to
cC traits. Traits: EW: Egg Weight; ESC: Eggshell Colour; ESS: Eggshell
Strength; AH: Albumen Height; ESshape: Eggshell shape index. Candidates:
C1: male candidates from G1; C2: male candidates from G1 and G2; F:
female candidates from G2. Multi-trait evaluations were performed for the
five traits using BLUP (EBV) and ssGBLUP (GEBV) methodologies. Case 1:
evaluation at birth; Case 2: evaluation at 60 weeks of age; Case 3:
evaluation at 140 weeks of age

Additional file 4: Bias of (G)EBVs in candidate populations with respect to
iC traits. Traits: EW: Egg Weight; ESC: Eggshell Colour; ESS: Eggshell
Strength; AH: Albumen Height; ESshape: Eggshell shape index. Candidates:
C1: male candidates from G1; C2: male candidates from G1 and G2; F:
female candidates from G2. Multi-trait evaluations were performed for the
five traits using BLUP (EBV) and ssGBLUP (GEBV) methodologies. Case 1:
evaluation at birth; Case 2: evaluation at 80 weeks of age; Case 3:
evaluation at 160 weeks of age

Additional file 5: Slopes of regression for (G)EBVs in candidate
populations with respect to cC traits. Traits: EW: Egg Weight; ESC: Eggshell
Colour; ESS: Eggshell Strength; AH: Albumen Height; ESshape: Eggshell
shape index. Candidates: C1: male candidates from G1; C2: male candidates
from G1 and G2; F: female candidates from G2. Multi-trait evaluations were
performed for the five traits using BLUP (EBV) and ssGBLUP (GEBV)
methodologies. Case 1: evaluation at birth; Case 2: evaluation at 60 weeks
of age; Case 3: evaluation at 140 weeks of age.

Additional file 6: Slopes of regression for (G)EBVs in candidate
populations with respect to iC traits. Traits: EW: Egg Weight; ESC: Eggshell
Colour; ESS: Eggshell Strength; AH: Albumen Height; ESshape: Eggshell
shape index. Candidates: C1: male candidates from G1; C2: male candidates
from G1 and G2; F: female candidates from G2. Multi-trait evaluations were
performed for the five traits using BLUP (EBV) and ssGBLUP (GEBV)
methodologies. Case 1: evaluation at birth; Case 2: evaluation at 80 weeks
of age; Case 3: evaluation at 160 weeks of age.
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