
RESEARCH ARTICLE Open Access

Optimal reference genes for gene
expression analysis in polyploid of Cyprinus
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Abstract

Background: Reference genes are usually stably expressed in various cells and tissues. However, it was reported
that the expression of some reference genes may be distinct in different species. In this study, we intend to answer
whether the expression of reported traditional reference genes changes or not in the polyploid fish

Results: By retrieving the mRNA sequencing data of three different ploidy fish from the NCBI SRA database, we
selected 12 candidate reference genes, and examined their expression levels in the 10 tissues and in the four cell
lines of three different ploidy fish by real-time PCR. Then, the expression profiles of these 12 candidate reference
genes were systematically evaluated by using the software platforms: BestKeeper, NormFinder and geNorm.

Conclusion: The 28S ribosomal protein S5 gene (RPS5) and the ribosomal protein S18 gene (RPS18) are the most
suitable reference genes for the polyploid of Cyprinus carpio and Carassius auratus, demonstrated by both of the
tissues and the cultured cells.
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Background
Reference genes, generally known as the house-
keeping genes, are a type of genes not only stably
expressed in various cells but also less affected by
external factors [1, 2]. A number of reference genes
have been widely used in molecular biology research,
such as the beta-actin (β-actin), beta-tubulin (β-tubulin),
elongation factor 1-alpha (EF1-α), Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), ribosomal protein
S18 (RPS18), etc. [3–7]. However, it was reported that the
expression of some traditional reference genes could
change in varying degrees in various species or under

different experimental conditions [8–11]. For example, β-
actin was the most common reference gene, and was
stablely expressed in carrot (Daucus carota) under the abi-
otic stress and hormone stimuli, but it is not true in parsley
even under the same experimental conditions [12, 13].
Similarly, the expression of β-tubulin was not stable during
fruit development in cherry (Cerasus pseudocerasus) [14],
and in different tissues of Siniperca chuatsie [15]. Although
GAPDH was one of the most stable reference genes in the
context of whitefly Bemisia tabaci (Asia I) thermal stress
[10], Zhang et al found that it was distinctly expressed in
different tissues of Spanish mackerel [16].
Polyploids are the organisms containing three or more

complete sets of chromosomes [17]. They are wide-
spread in plants [18–23], and around two hundreds of
polyploids have been reported in insect and vertebrate
[24–28]. Moreover, the polyploidy can be also found in
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cells and tissues of diploid organisms, such as muscle
tissues, megakaryocytes, and hepatocytes [29, 30]. Poly-
ploidization leads to chromosome doubling and genome
structural variation [31–33]. Adams et al. described
some significant changes in reference gene expression
and the silencing of some homologous genes in different
organs of heteropolyploid cotton [34]. We reasoned that
polyploidy might affect the stable expression of conven-
tional reference genes. Therefore, to reduce errors and
ensure the authenticity and reliability of data, it is neces-
sary to choose the most appropriate reference genes for
different ploidy cells or organisms.
The tetraploid hybrid of C. auratus (♀) ×C. carpio L.

(♂), and the triploid hybrid of C. auratus (♀) × tetra-
ploid hybrid (♂), generated by hybridization of Carassius
auratus (C. auratus) and Cyprinus carpio (C. carpio),
have important theoretical significance in polyploid ani-
mal research and remarkable economic benefits [35–37].
To investigate whether there were any changes in the
expression of reference genes in varied ploidy fish, we
obtained mRNA sequencing (seq) data of the diploid,
triploid, and tetraploid fish from the NCBI SRA database
[38–41], then chosed 12 candidate reference genes, and
examined their expression in 10 tissues and four cell
lines of three different ploidy fish by real-time PCR.
Finally, we identified the most suitable reference genes
for polyploid fish using stability evaluation tools, such as
the BestKeeper, NormFinder and geNorm.

Results
Validation of reference genes by transcriptome analysis
We chosed 12 commonly used reference genes from our
literature search. We retrieved the data of twelve candi-
date genes shown in Table 1 from the transcriptome.
We assigned those genes with an adjusted P-value < 0.05
and |log2FoldChange| > 1.5 found by DE Seq as differen-
tially expressed [42, 43]. Fold change refers to the ratio
of expression difference between two samples. In the
polyploidy tissues, the |log2FoldChange| of β-actin
between the triploid hybrid (3 N) and the diploid C. aur-
atus (2 N) was greater than 1.5, and the P-value of B2M
was less than 0.05; while between the tetraploid hybrid
(JL4N) and the diploid C. auratus, the |log2FoldChange|
of RPL7, RPLP2, RPL13α, GAPDH were all greater than
1.5, and the P-values of RPS5, RPL7, RPL13α, EF1-α,
GAPDH were less than 0.05. In cultured cells, the |log2-
FoldChange| of candidate genes between the tetraploid
hybrid cultured fin cells and diploid C. auratus cultured
fin cells were all less than 1.5, the P values of RPS18,
RPLP2, RPL13α, B2M were less than 0.05; The |log2-
FoldChange| of candidate genes between SP4N cells
(SP4N) and diploid C. auratus cultured fin cells were all
less than 1.5, the P-value of B2M was less than 0.05.
Based on the transcriptome data, we found that the

expression of some traditional reference genes was un-
stable in polyploidy, such as the β-actin.

Analysis of qPCR cycle threshold value
First, we confirmed the ploidy level and DNA content of
each sample by flow cytometry (Figure S1, S2). Then we
examined the expression of twelve candidate reference
genes in tissues and cultured cells of different ploidy fish
using Real-time quantitative PCR (qPCR). The qPCR
cycle threshold (Ct) values were used to represent the
level of mRNA transcription [44]. Based on the data of
qPCR (Figure S3, S4), the Ct values for some of the
selected reference genes varied significantly (Fig. 1). The
RPS5, RPS18, RPL7and EF1-α were highly expressed in
polyploidy tissues, while RPS18, RPL7,EF1-α and β-actin
exhibited high expression in cultured cells. These results
showed that in polyploid tissues, the expression of RPS5,
RPS18, and RPL7 was more stable than that of B2M and
GAPDH. On the other hand, in cultured cells of different
polyploid, the expression of EF1-α, RPS5 and RPS18 was
stable, while that of B2M and GAPDH was not.

Bestkeeper analysis
The Bestkeeper program was further used to validate the
relatively stable reference genes [5]. BestKeeper ranks
the reference genes according to the stability of gene
expression based on the two parameters: the standard
deviations (SD) and the coefficient of variance (CV) of
expression levels. The lower SD and CV values, the
higher stability [45]. Among the 10 different tissues of
tetraploid hybrid and triploid hybrid C. auratus, only the
SD value of RPS18 gene was less than 1, while the SD
values of the other 11 genes were all greater than 1, indi-
cating they were not suitable for the use of reference
gene. The order of expression stability from high to low
was RPS18, RPS5, RPL7, RPL13α, EF1-α, RPLP2, DDX5,
β-actin, β-tubulin, hprt1, GAPDH, and B2M in the 10
tissues of different polyploid fish (Table 2). In the cul-
tured cells, the SD values of β-actin, β-tubulin, GAPDH,
B2M were all higher than 1, suggesting they were not
ideal candidates of reference genes. The expression
stability ranking from high to low was EF1-α, RPS5,
RPS18, RPL7, DDX5, RPL13α, RPLP2, hprt1, β-actin, β-
tubulin, GAPDH and B2M (Table 2).

NormFinder analysis
The NormFinder software applies a mathematical model
to estimate the variation of the candidate reference
genes (intra- and inter-group expression variations) [46].
To determine stable reference genes, we analyzed the
data obtained from the qPCR using NormFinder [47].
As shown in Fig. 2, in the 10 tissues of different
polyploid fish, the ranking of expression stability from
high to low was RPLP2, RPS5, RPL7, RPS18, RPL13α,
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DDX5, EF1-α, β-actin, hprt1, β-tubulin, B2M, and GAPD
H. In the cultured cells of different polyploid, the rank-
ing of stability was, from high to low, RPS18, RPS5,
DDX5, RPL13α, RPL7, hprt1, EF1-α, RPLP2, β-actin, β-
tubulin, GAPDH, and B2M (Fig. 2).

GeNorm analysis
GeNorm calculates value M based on the pairwise vari-
ation between an individual gene and all other tested
candidate genes. The M value is inversely proportional
to the stability of particular reference genes. In general,
if the M value is less than 1.5, it can be used as an alter-
native reference gene [12]. The program can also deter-
mine the optimal number of reference genes by pairwise
difference analysis of normalized factors [45, 48]. As
shown in Fig. 3, in the 10 different tissues of diploid C.
auratus, triploid hybrid and tetraploid hybrid, the

expression stability in descending order was listed by
RPS5, RPS18, RPL7, RPLP2, RPL13α, β-actin, EF1-α,
DDX5, β-tubulin, hprt1 B2M and GAPDH. Their M
values were given by 0.183, 0.183, 0.936, 0.988, 1.048,
1.208, 1.290, 1.361, 1.455, 1.558, 2.159 and 2.655, re-
spectively In the cultured cells of C. auratus, triploid hy-
brid, tetraploid hybrid and SP4N cell line, the M values
of RPS5, RPS18, RPL7, RPLP2, RPL13α, β-actin, EF1-α,
DDX5, β-tubulin, hprt1, B2M, and GAPDH were 0.143,
0.143, 0.211, 0.520, 0.250, 0.684, 0.447, 0.281, 0.812,
0.350, 1.696, and 1.100, respectively (Fig. 3).
In addition, the pairwise variation V calculated by

geNorm was also used to determine the minimum num-
ber of the reference genes for optimal normalization: If
the Vn/Vn + 1 value was < 0.15, the number of optimal
reference genes was n, and if the Vn/Vn + 1 value was >
0.15, the optimal number of reference genes was n + 1
[10, 11]. As shown in Fig. 4, the Vn/(n + 1) values in the
polyploid tissues were all greater than 0.15, while those
of polyploid cultured cells, the V2/3 were less than 0.15.
The results suggested that two reference genes should
be combined for optimal normalization polyploid cul-
tured cells, while it was necessary to adjust the condi-
tions accordingly to determine the appropriate number
of reference genes.

Discussion
In this study, 12 traditional reference genes were se-
lected as candidate reference genes after literature search
[3–7], then subjected to transcriptome analysis. These
12 relatively stable candidate reference genes in poly-
ploid of Cyprinus carpio and Carassius auratus were
evaluated using BestKeeper, NormFinder and geNorm,
three reference gene stability analysis softwares that are
widely used in the reference gene selection in species such
as animals, micro-organisms and plants [45, 47–50]. For
the polyploid tissues, the top three stable reference genes

Fig. 1 The qPCR cycle threshold (Ct) values of candidate reference genes in tissues (Left) and cultured cells (Right) of different ploidy fish. The red
area represented the range of Ct value variation

Table 2 The expression stability of candidate reference genes in
tissues and cultured cells of different ploidy fish assessed by the
Bestkeeper software

Gene Tissues Cultured cells

SD CV Rank SD CV Rank

RPS5 1.06 6.24 2 0.38 2.19 2

RPS18 0.18 4.75 1 0.4 2.45 3

RPL7 1.15 6.58 3 0.44 2.73 4

RPLP2 1.3 5.7 6 0.78 3.5 7

RPL13α 1.23 6.61 4 0.57 3.15 6

EF1-α 1.3 7.85 5 0.3 1.9 1

DDX5 1.4 7.04 7 0.56 2.79 5

β-actin 1.54 9.24 8 1.46 9.58 9

β-tubulin 1.76 8.11 9 1.54 7.54 10

hprt1 1.87 8.22 10 0.8 3.77 8

B2M 4.83 20.71 12 3.49 16.19 12

GAPDH 3.91 18.34 11 2.05 6.95 11
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evaluated by BestKeeper were RPS18, RPS5 and RPL7,
those by NormFinder were RPLP2, RPS5 and RPL7, and
those by geNorm were RPS5, RPS18 and RPL7. As for the
polyploid cultured cells in vitro, the top three stable refer-
ence genes evaluated by BestKeeper were EF1-α, RPS5
and RPS18, those by NormFinder were RPS18, RPS5 and
RPLP2, and those by geNorm were RPS5, RPS18 and
RPL7. Our data showed that the expression levels of RPS5
and RPS18 were relatively stable not only in the polyploid
fish tissues in vivo but also in the cultured cells in vitro.
For some reasons, such as extreme conservativation of

evolution, highly and stably expression in different types
of cells and tissues, several components of ribosomes
were selected as reference genes [47, 51–55]. In
eukaryotic cells, the ribosomal RNA (rRNA) genes exist
in multiple copies, however, without poly (A) tail, rRNA
could not be reversely transcribed in cDNA synthesis
using oligo (dT) as a primer [53, 54, 56]. Both RPS5 and
RPS18 are the ribosomal protein genes, which were
highly expressed in the eukaryotic organisms [52]. The
RPS5 was closely related to transcription elongation

factor-3 and DNA connection protein II, and its expres-
sion was highly conserved [47, 57–63]. RPS18, a highly
conserved member of the nuclear protein S13 superfam-
ily, is one of the constituent proteins of the eukaryotic
ribosomal 40S subunit, and stably expressed in different
tissues [34, 64–68]. Therefore, with the high expression
level and best stability, we selected RPS5 and RPS18 as
the suitable reference genes in the polyploid of Cyprinus
carpio and Carassius auratus.
Moreover, in line with the settings of the geNorm

software, in polyploid cultured cells, the pairwise vari-
ation analysis showed that the V2/3 < 0.15, but all Vn/
Vn + 1 values were greater than 0.15 in the polyploid
tissues. Cao et al encountered a similar problem in the
selection of reference genes of Ruditapes philippinarum
[69, 70]. It indicated that the two reference genes
were sufficient for the gene expression normalization
of the polyploid cultured cells, but it was necessary to
adjust the conditions accordingly to determine an ap-
propriate number of the reference genes in the poly-
ploid tissues.

Fig. 2 The expression stability of candidate reference genes in the tissues (Left) and cultured cells (Right) of different ploidy fish assessed by the
NormFinder software

Fig. 3 The stability of candidate reference genes in tissues (Left) and cultured cells (Right) of different ploidy fish determined by GeNorm analysis
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Conclusion
In this study, we systematically evaluated the expression
profiles of 12 selected candidate reference genes of the
polyploid fish using BestKeeper, NormFinder and geN-
orm, and determined a comprehensive ranking of these
genes. We confirmed that RPS5 and RPS18 were the
most stable reference genes across different tissues and
cultured cells for polyploid of Cyprinus carpio and
Carassius auratus. These reference genes identified in
this study will become useful tools for the molecular
biology of polyploid fish.

Methods
Ethics statement
All sampling procedures were conducted in accordance
with the standards and ethical guidelines established by
the Animal Ethical Review Committee, Hunan Normal
University, Changsha, China.

Sample preparation
Fish, including C.auratus (2 N), tetraploid hybrid (JL4N)
of C.auratus (♀) ×C. carpio L.(♂), and triploid hybrid (3
N) of C. auratus (♀) × tetraploid hybrid (♂), were bred
and fed in pools under the same water temperature,
dissolved oxygen content, and for aging conditions at the
Engineering Research Center of Polyploid Fish Breeding
and Reproduction of the State EducationMinistry, China.
Three individuals (1-year-old) of each species were
collected for further study. Under aseptic conditions, ten
tissues, e.g. liver, kidney, heart, spleen, brain, caudal fin,
skin, muscle, intestine and gonad, were dissected from
above three different ploidy fish, respectively.
Cultured cells were obtained from the caudal fin of C.

auratus, triploid hybrid, and tetraploid hybrid. The
SP4N cell line (SP4N) was obtained from C. auratus
caudal fin cells induced by the c-Jun N-terminal kinase

inhibitor SP600125 in vitro [39]. The cells were cultured
in the Dulbecco’s modified Eagles medium (DMEM;
Sigma) supplemented with 100 U/ml penicillin, 100 μg/
ml streptomycin (Invitrogen, Carlsbad, CA, USA), 10%
fetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA),
0.1% 2-mercaptoethanol (2-ME, Invitrogen, Carlsbad, CA,
USA), 1 mM sodium pyruvate (Invitrogen, Carlsbad, CA,
USA), and 1mM nonessential amino acids (Invitrogen,
Carlsbad, CA, USA). Cells were grown in 5%(v/v) CO2 at
28 °C.

RNA isolation
Total RNA was isolated from tissues and culture cells of
three different ploidy fish, using Trizol Reagent (Invitro-
gen, USA) following manufacturer protocols [71]. The
quality of total RNA was detected by 1% agarose gel
electrophoresis and nucleic acid analyzer [5].

Transcriptome data obtaining and analysis
We obtained mRNA sequencing (RNAseq) data of the liver
tissue of diploid C. auratus, triploid hybrid and tetraploid
hybrid from the NCBI Sequence Read Archive (SRA) data-
base (Accession numbers: diploid C. auratus: SRR538839,
SRR542431; triploid hybrid: SRR9185090, SRR9203584;
tetraploid hybrid: SRR1535135, SRR1536195;) [38, 39]. And
the RNAseq data of the cultured cells of diploid C. auratus,
tetraploid hybrid, and SP4N cells also were obtained from
the NCBI SRA database (Accession number: cultured cells
of diploid C. auratus: SRR7640868, SRR7640869; cultured
cells of tetraploid hybrid: SRR7640866, SRR7640867; SP4N
cells: SRR9964682, SRR9964683) [40, 41].
All accessions and biological replicates were normal-

ized using the method of DESeq2 [71], and three
biological replicates were used in each analysis. The
negative effects of background noise were eliminated by
removing those low read counts of transcripts (≤2) from

Fig. 4 Optimal number of reference genes for normalization of gene expression in tissues (Left) and cultured cells (Right). The geNorm was used
to calculate the pairwise variation (Vn/Vn + 1, the “n” represents the number of reference genes)
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the datasets. The values of fragments per kilobase of
transcript per million mapped reads (FPKM) were used
to analyze differential expression (DE) between diploid
and triploid or diploid and tetraploid [72, 73].
The FPKM threshold 0.1 was set to determine whether

the gene was expressed, where transcripts with FPKM
≤0.1 were defined as no expression [74]. The higher the
FPKM value, the stronger the gene expression. For
polyploidy tissues, we used the transcriptome of diploid
C. auratus liver as a reference, calculated the log2Fold-
Change between triploid hybrid and diploid, and log2-
FoldChange between tetraploid hybrid and diploid. For
polyploid cultured cells, the transcriptome of diploid C.
auratus cultured fin cell was used as a reference, we cal-
culated the log2FoldChange between tetraploid hybrid
cultured fin cells and diploid cultured fin cells, and log2-
FoldChange between SP4N cells and diploid cultured fin
cells. The difference in gene expression was evaluated
according to log2Fold Change [62], which was calculated
based on the FPKM value. As to the transcriptome data
constructed in our laboratory, we cacluated the FPKM
values of some common reference genes and performed
multiple sequence alignment on these genes. Alignments
of multiple sequences were used to ensure that the
sequence similarity of the ortholog genes in different
ploidy fish was above 99%.

Real-time quantitative PCR (qPCR)
The reference genes were identified by bioinformatics
analysis. The qPCR primers were designed using the
Olig7 software and listed in Table S2. The cDNAs were
synthesized according to the manual of the TaKaRa
reverse transcription kit. Genomic DNA was first
eliminated from the RNA. For reverse transcription, 1 μg
RNA was used for each reaction. For PCR, the five-fold
dilution series of template cDNA was used. Each
biological replicate was run in triplicate on a Bio-Rad
CFX-96 system. Each 10 μL qPCR reaction mixture
contains 1μLof cDNA (0.01 μg RNA), 5 μL of Brilliant
SYBR Green QPCR Master Mix and primer pair.
SetNTC (No template control) negative controls for
each sample, negative control reactions were included in
all assays by substituting water for template DNA to
confirm that no DNA contamination was present in
RNA samples [10, 51, 52]. Each thermal cycle consisted
of an initial polymerase activation step at for 50 °C for 2
min and 95 °C for 10 min, followed by 40 cycles at 95 °C
for 15 s, at 60 °C for 1 min. Afterwards, melting curves
were generated to confirm a single gene-specific peak
and to detect primer dimer formation by heating the
samples stepwise from 60 °C to 95 °C while continuously
monitoring the fluorescence. For each sample, the qPCR
analysis was performed on three biological replicates.
The specificity of all qPCR was confirmed by melting

curve analysis of amplification products (Figure S5) [75].
To evaluate the expression levels of all candidate refer-
ences across different tissues and cells of different ploidy
fish, comparative analysis of all acquired Ct values for
each gene, lower Ct values represents higher mRNA
transcript levels [14].

Evaluation of gene expression stability
The Ct values calculated from qPCR data were used for
further analyses. The stability of reference genes was
evaluated by the Bestkeeper, NormFinder and geNorm
[47, 49, 76]. The BestKeeper program is an excel spread-
sheet with built-in formulas, the input CP value is the
average Ct value obtained from each biological replicate
in qPCR. For NormFinder and geNorm, the quantifica-
tion cycle (Ct) values were transformed into relative
quantities using the formula 2-△Ct, whereΔCt = each
corresponding Ct value-the minimum Ct value. Norm-
Finder applies a mathematical model to estimate the
variation of the candidate reference genes. GeNorm cal-
culated the expression stability measurement (M-value),
which was based on the average variation in the expres-
sion level of a particular gene against that of all the
control genes [14]. This programme also evaluates the
pairwise variation (Vn/Vn + 1) to determine the optimal
number of genes required for accurate normalization of
qPCR data. Finally, a comprehensive analysis and com-
parison of the results of three software to evaluate the
stability of candidate reference genes in different tissues
and cells of different ploidy fish.
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