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Abstract

Background: RNA-sequencing was performed to explore the bovine liver transcriptomes of Holstein cows to
detect potential functional genes related to lactation and milk composition traits in dairy cattle. The bovine
transcriptomes of the nine liver samples from three Holstein cows during dry period (50-d prepartum), early
lactation (10-d postpartum), and peak of lactation (60-d postpartum) were sequenced using the Illumina HiSeq 2500
platform.

Results: A total of 204, 147 and 81 differentially expressed genes (DEGs, p < 0.05, false discovery rate q < 0.05) were
detected in early lactation vs. dry period, peak of lactation vs. dry period, and peak of lactation vs. early lactation
comparison groups, respectively. Gene ontology and KEGG pathway analysis showed that these DEGs were
significantly enriched in specific biological processes related to metabolic and biosynthetic and signaling pathways
of PPAR, AMPK and p53 (p < 0.05). Ten genes were identified as promising candidates affecting milk yield, milk
protein and fat traits in dairy cattle by using an integrated analysis of differential gene expression, previously
reported quantitative trait loci (QTL), data from genome-wide association studies (GWAS), and biological function
information. These genes were APOC2, PPP1R3B, PKLR, ODC1, DUSP1, LMNA, GALE, ANGPTL4, LPIN1 and CDKN1A.

Conclusion: This study explored the complexity of the liver transcriptome across three lactation periods in dairy
cattle by performing RNA sequencing. Integrated analysis of DEGs and reported QTL and GWAS data allowed us to
find ten key candidate genes influencing milk production traits.
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Background
In dairy cattle, milk yield and compositions are the most
important economical traits that are typical quantitative
characteristics controlled by multiple QTLs and poly-
genes simultaneously. Detection of key functional genes
or causal variations on milk production traits could pro-
vide valuable molecular information for marker-assisted
selection or genomic selection in dairy cattle thereby
greatly shortening generation interval and increase the
rate of genetic gain through pre-selecting young candi-
date bulls prior to progeny testing. In the past several
decades, extensive quantitative trait locus (QTL) map-
ping, candidate genes analysis, and genome-wide associ-
ation study (GWAS) have been implemented to identify
QTLs, genes and mutations with large effects on the
milk traits of dairy cows [1–4]. As of December 29,
2019, a large number of QTLs and genetic associations
have been detected with 5093, 19,782, and 22,418 loci
for milk yield, milk protein and milk fat, respectively
(http://www.animalgenome.org/cgi-bin/QTLdb/). How-
ever, only a few studies, including DGAT1 (Diacylglyc-
erol O-Acyltransferase 1), GHR (Growth Hormone
Receptor), and ABCG2 (ATP Binding Cassette Subfamily
G Member 2) gene have been confirmed as major genes
for milk production traits in dairy cattle [2, 5, 6].
Beyond marker-QTL linkage analysis (LA) and/or link-

age disequilibrium (LD) and GWAS, with the dramatic-
ally cost reductions and rapid development of next
generation sequencing, RNA-sequencing (RNA-Seq) has
become a commonly used approach to identify candidate
genes for complex traits in human and domestic animals
in recent years. Many bovine studies utilizing RNA-Seq
have been conducted [7], including mammary tissue [8],
embryos [9], leukocytes [10], different disease conditions
[11], or factors with various nutrition traits [12]. Our
previous RNA-Seq studies with mammary gland tissues
from lactating Holstein cows with extremely high and
low milk protein and fat percentages and from cows in
non-lactation and peak of lactation identified 17 differ-
entially expressed genes (DEGs) as promising candidates
for milk composition traits [8, 13]. However, only a lim-
ited number of studies on transcriptional profiles in bo-
vine liver have been reported until now [12, 14].
Actually, besides mammary gland epithelium, liver also

plays critical roles in milk synthesis during lactation as
the most important organ where the metabolism of glu-
coneogenesis, lipid, amino acids and other substances
takes place in dairy cows [15–17]. Gluconeogenesis in
liver is vital to meet glucose requirements for dairy cows
in perinatal period. Dorland et al. (2009) presented the
liver, as a crucial role in considerable metabolic adapta-
tion, supported pregnancy and lactation through coord-
ination and interconversion of nutrients [17], especially
during the period of transition from late gestation to

early lactation. A few genes in bovine liver involved in
glucose and lipid metabolism had been detected via bo-
vine gene microarrays [18]. Smith et al. (1998) reported
that cholesterol content was increased in liver to meet li-
poproteins synthesis and secretion, and then provided
the mammary gland with cholesterol and triglycerides
after parturition [19]. The mRNA expression of pyruvate
carboxylase (PC) increased in medium and high liver fat
concentration (LFC) groups than that in the low-LFC
group, suggesting expressions of more genes related to
gluconeogenesis than genes for lipid metabolism in early
lactation [20]. Bu et al. (2017) compared the gene ex-
pression profiles between liver and mammary tissues
during lactation in cows and found that liver expressed a
larger number of metabolic genes, especially related to
lipid, while mammary gland had more genes with
regards to protein synthesis and secretion, proliferation/
differentiation [21]. Our previous study detected some
differentially expressed mRNAs, miRNAs and lncRNAs
among different lactation stages in liver thereby pre-
dicted the competing endogenous RNAs (ceRNA) regu-
latory networks in Holstein cow [22].
In view of the important roles of liver in metabolism,

the objective of this study was to search for key func-
tional genes for milk production traits by performing
RNA sequencing of liver samples from dairy cows in
non-lactation and lactation. Here, we utilized liver bi-
opsy transcriptome data from three Holstein cows dur-
ing the dry period, early lactation and peak of lactation
obtained using RNA-Seq and identified ten promising
candidate genes for milk yield and milk compositions
(protein and fat) in Holstein. Our findings could provide
new insights into elucidation of the genetic basis for
milk traits and potential molecular information for gen-
omic selection in dairy cattle breeding.

Methods
Animals and liver tissue sample collection
Three healthy Chinese Holstein cows with similar body
weight, milk yield, and milk composition were selected
from 1300 Chinese Holstein cows fed in Baoding Hon-
gda Animal Husbandry Limited Company in Hebei
Province (Baoding, China) [22]. Liver biopsies were col-
lected on 50-d before parturition (dry period), 10-d after
parturition (early lactation) and 60-d after parturition
(peak of lactation) from each cow as described in detail
in our previous study [22]. As a result, a total of nine
samples were obtained. All protocols for collection of
the tissues of experimental individuals were reviewed
and approved by Animal Welfare Committee of Hebei
Agricultural University. All animals care and treatment
in compliance with the “Principles of Laboratory Animal
Care (NIH Publication No. 86-23, revised 1985)”. The
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cows after study were all alive and healthy and still pro-
duced milk.

RNA sequencing, read alignment and identification of
differentially expressed genes
The total RNA was isolated from each live tissue sample
with TRIzol reagent (Life Technologies, CA, USA) and
purified with RNase-free DNase (TIANGEN, Beijing,
China). RNA integrity number (RIN) was detected with
RNA Nano 6000 Assay Kit on Bioanalyzer 2100 system
(Agilent Technologies, CA, USA) and samples with RIN
values of higher than 7.0 were used as input material for
the RNA sample preparations. Subsequently, sequencing
libraries were generated using NEBNext® Ultra™ Direc-
tional RNA Library Prep Kit for Illumina® (New England
Biolabs, MA, USA) and sequenced on Illumina HiSeq
2500 platform. After removing adapters, deleting reads
containing poly-N and low quality reads from the raw
data, we aligned the paired-end reads of the clean data
to the cattle reference genome assembly UMD 3.1.80.
Detailed descriptions for sequencing and assembling
were shown previously [22].
Gene expression level was calculated as fragments per

kilo base pair (kb) of transcript per million mapped frag-
ments (FPKM). DEGs among the different lactation
stages were detected and quantified using Cuffdiff
(http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/).
FPKM value, fold changes (in log2 scale), p-values and
q-values (false discovery rate: corrected p-values) of
DEGs were reported in the output files from Cuffdiff,
and q-value of < 0.05 was set as the threshold for signifi-
cantly differential gene expression.

Functional enrichment analysis of differentially expressed
genes
Ensembl Gene IDs were uploaded to the DAVID Func-
tional Annotation Tool (https://david.ncifcrf.gov/home.
jsp) and Gene Ontology (GO) functional annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
were performed. P-value of 0.05 was set as the threshold
for significantly enriched GO terms and pathways.

Integrated analysis of the differentially expressed genes
and previously reported QTL and GWAS data
To better identify candidate genes for milk traits, we fur-
ther compared the physical positions on genome of
DEGs with the previously reported QTLs that have been
shown to be associated with five milk production traits,
namely milk yield, protein yield, fat yield, protein per-
centage and fat percentage (Cattle QTLdb: http://www.
animalgenome.org/cgi-bin/QTLdb/BT/index) and the
significant SNPs for five milk traits identified by previous
GWAS in dairy cattle [23]. Thereby, DEGs close to the

QTL peak positions (less than 5 cM) and near significant
SNPs (less than 5Mb) were selected as candidate genes.

Results
Overview of RNA sequencing
We sequenced the cDNA libraries of nine liver tissue
samples from three Holstein cows with three samples
from each period, i.e. dry period (50-d prepartum), early
lactation (10-d postpartum) and peak of lactation (60-d
postpartum) using HiSeq 2500. In total, we acquired
780.38 million clean reads, with 86.71 million for each
sample on average (range from 78.62 to 97.78 million).
The sequencing quality values of Q20 and Q30 were
93.13 and 87.48% respectively (Additional file 1) indicat-
ing a high quality of sequencing data. Alignment of the
sequencing reads against the bovine genome UMD3.1.80
yielded 84.49% of uniquely aligned reads across the nine
samples (Additional file 2) which were used for further
analyses. Pearson correlation between the three samples
in each stage was higher than 0.935 that was considered
as a high correlation indicating the high similarity of
biological replicates (Additional file 3).

Differentially expressed genes across three periods
With Cuffdiff software, a total of 204 (118 up-regulated
and 86 down-regulated), 147 (106 up-regulated and 41
down-regulated) and 81 (57 up-regulated and 24 down-
regulated) differentially expressed genes (DEGs, p < 0.05,
false discovery rate q < 0.05), which were ranked in the
top half expressed genes, were detected in the early lac-
tation vs. dry period, peak of lactation vs. dry period,
and peak of lactation vs. early lactation, respectively
(Additional file 4 and Additional file 5). Details of the
top 10 DEGs in the three comparisons and their full
name as well as q-value and fold change were described
in Table 1.

Gene ontology enrichment and pathway analysis
To further know about the functional associations of the
differentially expressed genes between lactation periods,
we implemented gene ontology (GO) analysis with
DAVID software (Additional file 6). Between early lacta-
tion and dry period, significantly enriched GO terms
(p < 0.05) were mainly focused on metabolism-related
functions, especially on carboxylic acid metabolic
process, transport of lipid/ cholesterol/ sterol, regulation
of cellular ketone metabolic process/ lipid biosynthetic
process/ lipoprotein lipase activity, high-density lipopro-
tein (HDL) particle, lipoprotein particle, very low-density
lipoprotein (VLDL) particle and small molecule/ carbox-
ylic acid/ carbohydrate catabolic process. Of these,
insulin-like growth factor binding and anion binding
were the most significantly enriched GO molecular func-
tions. Of note, the top 10 DEGs were involved in
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response to metabolic process and transport, cellular
component organization localization.
Comparing the peak of lactation with dry period, the

most significantly enriched GO categories (p < 0.05) were
related to response to biotic stimulus/ other organism/
external biotic stimulus, immune effector process, HDL
particle, plasma lipoprotein particle, lipoprotein particle,
and molecular functions associated with double-
stranded RNA binding, insulin-like growth factor bind-
ing, and growth factor binding. The top 10 DEGs were
related to response to stimulus, metabolic process, bio-
logical regulation, cellular component organization or
biogenesis, multi-organism process, and localization.
However, between peak of lactation and early lacta-

tion, the main significant GO categories (p < 0.05) were

focused on triglyceride/ acylglycerol/ neutral lipid/ fatty
acid/ monocarboxylic acid metabolic process, and mo-
lecular functions associated with fructose transmem-
brane transporter activity and double-stranded RNA
binding. Among the TOP10 DEGs, cellular and meta-
bolic processes, response to stimulus, biological regula-
tion, cellular component organization or biogenesis,
multi-organism process, and localization were enriched.
In addition, KEGG analysis significantly enriched 53,

39 and 46 pathways (Additional file 7), including PPAR
and AMPK signaling pathways, cholesterol/ fatty acid
metabolism and glycolysis/gluconeogenesis between
early lactation vs. dry period, and PPAR, p53 and AMPK
signaling pathways between peak of lactation and other
two periods.

Table 1 Top 10 differentially expressed genes between each comparison of RNA-seq
Gene name Gene description (early lactation vs. dry period) FDR (q-value) Log2FoldChange

LRRC73 leucine rich repeat containing 73 0.004690 inf

GPX3 glutathione peroxidase 3 0.004690 5.57

APOA4 apolipoprotein A4 0.004690 4.26

HP haptoglobin 0.004690 4.07

MFSD2 major facilitator superfamily domain containing 2A 0.004690 3.67

CDC42EP5 CDC42 effector protein 5 0.004690 3.46

SLC13A5 solute carrier family 13 0.011199 3.22

SMCT1 solute carrier family 5 0.004690 3.22

PAQR9 progestin and adipoQ receptor family member IX 0.004690 3.14

SFRP2 secreted frizzled-related protein 2 0.008110 −3.62

Gene name Gene description (peak of lactation vs. dry period) FDR
(q- value)

Log2FoldChange

ISG15 ISG15 ubiquitin like modifier 0.004690 5.09

IFIT1 interferon-induced protein with tetratricopeptide repeats 1 0.004690 4.98

RSAD2 radical S-adenosyl methionine domain containing 2 0.004690 4.24

APOA4 apolipoprotein A4 0.004690 3.64

MX1 MX dynamin like GTPase 1 0.004690 3.61

GPX3 glutathione peroxidase 3 0.004690 3.54

MX2 MX dynamin like GTPase 2 0.004690 3.42

USP18 ubiquitin specific peptidase 18 0.004690 3.39

LOC100298356 bone marrow stromal antigen 2 0.004690 3.33

HERC6 HECT and RLD domain containing E3 ubiquitin protein ligase family member 6 0.004690 3.15

Gene name Gene description (peak of lactation vs. early lactation) FDR (q-value) Log2FoldChange

ISG12(B) TLH29 protein precursor-like 0.004690 4.26

RSAD2 radical S-adenosyl methionine domain containing 2 0.004690 4.13

IFIT1 interferon-induced protein with tetratricopeptide repeats 1 0.004690 4.12

ISG15 ISG15 ubiquitin like modifier 0.004690 3.17

FKBP5 FKBP prolyl isomerase 5 0.004690 2.48

MX1 MX dynamin-like GTPase 1 0.017022 2.42

RXRG retinoid X receptor, gamma 0.004690 −2.42

ITGAD intrgrin, alpha D 0.004690 −2.48

LYZ2 lysozyme C-2 0.011199 −2.81

HBB hemoglobin, beta 0.004690 −5.54
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Candidate genes identified by integrated analysis of RNA-
Seq, reported QTL and GWAS data
To identify candidate functional genes affecting milk
production traits, integrated analysis of the RNA-Seq
data in this study and the previously reported genetic
data including QTL mapping and GWASs was per-
formed. First, we compared the physical position of each
DEG with the position of known QTLs that have been
shown to be associated with milk yield, milk protein and
milk fat traits in dairy cattle from the Cattle QTLdb
database (http://www.animalgenome.org/cgi-bin/QTLdb/).
Then, each DEG was compared with the significant SNPs
for milk traits in Holstein identified in a GWA study by
Cole et al. [23]. As a result, ten common differentially
expressed genes that were simultaneously close to the
known QTLs (less than 5 cM) and significant SNPs (less
than 5Mb) were identified (Tables 2 and 3).
Thus, through combination of DEGs, QTL and GWAS

data, and biological functions, such ten genes were sug-
gested as promising candidates for milk production traits,
i.e. APOC2 (Apolipoprotein C2), PPP1R3B (Protein phos-
phatase 1 regulatory subunit 3B), PKLR (Pyruvate kinase),
ODC1 (Ornithine decarboxylase 1), DUSP1 (Dual specifi-
city phosphatase 1) and LMNA (Lamin), GALE (UDP-gal-
actose-4-epimerase), ANGPTL4 (Angiopoietin like 4),

LPIN1 (Lipin 1), and CDKN1A (Cyclin dependent kinase
inhibitor 1A).

Discussion
In this study, we obtained the liver transcriptome pro-
files in different lactation periods of Holstein cows using
high-throughput RNA sequencing, and 432 differentially
expressed genes (DEGs), which were ranked in the top
half expressed genes, were detected among the dry
period (−50 day), early lactation (+ 10 day), and peak of
lactation (+ 60 days). The DEGs expressed in the bottom
half level were eliminated to ensure the detection power.
Rapaport et al. (2013) investigated the relationship be-
tween detection power of DEGs and sequence depth and
number of replicates, and demonstrated that with most
methods, over 90% of differently expressed genes at the
top expression levels are detected with little as 2 repli-
cates and 5% of the reads [24]. Trapnell et al. (2013) also
reported that the detection rate of DEGs was similar for
three or more replicates using Cuffdiff [25]. Of noted,
the more biological replicates are taken, more detection
power are improved.
Through functional enrichment, we found that the dif-

ferentially expressed genes (DEGs) between milking and
non-lactation status (early and peak of lactation vs

Table 2 Detailed information on the reported QTLs containing the 11 DEGs in bovine liver at three lactation stages

Gene
name

Early
vs.
dry

Peak
vs.
dry

Peak
vs.
early

Position (bp) Position
(cM)a

Previously reported QTL

Distance to QTL peak (cM) CI and peak location (cM) Trait QTL ID

APOC2 + 53,057,717–53,059,957 Chr18:67.9 1.9 54.713–76.57 (peak:66) PY 2721

2.3 54.713–76.57 (peak:65.6) MY 1532

ACADVL + 27,568,181–27,573,378 Chr19:47.1 4.0 14.1–60.4 (peak:43.1) FY 10,443

PPP1R3B – 24,316,623–24,317,477 Chr27:34.3 0.5 15.176–52.32 (peak:33.8) FP 2740

GALE + 129,706,509–129,711,871 Chr2:121.9 1.9 115.437–130 (peak:120) FY 1515

PKLR – 15,396,974–15,408,994 Chr3:25.7 0.7 22.61–27.41 (peak:25) FY 2655

0.7 22.61–27.41 (peak:25) PP 2656

1.7 6–32 (peak:27.41) PP 3435

ANGPTL4 + + 18,236,482–18,243,588 Chr7:20.6 2.8 16.75–39.33 (peak:17.8) PP 3534

4.7 16.75–39.33 (peak:15.9) PP 3536

CDKN1A – + 10,551,755–10,568,782 Chr23:14.1 0.9 11.82–20.66 (peak:15) MY 2590

1.0 13.77–28.30 (peak:15.1) MY 2568

ODC1 + + 87,175,389–87,182,661 Chr11:95.0 0.1 92.17–97.57 (peak:94.9) FY 2669

LPIN1 + + 86,050,742–86,128,538 Chr11:93.8 1.1 92.17–97.57 (peak:94.9) FY 2669

DUSP1 + 4,449,106–4,452,189 Chr20:5.5 2.7 0–31.86 (peak:8.238) FY 2564

4.6 0–20.165 (peak:10.08) PY 2750

LMNA + 14,695,234–14,724,663 Chr3:24.1 0.5 22.61–27.41 (peak:25) FY 2655

0.5 22.61–27.41 (peak:25) PP 2656

2.9 6–32 (peak:27.41) PP 3435
aThe linkage position was estimated relative to UMD3.1.80 and based on the QTL mapper v.2.019 at www.animalgenome.org/cgi-bin/QTLdb/. MY: milk yield; PY:
milk protein yield; FY: milk fat yield; PP: milk protein percentage; FP: milk fat percentage
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Table 3 Detailed information on the nearest and most significant SNPs from previous GWAS to the 22 differentially expressed genes
in bovine liver at different lactation stages

Gene
name

Early
vs.

Peak
vs.

Peak
vs.

Gene position (bp)a Nearest and most significant SNPs of GWAS Traits Raw p value

dry dry early Distance Name Position
(bp)b

APOA1 + – Chr15:27932198–27,
934,085

1.77 Mb BTB-00590603 29,702,877 FY,PY,FP,PP 7.05E-22 ∼
4.71E-16

3.59 Mb BTB-00590405 31,527,773 FY,PY 4.12E-11 ∼
1.22E-10

ABCG8 – Chr11: 26156365–26,
175,034

1.34 Mb BTB-00470332 27,519,615 FY,PY 3.66E-09 ∼
1.25E-08

1.78 Mb BFGL-NGS-115431 24,379,969 MY,FY,PY,
FP,PP

3.18E-29 ∼
1.92E-07

2.46 Mb BTB-01556917 23,700,685 PP 3.46E-12

2.56 Mb Hapmap59290-rs29022016 23,599,074 PY,PP 1.87E-22 ∼
7.11E-08

3.49 Mb BFGL-NGS-116483 22,666,445 MY,FY,PY,
FP,PP

1.60E-24 ∼
1.14E-08

3.57 Mb ARS-BFGL-NGS-43804 22,588,525 MY,FY,PY,FP 2.85E-26 ∼
5.15E-08

4.03 Mb ARS-BFGL-NGS-100459 22,128,569 FY,PY,PP 1.03E-24 ∼
7.98E-08

APOC2 + Chr18: 53057717–53,
059,957

888.61
Kb

BFGL-NGS-117985 53,948,569 MY,FY,PY,
FP,PP

9.83E-55 ∼
1.71E-19

910.9 Kb Hapmap41540-BTA-43915 53,970,861 FY,PY,FP 3.07E-18 ∼
2.19E-09

2.83 Mb Hapmap47618-BTA-43817 55,892,476 PP 1.07E-08

4.11 Mb ARS-BFGL-NGS-98028 57,174,711 FY,PY,FP,PP 1.40E-21 ∼
1.04E-10

APOA4 + + Chr15: 27906598–27,
919,592

1.78 Mb BTB-00590603 29,702,877 FY,PY,FP,PP 7.05E-22 ∼
4.71E-16

3.61 Mb BTB-00590405 31,527,773 FY,PY 4.12E-11 ∼
1.22E-10

SAA1 + + Chr29:26696726–26,
714,918

6.41 Kb ARS-BFGL-NGS-24998 26,721,324 PP 2.96E-08

4.19 Mb UA-IFASA-8605 30,901,735 FY,FP,PP 1.50E-16 ∼
1.50E-07

PC + Chr29: 45508279–45,
611,042

2.89 Mb ARS-BFGL-NGS-2893 48,501,273 FY,PY,FP,PP 1.98E-12 ∼
8.87E-08

3.28 Mb Hapmap40456-BTA-66218 48,895,237 FY 1.35E-08

3.75 Mb BFGL-NGS-117323 49,357,135 MY,FY,PY,FP 4.32E-19 ∼
3.58E-08

PPP1R3B – Chr27: 24316623–24,
317,477

259.32
Kb

ARS-BFGL-NGS-43776 24,576,801 MY,FY,PY,
FP,PP

6.30E-26 ∼
1.20E-07

4.07 Mb BTB-01063707 28,386,241 MY,FY,PY,
FP,PP

1.55E-45 ∼
1.35E-17

GALE + Chr2:129706509–129,
711,871

1.27 Mb BTA-31250-no-rs 128,437,
731

PY,FP,PP 1.26E-24 ∼
3.25E-08

SDS + Chr17: 63302876–63,
311,105

162.16
Kb

BFGL-NGS-110646 63,140,712 FY,PY,FP,PP 2.61E-14 ∼
3.54E-08

230.59
Kb

Hapmap52830-rs29014800 63,541,690 FP,PP 4.31E-11 ∼
3.38E-07

1.41 Mb BTB-00682411 61,891,068 PP 2.65E-08

1.76 Mb BTB-01992588 65,071,599 MY,FY,PY 3.55E-15 ∼
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Table 3 Detailed information on the nearest and most significant SNPs from previous GWAS to the 22 differentially expressed genes
in bovine liver at different lactation stages (Continued)

Gene
name

Early
vs.

Peak
vs.

Peak
vs.

Gene position (bp)a Nearest and most significant SNPs of GWAS Traits Raw p value

dry dry early Distance Name Position
(bp)b

2.01E-10

2.93 Mb ARS-BFGL-NGS-17192 66,236,750 MY,PY 2.97E-15 ∼
1.30E-12

3.31 Mb ARS-BFGL-NGS-34106 66,619,908 FY,FP,PP 4.65E-25 ∼
3.68E-14

3.36 Mb Hapmap40427-BTA-41914 66,671,839 FP,PP 6.15E-19 ∼
3.07E-11

FBP2 + + Chr8:82396095–82,438,
817

1.45 Mb BTA-14515-no-rs 83,888,935 FY,PY,PP 6.36E-12 ∼
7.78E-09

3.95 Mb ARS-BFGL-NGS-20324 86,384,898 FY,PY,FP,PP 7.96E-22 ∼
3.80E-14

PKLR – Chr3:15396974–15,408,
994

1.31 Mb UA-IFASA-8925 14,084,731 PY 3.48E-07

SGLT1 – Chr17: 72690558–72,
741,954

3.96 Mb BTA-90512-no-rs 68,732,546 FP,PP 6.81E-19 ∼
4.33E-13

GK + ChrX:118110570–118,
186,827

2.14 Mb Hapmap34068-BES2_Contig513_
1168

115,968,
607

MY,FY,PY,
FP,PP

2.30E-27 ∼
6.86E-09

2.47 Mb BTA-30585-no-rs 120,654,
979

FY,FP,PP 2.02E-16 ∼
1.36E-08

2.50 Mb Hapmap39109-BTA-30591 120,691,
496

FP,PP 6.01E-13 ∼
1.28E-07

2.89 Mb Hapmap33343-BTA-111447 121,076,
442

FY,PY,FP,PP 6.03E-13 ∼
7.03E-08

3.41 Mb BTA-98858-no-rs 121,600,
055

FY,FP,PP 7.03E-21 ∼
1.01E-09

3.79 Mb Hapmap45528-BTA-102311 114,319,
576

FY,FP,PP 3.01E-18 ∼
5.13E-09

CYP7A1 + + Chr14:26348324–26,
358,692

3.76 Mb ARS-BFGL-BAC-12159 22,587,081 MY,FY,PY,PP 4.94E-24 ∼
6.01E-11

4.41 Mb ARS-BFGL-NGS-3198 21,933,950 FY,PY,FP,PP 1.21E-25 ∼
1.45E-12

ANGPTL4 + + Chr7:18236482–18,243,
588

1.84 Mb Hapmap23865-BTA-111820 16,397,706 PP 1.51E-08

4.60 Mb BFGL-NGS-119066 13,632,174 FP,PP 9.49E-20 ∼
7.48E-10

4.63 Mb ARS-BFGL-NGS-109534 13,608,935 FP,PP 8.42E-20 ∼
1.94E-09

4.65 Mb BFGL-NGS-111315 13,584,721 FY,PY,FP,PP 4.90E-29 ∼
7.03E-12

IGF-1R – – Chr21:7967718–8,268,
246

769.19
Kb

ARS-BFGL-NGS-10704 9,037,431 FP,PP 2.60E-13 ∼
4.77E-08

1.07 Mb ARS-BFGL-NGS-77061 6,900,116 PP 9.32E-10

CDKN1A – + Chr23:10551755–10,
568,782

2.68 Mb BFGL-NGS-115177 7,874,236 MY,FY,PY 1.83E-24 ∼
6.49E-17

3.28 Mb ARS-BFGL-NGS-41214 13,846,320 MY,FY,PY,PP 2.10E-24 ∼
3.13E-11

4.20 Mb ARS-BFGL-NGS-17887 14,769,068 MY,FY,PY,PP 3.76E-24 ∼
6.86E-09

ODC1 + + Chr11:87175389–87,
182,661

74.93 Kb BTA-110370-no-rs 87,257,595 FY,PY,FP 3.10E-12 ∼
2.68E-07
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Table 3 Detailed information on the nearest and most significant SNPs from previous GWAS to the 22 differentially expressed genes
in bovine liver at different lactation stages (Continued)

Gene
name

Early
vs.

Peak
vs.

Peak
vs.

Gene position (bp)a Nearest and most significant SNPs of GWAS Traits Raw p value

dry dry early Distance Name Position
(bp)b

96.35 Kb BFGL-NGS-114578 87,279,008 FY,PY 2.85E-11 ∼
1.82E-08

197.94
Kb

ARS-BFGL-NGS-42014 87,380,604 FY 9.34E-09

249.36
Kb

ARS-BFGL-NGS-17731 86,926,025 FY,PY,FP 3.31E-16 ∼
3.55E-07

605.73
Kb

Hapmap53648-rs29021240 86,569,656 FY,PY 1.00E-10 ∼
2.14E-08

641.51
Kb

ARS-BFGL-NGS-70263 87,824,167 MY,FY,PY,PP 1.16E-17 ∼
2.25E-08

789.42
Kb

ARS-BFGL-NGS-41670 87,972,079 FY,PP 1.41E-08 ∼
2.53E-07

817.29
Kb

ARS-BFGL-BAC-16207 87,999,946 FY,PY,FP,PP 4.08E-10 ∼
3.65E-07

2.02 Mb Hapmap52066-rs29015690 85,153,576 FY 1.10E-07

2.16 Mb ARS-BFGL-NGS-28030 89,338,824 FY,PY 2.08E-12 ∼
1.33E-07

2.19 Mb Hapmap31724-BTA-126967 89,371,911 FY,PY,FP 1.05E-15 ∼
1.43E-08

2.30 Mb ARS-BFGL-NGS-2015 84,872,349 FY,PY,FP,PP 1.83E-18 ∼
6.84E-05

2.35 Mb ARS-BFGL-NGS-104652 84,828,071 MY,FY,PY 1.05E-18 ∼
2.22E-09

3.54 Mb ARS-BFGL-NGS-63978 83,637,998 FY,PY,FP,PP 2.27E-15 ∼
1.78E-07

3.65 Mb Hapmap40477-BTA-105881 83,526,455 FY,PY,FP,PP 1.80E-24 ∼
2.41E-11

4.19 Mb Hapmap56387-rs29014077 82,982,779 FY 1.25E-07

4.25 Mb ARS-BFGL-NGS-93601 82,920,732 FY,PY,FP,PP 1.88E-21 ∼
2.96E-13

4.53 Mb Hapmap46768-BTA-117394 82,643,114 MY,FY,PY 1.78E-13 ∼
1.73E-07

GADD45B + + Chr7:22411968–22,414,
079

2.24 Mb Hapmap49309-BTA-78604 24,655,689 PP 4.34E-14

LPIN1 + + Chr11:86050742–86,
128,538

2.38 Kb ARS-BFGL-NGS-14236 86,048,363 FY,PY 1.29E-12 ∼
4.60E-08

441.12
Kb

Hapmap53648-rs29021240 86,569,656 FY,PY 1.00E-10 ∼
2.14E-08

797.49
Kb

ARS-BFGL-NGS-17731 86,926,025 FY,PY,FP 3.31E-16 ∼
3.55E-07

897.17
Kb

Hapmap52066-rs29015690 85,153,576 FY 1.10E-07

1.13 Mb BTA-110370-no-rs 87,257,595 FY,PY,FP 3.10E-12 ∼
2.68E-07

1.15 Mb BFGL-NGS-114578 87,279,008 FY,PY 2.85E-11 ∼
1.82E-08

1.18 Mb ARS-BFGL-NGS-2015 84,872,349 FY,PY,FP,PP 1.83E-18 ∼
6.84E-05

1.22 Mb ARS-BFGL-NGS-104652 84,828,071 MY,FY,PY 1.05E-18 ∼
2.22E-09
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before calving) mainly participated in metabolisms of
lipid, fatty acid, protein, carbohydrate and energy, and
involved in MAPK, p53 and PPAR signaling pathways.
Especially, lipid metabolism was significantly enriched
such as fat digestion and absorption, fatty acid metabol-
ism, bile secretion, endocytosis, biosynthesis of unsatur-
ated fatty acids, endocytosis, fatty acid metabolism,
AMPK, and PPAR signaling pathways. This is mostly
likely due to milk lipids, proteins, lactose, saturated and
unsaturated fatty acids that need to be synthesized dur-
ing lactation. These results also suggested that

metabolism and synthesis in liver provided nutrient sub-
stance support for the milking in mammary gland prob-
ably through the milking vein in dairy cows. Previous
studies also revealed that the contents of triacylglycerol
[26] and blood nonesterified fatty acids (NEFA) [27]
were increased greatly during the perinatal period.
Based on the integrated analysis of DEGs, QTLs,

GWAS data and biological functions, a total of ten
promising candidate genes were found. Among them,
four genes like GALE, ANGPTL4, LPIN1, and CDKN1A
have been reported to play roles in milk production [28].

Table 3 Detailed information on the nearest and most significant SNPs from previous GWAS to the 22 differentially expressed genes
in bovine liver at different lactation stages (Continued)

Gene
name

Early
vs.

Peak
vs.

Peak
vs.

Gene position (bp)a Nearest and most significant SNPs of GWAS Traits Raw p value

dry dry early Distance Name Position
(bp)b

1.25 Mb ARS-BFGL-NGS-42014 87,380,604 FY 9.34E-09

1.70 Mb ARS-BFGL-NGS-70263 87,824,167 MY,FY,PY,PP 1.16E-17 ∼
2.25E-08

1.84 Mb ARS-BFGL-NGS-41670 87,972,079 FY,PP 1.41E-08 ∼
2.53E-07

1.87 Mb ARS-BFGL-BAC-16207 87,999,946 FY,PY,FP,PP 4.08E-10 ∼
3.65E-07

2.41 Mb ARS-BFGL-NGS-63978 83,637,998 FY,PY,FP,PP 2.27E-15 ∼
1.78E-07

2.52 Mb Hapmap40477-BTA-105881 83,526,455 FY,PY,FP,PP 1.80E-24 ∼
2.41E-11

3.07 Mb Hapmap56387-rs29014077 82,982,779 FY 1.25E-07

3.13 Mb ARS-BFGL-NGS-93601 82,920,732 FY,PY,FP,PP 1.88E-21 ∼
2.96E-13

3.21 Mb ARS-BFGL-NGS-28030 89,338,824 FY,PY 2.08E-12 ∼
1.33E-07

3.24 Mb Hapmap31724-BTA-126967 89,371,911 FY,PY,FP 1.05E-15 ∼
1.43E-08

3.41 Mb Hapmap46768-BTA-117394 82,643,114 MY,FY,PY 1.78E-13 ∼
1.73E-07

4.21 Mb ARS-BFGL-NGS-105586 81,845,043 FY,PY,FP 2.47E-15 ∼
3.00E-08

4.23 Mb ARS-BFGL-NGS-52709 81,819,453 FY,PY,FP,PP 3.01E-25 ∼
1.28E-08

DUSP1 + Chr20:4449106–4,452,
189

44.19 Kb ARS-BFGL-NGS-48030 4,496,376 PP 2.07E-08

53.45 Kb Hapmap54098-rs29010434 4,395,656 FY,PY,PP 1.35E-12 ∼
1.66E-08

3.32 Mb Hapmap49207-BTA-51446 7,770,495 MY,FY,PY,
FP,PP

5.02E-27 ∼
9.06E-11

3.50 Mb Hapmap36217-SCAF
FOLD290026_21689

7,954,374 FY,PY 7.19E-09 ∼
7.36E-09

3.74 Mb ARS-BFGL-NGS-27058 712,232 FY,PY,FP 1.11E-10 ∼
3.92E-07

LMNA + Chr3:14695234–14,724,
663

0.61 Mb UA-IFASA-8925 14,084,731 PY 3.48E-07

a,bMeans the position on the bovine genome sequence of UMD3.1.80
MY milk yield; FY milk fat yield; PY milk protein yield; FP milk fat percentage; PP milk protein percentage.
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Six novel candidate genes identified in this study in-
cluded APOC2, PPP1R3B, PKLR, ODC1, DUSP1, and
LMNA.
APOC2, encoded by the APOC2 gene, is the compo-

nent of chylomicrons (CM), very low density lipoprotein
(VLDLs), low density lipoprotein (LDLs) and high dens-
ity lipoprotein (HDLs) in plasma. It plays an important
role in lipoprotein metabolism as an activator of lipopro-
tein lipase. The deficiency of APOC2 could cause high
circulating levels of triglycerides (TGs), while overex-
pression of APOC2 could inhibit lipoprotein lipase activ-
ity [29, 30]. In addition, APOC2 was close to two known
QTLs for milk protein yield and milk yield with dis-
tances of 1.9 to 2.3 cM and also near four significant
SNPs for milk fat and protein traits detected by Cole
et al.(2011) [23].
PPP1R3B and PKLR are related to carbohydrate me-

tabolism. PPP1R3B activates glycogen synthesis and
limits glycogen breakdown in the liver and skeletal
muscle [31]. It was not only close to one reported QTL
for milk fat percentage with distance of 0.5 cM, also near
two significant SNPs for milk fat and protein identified
by GWAS [23]. PKLR plays a key role in hepatic glycoly-
sis [32]. It was close to three known QTLs (0.7 to 1.7
cM) for milk fat yield, milk protein percentage and milk
fat percentage and also near one significant SNP for milk
protein yield [23].
The ODC1 gene encodes ODC1 that is a key enzyme of

polyamine biosynthesis and a main regulator of protein
synthesis and lactogenesis. The transcription of ODC1 is
stimulated by high nutritional levels and is elevated during
periods of rapid mammary growth and differentiation
[33]. ODC1 was very close to two known QTLs for milk
fat yield with 0.1 cM and near 18 significant SNPs for milk
fat and protein with distances 74Kb ~ 4.53Mb [23].
DUSP1 is involved in the epithelial-to-mesenchymal

transition, regulation of breast cancer stem cells (CSCs)
and signal transduction [34]. DUSP1 was not only close to
the two known QTLs for milk fat yield and milk protein
yield (2.7 to 4.6 cM) but also near five significant SNPs for
milk fat and protein [23]. LMNA plays an important role
in nuclear assembly, chromatin organization, nuclear
membrane formation and telomere dynamics. The muta-
tions in LMNA caused an imbalance between lipid oxida-
tion and oxidative glucose metabolism in skeletal muscle
metabolism [35]. It was near to the peak positions of three
QTLs (0.5 to 2.9 cM) for milk fat yield, milk protein per-
centage and milk fat percentage and near one significant
SNP for milk protein yield [23].

Conclusions
This study detected significantly expressed genes (DEGs)
in liver among three lactation periods (dry period, early
and peak of lactation) by performing RNA sequencing in

Holstein cows. Integrated analysis of DEGs, previously
reported QTL and GWAS data, and biological functions
of genes identified 10 promising candidate genes for
milk production traits, including APOC2, PPP1R3B,
PKLR, ODC1, DUSP1, LMNA, GALE, ANGPTL4, LPIN1
and CDKN1A. Our findings provided a solid basis for
further in-depth studies on how these genes regulate
milk synthesis and molecular information for genomic
selection in dairy cattle.
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