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Abstract

Background: Genomic selection (GS) can accelerate genetic gains in breeding programmes by reducing the time it
takes to complete a cycle of selection. Puccinia coronata f. sp lolli (crown rust) is one of the most widespread diseases
of perennial ryegrass and can lead to reductions in yield, persistency and nutritional value. Here, we used a large
perennial ryegrass population to assess the accuracy of using genome wide markers to predict crown rust resistance
and to investigate the factors affecting predictive ability.

Results: Using these data, predictive ability for crown rust resistance in the complete population reached a maximum
of 0.52. Much of the predictive ability resulted from the ability of markers to capture genetic relationships among
families within the training set, and reducing themarker density had little impact on predictive ability. Using permutation
based variable importance measure and genome wide association studies (GWAS) to identify and rank markers enabled
the identification of a small subset of SNPs that could achieve predictive abilities close to those achieved using the
complete marker set.

Conclusion: Using a GWAS to identify and rank markers enabled a small panel of markers to be identified that could
achieve higher predictive ability than the same number of randomly selected markers, and predictive abilities close to
those achieved with the entire marker set. This was particularly evident in a sub-population characterised by having
on-average higher genome-wide linkage disequilibirum (LD). Higher predictive abilities with selected markers over
randommarkers suggests they are in LD with QTL. Accuracy due to genetic relationships will decay rapidly over
generations whereas accuracy due to LD will persist, which is advantageous for practical breeding applications.
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Background
Perennial ryegrass (Lolium perenne L.) is the predominant
forage species grown in temperate regions of the world [1].
Puccinia coronata f. sp. lolli (crown rust) is one of themost
widespread diseases of perennial ryegrass and can lead to
a reduction in forage nutritive value, yield and persistency
[2–4]. Poor quality, rust infected swards can impact ani-
mal performance and well-being [5–7]. Developing resis-
tant cultivars is the most viable option for disease control
and it has been shown that resistance to crown rust is
conferred by both quantitative and qualitative inheritance
[8–11]. As an obligate out-crossing species, perennial rye-
grass germplasm has high variation for disease resistance
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that can be utilized to develop resistant cultivars [11–13].
Phenotypic recurrent selection is typically used to develop
cultivars with improved resistance and selection is often
carried out on spaced plants [9, 11, 12, 14]. There is a high
correlation between spaced plants and swards for disease
resistance and indirect selection for disease resistance
on spaced plants can improve resistance in sward condi-
tions [15]. However, with the advancements in molecu-
lar marker development over the last decade, efforts to
use marker assisted breeding strategies have been pur-
sued. One such strategy involves identifying quantitative
trait loci (QTL) in bi-parental mapping populations and
using markers to efficiently backcross the QTL into elite
breeding material [16]. Although QTLs explaining signif-
icant phenotypic variation for crown rust resistance were
mapped onto linkage group (LG) 1-5 and 7 [17–23], it is
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unclear if any of these QTLs were successfully introduced
into breeding material. Genome wide association studies
(GWAS) are another approach to identify markers linked
to QTL. In this case breeding populations can directly be
used to identify marker-trait associations, although iden-
tified markers tended to explain a small proportion of the
total additive genetic variance, resulting in smaller genetic
gains [24–26].
Genomic selection (GS) was first proposed byMeuwissen

et al. [27], as a method to capture complete additive
genetic variance using genome wide markers. GS is a form
of marker assisted breeding, which accounts for all marker
effects across the entire genome to calculate genomic esti-
mated breeding values (GEBVs), which are used to select
individual plants for advancement [26]. Use of genome-
wide markers will include small effect loci and is ideal
for complex traits with low to moderate heritability. In
GS, a training population is genotyped with genome wide
markers and phenotyped for the trait under selection
and models to predict breeding values from marker data
are developed. Implementing GS for complex traits like
yield and quality is a primary objective of many peren-
nial ryegrass breeding programmes. In contrast to yield
and quality traits, the cost (labour and time) of pheno-
typing for disease resistance is much lower. However, it
is important that any GS approaches targeting yield and
quality improvements also ensure adequate disease resis-
tance is maintained, particularly where multiple rounds
of marker based selections are performed between field
evaluations. Opportunities for GS in perennial ryegrass
were first reviewed by Hayes et al. [28], and the earli-
est empirical study was done by Fè et al. [29] for heading
date, which confirmed the superiority of GS over marker
assisted selection. Later Fè et al. [30], Grinberg et al. [31]
and Byrne et al. [32] reported high predictive ability for
important agronomical traits in perennial ryegrass. In
particular, predictive ability for crown rust reached up to
0.58 [30] when genotypes and phenotypes were evaluated
on F2 families. In this study, we evaluated predictive abil-
ity for crown rust resistance on individual plants in a large
perennial ryegrass population, and assessed factors con-
tributing to predictive ability, such as training population
size and marker density. We also performed a GWAS to
identify a small to moderately sized panel of markers with
good predictive ability for crown rust resistance.

Methods
Plant material, phenotyping and genotyping
The training population consists of 30 diploid peren-
nial ryegrass families that have been described previously
[32, 33]. Each family consists of 60 genotypes making up a
population of 1800 individuals. The complete population
consists of ten cultivars, eight full-sib families, eight half-
sib families and four ecotypes. Plants were established in

a glasshouse and later transplanted to the field in 2013 at
Oak Park, Carlow, Ireland (52° 51′ 34.2′′N , 6° 55′ 03.0′′W ).
Plants were grown in two replicates in a partially balanced
incomplete block design. Each block consists of 60 test
genotypes and 5 check genotypes and was surrounded
by a 1.5 m sward consisting of a four way mix of crown
rust susceptible perennial ryegrass cultivars. Crown rust
was recorded in the years 2014 and 2015 as mean per-
centage disease score on each plant. Briefly, percentage
disease score was obtained by combining scores of per-
centage of leaves with infection and average percentage of
infection on diseased leaves. Scoring was done at multi-
ple time points in September to November without any
harvest cuts between scorings (Table 1). We are trying
to develop genomic models to identify plants with good
resistance to crown rust across the season, and we decided
to use all time points for constructing a quantitative sum-
mary for crown rust resistance. To do this we calculated
AUDPC for each spaced plant in both years. Using mul-
tiple time point data, we generated area under disease
progress curve (AUDPC) as follows:

Ak =
Ni−1∑

i=1

(yi + yi+1)

2
(ti+1 − ti) (1)

where yi is the extent of infection (percentage disease
score) at ith observation and ti is the time point at
ith observation. Ni is the number of individuals in the
data set.
Variance components for crown rust were estimated

using the R package lme4 (linear mixed-effects models
using ’eigen’ and S4) [34]. Broad sense heritability was
estimated as follows:
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g(
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g

)
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)
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where σ 2
g is the total genetic variance among individu-

als, σ 2
g∗yr is the variance associated with genotype by year

Table 1 Mean percentage disease score for crown rust resistance
at different time points (TP) in Year1 (2014) and Year2 (2015)

Time point/dates Mean SD Min Max

Year 1

TP1 (13/10/14) 3.1 6.1 0 40

TP2 (20/10/14) 5.2 7.6 0 45

TP3 (29/10/14) 9.6 10.8 0 60

TP4 (10/11/14) 9.8 8.7 0 45

Year 2

TP1 (21/09/15) 2.0 4.4 0 32

TP2 (05/10/15) 11.2 10.0 0 60

TP3 (19/10/15) 19.9 9.0 0 63
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interaction and σ 2
res is residual variance. With genotype as

random effect and year and checks as fixed effects, condi-
tional modes (BLUPs) were calculated in lme4 and used as
input for genomic prediction.
Genotyping was done using genotyping by sequenc-

ing (GBS) approach described by Elshire et al. [35] and
data analysed as described in Byrne et al. [32]. Briefly,
genomic DNA was extracted from leaf samples and GBS
libraries were prepared using the restriction enzyme
ApeKI, libraries were amplified and sequenced on an Illu-
mina Hiseq2000. Panels of SNPs were identified in the
complete population, as well as in all sub populations
separately (half-sibs, full-sibs, ecotypes, cultivars). Indi-
viduals with very low sequencing coverage and/or largely
missing phenotypic data were eliminated from the anal-
ysis giving a final population for analysis of 1582 indi-
viduals. Missing marker data was imputed using mean
imputation.

Genomic prediction models
We used four statistical algorithms for genomic pre-
diction, ridge regression best linear unbiased prediction
(rrBLUP) [27], Bayes B [36] and Bayesian Lasso [37], and
random forest [38]. rrBLUP is a mixed model approach,
which was initially proposed for GS. We used an R pack-
age called rrBLUP [39] for fitting the mixed model as
follows

y = μ + Xg + ε (3)

where μ is the overall mean, X is the marker matrix, g is
the matrix of marker effects, ε is a vector of residual
effects and y is a vector of conditional modes for crown
rust. We also evaluated two Bayesian approaches, Bayes B
[36] and Bayesian Lasso [37], which were both imple-
mented using the R package BGLR [40] with the following
parameters: number of iterations = 5000, burn-in = 500
and thinning = 5. Random forest is a machine-learning
tool, in which series of regression trees were grown inde-
pendently to the largest extent possible using subsets of
bootstrap samples. At each split of the tree, a random
subset of variables is selected to identify the best split.
We implemented random forest using the R package ran-
domForest [41], setting the number of variables at each
split to 1/3 of the total variables, and using a terminal
node size of five and minimum of 500 trees per forest. We
also used random forest to rank variables using the vari-
able importance measure, a permutation based measure
in which variables are ranked based on the mean decrease
in accuracy.

Cross validation scheme
We evaluated genomic prediction models using Monte-
Carlo cross-validation by randomly assigning plants into
training (70%) and test (30%) sets and the procedure was

repeated 100 times and the resulting accuracies were then
averaged. This approach to cross-validation has previ-
ously been used to evaluate genomic prediction mod-
els [42, 43]. Predictive ability and bias were assessed
in the complete population and in each sub-population.
Predictive ability (rp) was determined as the Pearson’s
correlation coefficient between observed phenotypic
value and predicted phenotype. Bias was evaluated by
regressing observed phenotypic value on predictions.
We reduced training population size and marker den-
sity in order to identify the impact of training population
size and marker number on predictive ability. To com-
pare predictive ability for traits with contrasting genetic
architecture we compared heading date, a highly heri-
table trait, with crown rust. Predictive ability for head-
ing date has already been shown to be high (0.81) in
this population [32]. We re-analyzed data for heading
date according to methods described above and made a
comparison with crown rust. To evaluate the impact of
leaving related material out of the training set we also
performed cross validation by leaving one family out. In
this approach one complete family (up to 60 individuals)
is left out of the training set and only used for testing.
This was repeated so that each family in turn is used as a
test set.

Genome wide association
A mixed linear model (MLM) was also used for associ-
ation mapping, implemented in the R package rrBLUP
[39]. Population structure and family relatedness was
accounted for with a kinship matrix calculated by rrBLUP
from the input genotypic data. We accounted for multiple
testing using a Bonferroni correction and markers pass-
ing an α level 0.05 threshold were considered statistically
significant.

Results and discussion
Phenotypic analysis for crown rust
The mean percentage disease score for crown rust infec-
tion in the population increased over time in both eval-
uation years as infection levels accumulated (Table 1). In
both years, evaluations were carried out in the period
from September to November during a time when disease
pressure tends to be at its greatest [15, 44]. The highest
mean percentage disease score was seen in late October
2015 and wasmore than double the highest mean percent-
age disease score from 2014 (Table 1). In addition to plant
health and level of host resistance, crown rust infection is
influenced by various environmental factors, such as tem-
perature, relative humidity, and light [45–47]. The latency
period is reduced and spore production increased as tem-
perature increases [45], and it has been shown that when
temperatures exceed 25°C, the susceptibility of previously
resistant cultivars can be increased [46]. It has already
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been shown that there is variability within pathogen pop-
ulations, and different races can be found within and
between locations. It is also possible that the composition
of a pathogen population can change over short periods of
time and plants that are resistant at one point in time will
become susceptible as the pathogen population shifts or
evolves.
AUDPC values ranged from 0 to 1371 and the Pearson

correlation co-efficient between replicates within years
was moderate (0.69 in 2014 and 0.59 in 2015). However,
the Pearson correlation co-efficient between years was
low (0.28), and there was a significant genotype by year
interaction (F(1761) = 3.025, MSE = 60676, p = 0.0001).
The broad sense heritability for crown rust infection
was moderate (0.36), which is in line with previous
estimates of heritability calculated in other populations
[11, 48]. Overall there is a good phenotypic variation
for crown rust infection among and within the 30 fam-
ilies/cultivars/ecotypes making up the entire population
(Fig. 1). Plants were placed into one of four categories
(sub-populations) based on mating type or origin, these
were (i) full-sib families, (ii) half-sib families, (iii) cultivars,
and (iv) ecotypes. In general the ecotypes were more sus-
ceptible to crown rust infection than cultivars or breed-
ing material (Fig. 1), which presents a challenge for the
incorporation of ecotypes into breeding programmes. The
broad-sense heritability calculated in each sub-population
varied between 0.17 in the cultivars to 0.44 in the full-sib
families.
Crown rust infection is typically evaluated in breeding

programmes by growing spaced plants or potted plants
from a population and visually scoring the level of crown
rust infection. A mean score is assigned to each family

Fig. 1 Phenotypic variation for crown rust resistance in the complete
population, grouped according to sub-population types: cultivars
(CS), ecotypes (ES), full-sibs (FS) and half-sibs (HS). Broad sense
heritability (H2) in complete population and sub-populations is
highlighted over the figure

and used to aid selection of the top performing families
from which to construct the synthetics cultivars. During
construction of synthetics a spaced plant nursery may be
established to evaluate heading date and crown rust resis-
tance before selecting individual genotypes from which to
construct synthetics (within family selection). In practice,
this has a time cost of 2 to 3 years (establishment, eval-
uation, selection and recombining), and using molecular
markers offers an opportunity to reduce this to one year
in those selection cycles where GEBVs are predicted. This
depends on our ability to accurately predict traits such as
crown rust from genomic data.

Predicting crown rust resistance with genomic data
We evaluated four algorithms for prediction of crown rust
infection from genomic data, rrBLUP, Bayes B, Bayesian
Lasso, and random forest. The mean predictive ability
after cross-validation within the complete population was
0.52 using rrBLUP, 0.52 using Bayesian Lasso, 0.51 using
Bayes B, and 0.49 using random forest (Additional file 1:
Figure S1). rrBLUP was computationally faster, and there-
fore results from all further analysis are only reported
for rrBLUP. The predictive ability of 0.52 is in line with
previous estimates reported in perennial ryegrass where
predictions were based on mean genotypes and pheno-
types of F2 families [30]. Predictive ability did not dif-
fer depending on whether the equations were developed
using phenotypes from the last time point scored or the
AUDPC values incorporating all time points. This indi-
cates that a single scoring each year would have sufficed.
However, the importance of evaluating crown rust inmore
than one year was emphasised by the low correlation
between scores in 2014 and 2015.
When we calculate the predictive ability within each of

the sub-populations (cultivars, half-sib families, full-sib
families, and ecotypes), the highest predictive ability for
crown rust was obtained using plants from full-sib fami-
lies (0.54) and the lowest predictive ability for crown rust
was obtained with the plants from the ecotypes (0.24)
(Fig. 2). Generally, traits with higher heritability achieve
higher predictive abilities [49, 50], and we see that here
where crown rust measurements taken in the full-sib
families had the highest broad-sense heritability and the
highest predictive ability. In general, there was a good cor-
relation between predictive ability and both phenotypic
variance and heritability. This relationship between phe-
notypic variance and predictive ability has been observed
previously [49, 51].
We also evaluated the predictive ability using a leave-

one-family-out cross validation scheme. The complete
population is comprised of 30 families/cultivars/ecotypes,
each with up to 60 individual genotypes. The predic-
tive ability was assessed in the complete population by
selectively leaving one family out of the training set and
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Fig. 2 Predictive ability in different population types. Complete population (CP), cultivars (CS), ecotypes (ES), full-sibs (FS) and half-sibs (HS) are listed
on x-axis, predictive ability (left) and bias (right) on y-axis. Crown rust is in red and heading date in blue

using it for testing. In addition to crown rust we also
evaluated predictive ability for heading date phenotypes
previously reported [32]. The predictive ability for both
crown rust (rp = 0.02, min = −0.36, max = 0.36) and
heading date (rp = 0.29, min = −0.14, max = 0.65) varied
greatly depending on which family was left out, and hav-
ing related material in the training set (shared parentage)
greatly improved predictive ability.

Effect of training population size andmarker density on
predictive ability
As we reduced the number of individuals in the train-
ing population we saw a decrease in predictive ability and
an increasingly upward bias in the variance of predictions
for both crown rust resistance and heading date (Fig. 3).

The drop in predictive ability was more pronounced as we
reduced the training population size for crown rust resis-
tance than it was for heading date. The predictive ability
for crown rust resistance when using 90% of the popula-
tion as a training set was 0.52 and the predictive ability was
0.38 when using just 10% of the population. Irrespective
of the trait, as the training population size increased there
was an increase in predictive ability which is consistent
with similar correlations between training population size
and predictive ability reported previously for perennial
ryegrass [29, 30] and other crops [51–54]. Useful linkage
disequilibrium (LD) only extends over short distances in
perennial ryegrass and it has been suggested that this is
the result of a very large past effective population size [28].
This impacts both the size of the reference population

Fig. 3 Effect of training population size on predictive ability. Training population is varied from 90% (1423 individuals) to 10% (158 individuals) on
x-axis and predictive ability (left), bias (right) on y-axis. Crown rust is in red and heading date in blue
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and marker density required to achieve high accuracies
when predicting traits from genomic data. The fact that
we are able to achieve high predictive abilities with rela-
tively small training populations is likely a result of strong
genetic structure and differentiation in our diverse popu-
lation and the use of the marker data to capture genetic
relationships [55].
The limited LD also affects the number of markers

required to obtain high predictive accuracies, and given
the extent of LD in the broader perennial ryegrass pop-
ulation, marker numbers in excess of one million have
been suggested for achieving high accuracies [28]. When
we reduced marker number in the complete population
and the various sub-populations we observed very little
impact on the predictive ability for either trait (Table 2).
Reducing the marker set to 5% of the total available had
virtually no impact on predictive ability in all cases. This
would support our observation that much of the predic-
tive ability can be derived from makers capturing familial
relationships. When marker number dropped below 5%
(10878) predictive ability for both traits in the complete
population began to drop. However, even with 0.05%
(109) of markers the mean predictive ability was 0.30 for
crown rust resistance and 0.52 for heading date. Know-
ing the contribution of genetic relationships to predictive
ability is important because it will change over genera-
tions. In contrast, predictive ability due to LD has greater
persistence over generations and is therefore preferen-
tial [55]. Schemes for implementing genomic selection
in perennial ryegrass that pursue a reduction in effec-
tive population size from the outset have been proposed.
Such schemes would lead to an increase in the extent
of LD and ensure that predictive ability due to LD can
be captured using a reasonable number of markers and
a reference population size that is feasible in breeding
programmes.

Identifying SNPs associated with crown rust resistance
The cost of genotyping impacts the number of selection
candidates that can be evaluated and therefore impacts
the selection intensity. Different approaches to low den-
sity SNP genotyping for genomic selection have been
proposed. These include variable selection methods to
identify a small subset of markers in strong LD with the
trait [56] or using a small random subset of markers to
impute from low-to-high density [57]. Until a chromo-
some scale assembly of the perennial ryegrass genome
becomes available the latter remains a challenge. We used
both permutation based variable importance measures
and GWAS analysis to identify a subset of markers capa-
ble of predicting crown rust resistance. Using permutation
based variable importance measures we were able to rank
markers by mean decrease in accuracy and select the top
ranked markers for use in genomic prediction. In the
case of GWAS we ranked SNPs based on significance and
again selected the top ranked markers for use in genomic
prediction. All variable importance measures and GWAS
were identified and ranked in the training set and used
to predict phenotypes in the test set via cross-validation.
When we used the top 100 ranked markers from the per-
mutation based variable importance measures, the mean
predictive ability of 100 iterations was 0.42 (ranging from
0.36 to 0.48). When we used the top 100 ranked markers
from the GWAS analysis, the mean predictive ability of
100 iterations was 0.36 (ranging from 0.25 to 0.44). In both
cases the mean predictive ability with selected markers
is higher than the predictive ability with random mark-
ers, which was 0.28 (ranging from 0.18 to 0.39). The lower
predictive ability using GWAS marker selection is not
surprising considering that we corrected for population
structure using a kinship matrix, and we are more reliant
on identifying markers in LD with the trait. As discussed
above, the predictive ability of these markers is expected

Table 2 Predictive ability (rp) and bias for crown rust (CR) and heading date (HD) by selecting randommarkers of 100 to 0.05%, in
complete population (CP), cultivars (CS), full-sibs (FS) and half-sibs (HS)

Pop 100% 60% 20% 5% 1% 0.5% 0.1% 0.05%

rp bias rp bias rp bias rp bias rp bias rp bias rp bias rp bias

CR

CP 0.52 1.22 0.52 1.22 0.52 1.21 0.51 1.18 0.46 1.10 0.43 1.07 0.36 1.04 0.30 1.48

CS 0.29 1.28 0.28 1.26 0.28 1.24 0.27 1.18 0.22 0.97 0.17 0.80 0.14 0.95 0.10 1.13

FS 0.54 1.13 0.54 1.13 0.54 1.13 0.54 1.14 0.52 1.07 0.50 1.03 0.45 1.00 0.40 0.99

HS 0.49 1.24 0.49 1.24 0.49 1.24 0.49 1.24 0.48 1.23 0.46 1.21 0.42 1.23 0.36 1.22

HD

CP 0.81 1.16 0.81 1.16 0.81 1.16 0.80 1.14 0.75 1.07 0.72 1.05 0.62 1.01 0.52 1.00

CS 0.84 1.25 0.81 1.19 0.81 1.20 0.81 1.18 0.78 1.11 0.77 1.12 0.66 1.03 0.56 1.02

FS 0.76 1.00 0.75 1.16 0.75 1.16 0.75 1.16 0.74 1.14 0.68 1.27 0.64 1.26 0.62 0.87

HS 0.74 1.18 0.74 1.09 0.74 1.10 0.74 1.09 0.73 1.08 0.72 1.15 0.67 1.10 0.62 1.09
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to be more persistent over subsequent generations. Using
GWAS selected markers it is clear to see that they are
superior to randomly selected markers up to the point,
beyond which adding more markers does not improve
predictive ability in either case (Fig. 4). The ability of a
GWAS within each sub-population to identify and select
a small set of SNPs with excellent predictive ability var-
ied, and in some cases was little better than random SNP
selection (Fig. 5). The GWAS on plants originating from
IBERs bred cultivars identified a small set of twenty SNPs
with 77% of the predictive ability achieved with 20,000
SNPs. The power of a GWAS to identify markers with
high predictive ability was much greater within the popu-
lation made up of IBERs plants than within cultivars, and
full-sib families where twenty SNPs could only achieve 46
and 48% of the predictive ability with 20,000 SNPs, respec-
tively. On average LD is higher within the sub-population
with IBERs plants, which may explain the greater
ability to identify markers associated with crown-rust
resistance.
In order to characterise the markers associated with

crown rust resistance we repeated the GWAS analysis
without division of genotypes into training and testing
sets. We carried out GWAS using the complete pop-
ulation and found 29 markers significantly associated
with crown rust resistance after correction for multiple
testing (Additional file 2: Table S1). Using the peren-
nial ryegrass genome [58] as a reference, we located all
markers within 22 genomic scaffolds that contained 50
predicted genes. Using the Genome Zippper [58, 59],
we anchored ten scaffolds onto LG2, 3, 4, 5 and 7
(Additional file 3: Table S2). Similarly, we did GWAS
on IBERS material and found 24 markers associated
with crown rust resistance (Additional file 2: Table S1).

Fig. 4 Predictive ability of selected markers versus randommarkers in
the complete population. Markers were selected based on the
ranking from genome wide association studies and compared with
randommarkers of similar size

All markers were located within 16 genomic scaffolds
containing 44 predicted genes. Out of 16 scaffolds we
were able to place seven scaffolds onto LG3, 5 and 7
(Additional file 3: Table S2). We found five common scaf-
folds between the complete population and the IBERS
and only two of these scaffolds were mapped, onto LG3.
On LG3 five markers were anchored within 60.4-61.21
cM. Genes present on these scaffolds were coding for
domains including Mon1, Aquaporin, DUF1635, Nucleo-
redoxin, Beta-glucan export ATP-binding/permease pro-
tein, BRASSINOSTEROID INSENSITIVE 1-associated
receptor kinase 1, Alpha N-terminal protein methyltrans-
ferase 1. Gene function of these domains plays a key role in
ATP-binding, membrane proteins, enzyme catalysis and
pathogen-associatedmolecular pattern (PAMP)-triggered
immunity (PTI) (Additional file 4: Table S3) [60].
Using small subsets of trait associated markers may be

an effective strategy for within-family prediction of traits
such as heading date, crown rust resistance and some
quality traits. Predicting heading date frommarkers would
enable plants to be matched in heading date to ensure
sufficient cross-pollination when constructing synthetic
cultivars [32]. Combining these with markers to predict
crown rust resistance would also avoid the inclusion of
plants with high levels of susceptibility, and furthermore
predictionmodels can be based onmulti-year evaluations.
It is clear from the phenotypic data presented here that
there is substantial within family variation for crown rust
resistance. Opportunities already exist to genotype small
to moderate sized marker panels in 1000s of samples at
low cost [61]. Using these approaches small fragments
(200-300 bp) are amplified and sequenced at hundreds of
loci. These amplicons can be used as short haplotypes in
marker aided selection strategies. An assay can be devel-
oped to target loci in linkage with QTL for heading date
[32], crown rust resistance, and other traits such as qual-
ity parameters. The assay can also include a suite of loci
with a good distribution throughout the genome and be
deployed for among-and-within-full-sib-family selection
(Additional file 5: Figure S2). Once high yielding fami-
lies are identified in field trials, within family selection
for crown rust resistance and forage quality can be per-
formed at a high selection intensity with the molecular
marker assay. Furthermore, plants can be selected to be
synchronous in flowering time.

Conclusions
Our findings show that predicting crown rust resistance
in perennial ryegrass can be achieved with high accuracy
using AUDPC scores on spaced plants. However, there
was no difference in predictive ability when equations
were developed using phenotypes from the last time-point
scored or the AUDPC values, meaning a single time point
was adequate to evaluate the crown rust susceptibility of
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Fig. 5 Comparing predictive ability of selected versus randommarkers. Markers were selected based on the ranking from genome wide association
studies in cultivars, full-sibs and IBERS material and compared with randommarkers of similar size

the spaced plants. Much of the predictive ability comes
frommarkers capturing familial relationships, highlighted
by the observation that there was no drop in predic-
tive ability when going from the entire marker set down
to only 5% (10,878) of the marker set. Accuracy due
to genetic relationships will decay rapidly over genera-
tions whereas accuracy due to LD will persist. Using a
GWAS we attempted to identify and rank markers in
LD with QTL. This enabled a small panel of markers to
be identified that had higher predictive ability than the
same number of randomly selected markers, and had pre-
dictive abilities close to those achieved with the entire
marker set.
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Additional file 1: Figure S1. Predictive ability and bias for crown rust
using various algorithms for genomic prediction. (PDF 101 kb)

Additional file 2: Table S1. List of markers associated with crown rust
resistance based on genome wide association studies in complete
population and IBERS material. (XLSX 14 kb)

Additional file 3: Table S2. List of genomic scaffolds where all the
significant markers from genome wide association studies were located.
Scaffolds were placed onto linkage group with the aid of Genome Zipper
[59]. (XLSX 11 kb)

Additional file 4: Table S3. List of predicted proteins on the genomic
scaffolds. Markers located on these scaffolds were associated with crown
rust resistance. BLAST was done on the predicted protein sequences using
PLAZA [62] to obtain the gene function. (XLSX 17 kb)

Additional file 5: Figure S2. Among-and-within-full-sib-family selection
that incorporates an inexpensive genotyping assay to implement
within-family selection using a high selection intensity. (PDF 227 kb)
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