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Abstract

Background: Syringomyelia (SM) is a common condition affecting brachycephalic toy breed dogs and is
characterized by the development of fluid-filled cavities within the spinal cord. It is often concurrent with a
complex developmental malformation of the skull and craniocervical vertebrae called Chiari-like malformation (CM)
characterized by a conformational change and overcrowding of the brain and cervical spinal cord particularly at the
craniocervical junction. CM and SM have a polygenic mode of inheritance with variable penetrance.

Results: We identified six cranial T1-weighted sagittal MRI measurements that were associated to maximum
transverse diameter of the syrinx cavity. Increased syrinx transverse diameter has been correlated previously
with increased likelihood of behavioral signs of pain. We next conducted a whole genome association study
of these traits in 65 Cavalier King Charles Spaniel (CKCS) dogs (33 controls, 32 with extreme phenotypes). Two
loci on CFA22 and CFA26 were found to be significantly associated to two traits associated with a reduced
volume and altered orientation of the caudal cranial fossa. Their reconstructed haplotypes defined two
associated regions that harbor only two genes: PCDH17 on CFA22 and ZWINT on CFA26. PCDH17 codes for a
cell adhesion molecule expressed specifically in the brain and spinal cord. ZWINT plays a role in chromosome
segregation and its expression is increased with the onset of neuropathic pain. Targeted genomic sequencing
of these regions identified respectively 37 and 339 SNPs with significantly associated P values. Genotyping of
tagSNPs selected from these 2 candidate loci in an extended cohort of 461 CKCS (187 unaffected, 274 SM
affected) identified 2 SNPs on CFA22 that were significantly associated to SM strengthening the candidacy of
this locus in SM development.

Conclusions: We identified 2 loci on CFA22 and CFA26 that contained only 2 genes, PCDH17 and ZWINT,
significantly associated to two traits associated with syrinx transverse diameter. The locus on CFA22 was
significantly associated to SM secondary to CM in the CKCS dog breed strengthening its candidacy for this
disease. This study will provide an entry point for identification of the genetic factors predisposing to this
condition and its underlying pathogenic mechanisms.
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Background
Canine syringomyelia (SM) is a painful condition where
fluid-containing cavities (syrinx or syringes) develop within
the parenchyma of the spinal cord and which progress over
time [1, 2]. Depending on the site of spinal cord damage,
SM may result in behavioral signs of pain, fictive scratching,
scoliosis, weakness and sensory deficits [3]. Approxima-
tively 70% of older Cavalier King Charles spaniels (CKCS)
have MRI signs of SM. This high percentage seems to cor-
relate with another condition present ubiquitously in this
breed called Chiari-like malformation (CM) [2]. CM is a
complex developmental malformation of the skull and cra-
nial cervical vertebrae that is characterized by rostro-caudal
bony insufficiency resulting in conformational changes and
overcrowding of the brain and cervical spinal cord particu-
larly at the craniocervical junction. Obstruction of the for-
amen magnum and cerebrospinal fluid (CSF) channels is
hypothesized to be pivotal in the pathogenesis of SM [4–7].
In the CKCS, risk of SM has been shown to be associ-

ated with increased brachycephaly with rostrocaudal
doming i.e. a heightened cranium that slopes caudally
[8] and reduced skull base due to craniosynostosis or
premature skull suture closure [9]. The underlying
pathogenic mechanisms proposed for the development
and progression of SM secondary to CM remain poorly
understood and even controversial complicating the in-
terpretation of many clinical observations and the selec-
tion of the appropriate treatment protocols. Current
prevailing hydrodynamic theories generally assume that
syrinx fluid is CSF that has entered the cord as a result
of perturbations of pulsations in the subarachnoid space
caused by overcrowding of neural parenchyma in the
caudal part of the cranial fossa and the cervical vertebral
canal as seen in CM [10].
Studies on the inheritance of SM have shown that

it is a complex trait with a moderately high herit-
ability [11]. The genetic origin of CM and its role in
SM remain to be identified. Incomplete penetrance
and variability of clinical signs in both CM and SM
seem to indicate a polygenic mode of inheritance
[11, 12]. The genetic approach widely used to inves-
tigate complex disorders is a genome-wide associ-
ation study (GWAS) that aims at identifying genes
or SNPs that determine the disease even though
each gene contributes only a small fraction to the
disease process. This strategy was applied success-
fully in dogs and permitted the identification of loci
associated with osteoarthritis of hip joints [13], hip
and elbow dysplasia [14], and related BMP3 (BONE
MORPHOGENETIC PROTEIN 3) variations to skull
diversity [15]. Particularly, an association study was
successfully used to identify loci associated with CM
in the Griffon Bruxellois (GB) breed. A total of 14
quantitative skull and atlas measurements were taken

and were tested for association to CM in the GB.
Significant associations were identified between spe-
cific traits and CM/SM status in GB [16, 17], a
mixed GB breed [18] and CKCS cohorts [6]. A
GWAS in the GB cohort identified one locus on
CFA2 (CFA, Canis Familiaris autosome) strongly as-
sociated to the height of the cranial fossa and an-
other locus on CFA14 associated to both the height
of the caudal cranial fossa (reduced supraoccipital
bone) and brachycephaly [17]. These two loci were
significantly associated to CM further strengthening
their candidacy. In this study, we conducted a
GWAS to identify genomic regions that predispose
to SM secondary to CM in the CKCS dog breed.

Methods
Cohort and phenotypic traits
A cohort of 96 CM affected CKCS with DNA consisting
of 40 males (26 affected and 14 unaffected) and 56 females
(35 affected and 21 unaffected) with an average age of 5.5
± 2.5 years was included in the quantitative study investi-
gating CM (Additional file 1: Table S1). This cohort was
part of a larger CKCS cohort used by the same group to
characterize painful CM and secondary SM for which
DNA was available [6]. DICOM (Digital Imaging and
Communications in Medicine) T1-weighted midsagittal
MRI of the brain and cervical region of these 96 dogs allo-
cated with an ID were analyzed. The minimum inclusion
criterion was visualization of the hindbrain to the level of
the interthalamic adhesion to the cervical vertebrae 4/5
intervertebral disc space. Only DICOM images accompan-
ied by details of birth, date of MRI and identity microchip
number were used. The MRI studies were loaded into
DICOM viewing software eFILM workstation (Merge
Healthcare 900 Walnut Ridge Drive, Hartland, WI 53029
USA). CM/SM status was determined by author CR by
noting the presence of CM and SM on sagittal T1 and
T2W weighted images and then, if SM was present, deter-
mining the maximum internal syrinx transverse diameter
(STD) from transverse T1 weighted images of the cervical
spinal cord. The smallest unit of measurement in eFILM
is 1 mm (mm). These criteria are in accordance with the
British Veterinary Association/ Kennel Club guidelines for
screening for SM (https://www.bva.co.uk/Canine-Health-
Schemes/CM-SM-Scheme/). SM severity was established
according to the STD as wide STD has been previously as-
sociated with clinical signs of pain, fictive scratch and
scoliosis [19]. The 96 CKCSs were separated in 3 categor-
ies that took account of late onset condition of SM: nor-
mal (35 dogs without syrinx or central canal dilation
(STD = 0 mm over 5 years of age), intermediate (29 dogs
with STD = 1 or 2 mm over 5 years of age) or severe (32
dogs with STD ≥ 3 mm any age).
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Next, using a DICOM reading software (Mimics® 14.12,
Materialise, Belgium), a total of 11 structures were defined
and 27 lines, angles and ratios were measured by SPK,
initially blinded to SM status (Fig. 1, Additional file 1:
Table S1). The mapping of the hindbrain and cranio-
cervical junction was adapted from previous genetic
and conformational studies undertaken in the Griffon
Bruxellois [16, 17]. Dogs with narrow syringes or
small central canal dilation are more likely to be
asymptomatic at least with regard to the syrinx. The
CKCS breed is very variable in size and head-shape.
In view of this, two ratios were taken which reflected
the size and shape of the caudal fossa and relating
this to the height of the cranial fossa (f-diameter).
The first ratio was the f-diameter (F-d) divided by the
distance across the foramen magnum from the caudal
point of the basioccipital to the rostral point of the
atlas (line BC) and the second was F-d divided by the
height of the supraoccipital bone (line CD) (Fig. 1).
Since the MRI of the forebrain and olfactory bulb
was not always available for analysis, in order to take
account of the impact of brachycephaly and compen-
satory rearrangement of parenchyma and reduced
caudal fossa, the two angles which most reflected
these deviations in the hindbrain, angle 4 and angle 7
were combined (L4 + L7) (Fig. 2). The hypothesis be-
ing the smaller these two angles were, the greater the
deviation and reduction in the neural parenchyma of
the hindbrain and craniocervical junction.

Genotyping across the genome
A total of 96 CKCSs were genotyped with CanineHD
Genotyping Beadchip (Illumina Inc., San Diego, CA,
USA) which contained 173,662 SNPs. These SNPs were
analysed using genome studio and filtered for SNPs with
a minor allele frequency > 0.05, a SNP genotyping rate of
0.9 and an individual genotyping rate of 0.9 using Plink
V1.07. A total of 85,647 SNPs were excluded for lack of
informativeness in the CKCS breed (MAF < 0.05). Three
dogs had a genotyping rate under 0.9 and were therefore
excluded from further analysis resulting in 93 dogs
(Initial cohort: 39 affected, 54 unaffected, 39 males, 54
females). To remove potential bias associated with am-
biguous phenotypes, dogs with STD less than 3 mm were
removed from the analysis. This resulted in a final co-
hort of 65 dogs (32 affected, 33 unaffected, 26 males, 39
females) genotyped with 88,015 SNPs.

Targeted next generation sequencing
The 2 loci of 0.17 Mb and 0.8 Mb on CFA22 and CFA26
associated to ratio F-diameter (F-d)/BC and L4 + L7 re-
spectively were sequenced in the same 65 dogs used for
GWAS using SeqCap Custom relaxed probe set library
preparation specifically designed by Roche Nimblegen
(Madison, WI, USA) and subsequently subjected to 100
base pair, paired end sequencing on the Illumina
HiSeq2000 Platform at the McGill University and Génome
Québec Innovation Centre. Using an SSAHA algorithm,
the baits contained 3313 probes with up to 20 close

Fig. 1 Morphometric measurements of a Cavalier King Charles Spaniels whole brain. Measurements were chosen to best reflect the possible
morphological changes observed in SM. All measurements start from one of these points: a dorsum of sphenoid-occipital synchondrosis, b basion
of basioccipital bone, c rostral edge of the dorsal lamina of the atlas, d junction between supraoccipital bone and occipital crest, e most dorsal
point of intersection of the cerebellum with the occipital lobe circle, f center of occipital lobe circle, g point at which the optic nerve deviates
into the optic canal, h rostral edge of supra-occipital bone, i intersection point with the extended AB baseline caudally with extended line DC
ventrally, j most rostral aspect of the dens of the axis bone and k extended line from point B along the best fit line of the ventral medulla
oblongata to where it changes angle to the spinal cord
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matches in the genome for the purposes of providing
maximum coverage. The vast majority of the probes were
unique, with a few probes that had a greater degree of
multi-locus homology to increase coverage in all regions.
Reads were mapped to the genome (CanFam3.1 release
September 2011) with Burrows-Wheeler Aligner (BWA).
Duplicated reads were removed, the rest were locally rea-
ligned using GATK v2.6.4 and annotated using Annovar.
The average read depth for the targeted regions was
151,01X (89,32X - 208,32X) with 99,58% of targeted re-
gions covered at greater than 20X.

Genotyping with tagSNPs
Tagging SNPs were selected to maximize coverage of
each locus. They were identified using the tagger routine
in the Haploview V4.2 software with a maximum r2 of
0.2. Two tagSNPs were amplified on CFA22 at position
13,804,718 and 13,933,606 (rs23040347) with the probes
GGATTACAGAAGTCACAGTCGAAAGACTGGGAAAG
AGACACCAGAGCTCCAAGTTTATAAAGTTGTATTTT
AAAGATTCAGTGATGTCTGAGGAATGAAATGGGAT
GAGGAAGGAAAAATTATGCACTAGGAGCAATGTTT
TCTGTCTTC[T/A]GGAATGGGAAGTGAGATGAACAG
CATAGGAGATTTGAAAGGTAGCAAACAATCCAGGA
GACCTACAGGCCCGTGATCAATGACTTATAAGATGA
TATTAAGGAAACATTATATATGATACTATATCCTCCT
TTGAGAGTCTGTATGCATT and TTAATCTTCAAAAC
GGCCCAATGAGGATATCCCCATTTTGCAGATGAAG
AATGAAGGAACGTTGAAGTTCAGTGATTTGATCCA
GAATAAGTGCAGTGAGACTTCAGATCCAGCTATGG
GGTTTGCCAAATTCAATCTCTGCCCTTCCTC[A/C]C
TATTCTTAACCGCCAAATATTATTTATATTTGTAAGA
ATGCAGTTTTAAAGGTTGAAATTTTCAACTTCTCAC
ACAGAGCAGATAGCTGGAGACGAAGATGGTAGGAC
TGCTCTCTCATTGCCTGCATTGTGCTCTCTGAGTAG

TGAAA respectively. Two SNPs were also amplified on
CFA26 at position 32,757,080 (rs23302138) and 32,797,595
with the probes TGTCCTCCTGGCTTCTGAGGGGG
TGGGTGCGGGGCCTGGAGGCCCAGAGGGGAACAG
GATGTGGCCACAGGATGGAGAGCTGACTTGTGCAC
AGGGGCCTGTGTGGGTCAGTCTGTGTCCCCGGCAC
CCCTGAAGCTGCAGGTGTCTCAG[T/C]AGAGCCCC
TCAGTGGGTAACTCTGCCCCCAATTCCCTCCTTGGA
GACTGCATCTCCTCCTGTGCCTCCTGCAAGTCGCT
GTCAGCTTCCCTCCCCTGAGGTCTGACGCCTCCTG
CAGGAAGTTCTCTGGGATTGGATCTCAAAATGGTG
C and CATGAGTTGGAAGGGCAGTTAAGGGCAGAAG
GACTTAGAGGCGGAGAGCATAGAGAAGGAAAAGG
CACGATGGTGTGTTTGATTATCTCCCCCTCTCCATT
CTCATGGTGCCACCTATCCTAATTCCAGTTCGTATT
ATCATAGGTCTCA[C/T]TCCACCAATAACGTCTCAA
TCACACACACCATGTCCTGTCTTCTCGTTGGTCTGT
GCTATGATCTGTGTGGTTCTTCTCTTTCCCAGGAG
GCCAGATCTGTATTTTGCTGATTACAATCTACTCTT
TAATTCTGGATTGAATTGCTAACT respectively. Geno-
typing was performed using the TaqMan assay (Applied
Biosystems) on 393 CKCS dogs (187 SM unaffected, 274
SM affected).

Statistical analyses
Initial GWAS analysis was done in 2 phases: association
of the quantitative traits (skull and cranial cervical mea-
surements) to disease, followed by association of SNPs
to these quantitative traits. Association of the quantita-
tive traits to the disease was done using a linear regres-
sion with a type III sum of squares in R V3.0.1 [20] and
age as a covariate. Due to the strong association of STD
size and age, inclusion of age as a covariate was used to
correct for its potential confounding effect. Association
of SNPs to the quantitative traits was done using a

Fig. 2 Cavalier King Charles Spaniel with and without SM illustrating differences in the size and arrangement of a combination of angles 4 and 7
(L4 + L7). Angles 4 and 7 are smaller in the CKCS with SM (red) as compared to CKCS without SM (blue) reflecting a reduced cranial caudal fossa
and rearrangement of neural parenchyma. Right panel, a schematic Fig. of the occipital circle with centre F (grey) and angles 4 + 7 of the CKCS
with SM (red) that have been superimposed on the CKCS without SM (blue). A, dorsum of sphenoid- occipital synchondrosis; B, basion of
basioccipital bone; D, junction between supraoccipital bone and occipital crest; E, most dorsal point of intersection of the cerebellum with the
occipital lobe circle; F, center of occipital lobe circle
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mixed linear model including age as a covariate and po-
tential stratification as a random effect which was cor-
rected using a genomic relationship matrix using
GEMMA V0.94 [21]. All P values obtained from the as-
sociation were corrected together for multiple testing
using a storey’s q value method [22]. Haplotypes sur-
rounding these SNPs were reconstructed using Haplo-
view V4.2 [23] and associations with the initial
quantitative trait were run using Plink V1.07 linear rou-
tine [24] with age as a covariate. Correction was applied
using 10,000 permutations. Plink V1.07 logistic regres-
sion routine using age as a covariate was used to test for
association between tag SNPs and SM and Bonferroni
was used to correct for multiple testing (0.05/4 =
0.0125).

Results
Association of skull measurements to SM in the CKCS
breed
The complex skull morphology of the CKCS breed was
investigated using 27 lines, angles and ratios as well as
age, gender and ventricular dilatation on a cohort of 96
dogs (Figs. 1 and 2, Additional file 1: Table S1). Level of
affliction of dogs was defined by the STD size. A linear
regression including age as a covariate was used to asso-
ciate traits and STD size. STD size did not show any as-
sociation to gender (Table 1). A total of 6 measurements
consisting of line AE, line AI, angle 3, angle 7, ratio F-d/
BC and L4 + L7 all showed a significant association to
STD size (Pbonferroni < 0.0019) and were therefore further
investigated (Fig. 3 and Table 1).

Genome-wide association study of SM in CKCS
A GWAS using a mixed linear model with age as a co-
variate was applied on the previously identified traits
(Line AE, line AI, angle 3, angle 7, ratio F-d/BC and L4
+ L7). This resulted in the identification of a group of 13
SNPs on CFA15 (BICF2S23761321, BICF2G630435380,
BICF2S22961368, BICF2G630437186, BICF2G6304371
78, BICF2G630437135, BICF2G630437112, BICF2G6304
37075, BICF2G630437073, BICF2S23311892, BICF2G63
0437043, BICF2G630437038, BICF2G630437002) associ-
ated to ratio F-d/BC under a FDR of 0.05 (all P = 0.03754)
and two SNPs on CFA26 (BICF2P174010, BICF2P152116),
which were significantly associated to L4 + L7 under a
FDR of 0.05 (both P = 0.03754) (Fig. 4 and Table 2).
Multiple SNPs were suggestive of association with FDR

corrected scores between 0.05 and 0.1 (Additional file 2:
Table S2). By comparing the list of these “borderline”
SNPs to a previous association study of CM in the GB
breed conducted by our group [17], we were able to iden-
tify an overlap with only one SNP on CFA22,
BICF2P1045632, that was associated with ratio F-d/BC
with a P value after FDR of 0.07846 in the present study.

This SNP maps to a region that was identified as suggest-
ive of association with the line BC in the previously stud-
ied GB breed [17]. A replication between two unrelated
cohorts from two different breeds offers strong evidence
for association strengthening the candidacy of this SNP
and suggesting the need for inclusion in the following gen-
etic studies. The other SNPs that did not reach statistical
significance in this study and that were not replicated in
our previous association study of CM in GB dogs require
further genetic analyses in larger cohorts.

Haplotype analysis of the candidate SM loci
Using Haploview V4.2, blocks of linkage disequilibrium
(LD) surrounding the SNPs significantly associated to

Table 1 Quantitative traits that are significantly associated
(P value< 0.05) to syrinx transverse diameter following linear
regression and multiple testing correction

Trait Raw P value Bonferroni corrected P value*

Gender 0.680431 1

Age 8.01E-06 0.000216

F-Diameter 0.005901 0.159332

Line AB 0.609389 1

Line BC 0.172273 1

Line CD 0.815288 1

Line BD 0.068142 1

Line AE 0.00124 0.033479

Line ID 0.17867 1

Line AC 0.084552 1

Line Ai 7.82E-05 0.002113

Line CJ 0.014438 0.389822

Line FH 0.952342 1

Line FG 0.151877 1

Line BK 0.03617 0.976588

Angle L1 (hae) 0.769033 1

Angle L2 (fac) 0.038195 1

Angle L3 (dib) 8.11E-06 0.000219

Angle L4 (fae) 0.124912 1

Angle L5 (aeb) 0.329471 1

Angle L6 (dba) 0.278602 1

Angle L7 (bdi) 1.01E-05 0.000272

Angle L8 (ebd) 0.861691 1

Angle L9 (jcb) 0.136343 1

Angle L10 (afg) 0.036817 0.994072

Angle L11 (ebk) 0.100105 1

Ratio F-d/CD 0.473593 1

Ratio F-d/BC 0.00172 0.046441

L4 + L7 1.33E-05 0.000358

*P values in bold represent significant association
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L4 + L7and ratio F-d/BC were defined. A first LD block
of 1.7 Mb surrounding SNPs associated to ratio F-d/
BC was identified on CFA15 from 24,537,882 bp to
26,252,411 bp (Additional file 3: Fig. S1). A second
LD block of 0.8 Mb surrounding SNPs associated to
L4 + L7 was identified on CFA26 from position
32,226,403 bp to 33,034,398 bp. A last LD block of
0.17 Mb surrounding the SNP associated with ratio
F-d/BC and identified previously in the GB cohort
was identified on CFA22 from 14,107,661 bp to
14,276,181 bp. The three haplotypes were analysed
using linear regression that included age as a covari-
ate and looked at the potential association of these

blocks with their respective traits. Linear regressions are
known to be sensitive to rare haplotypes associated to
extreme measurements; therefore, rare haplotypes with a fre-
quency under 0.05 were excluded. This resulted in the iden-
tification of three haplotypes, one on CFA22 (P= 0.009599)
and two on CFA26 (P= 0.01067 and 0.00231), that were sig-
nificantly associated to ratio F-d/BC (Table 3) and L4 + L7
(Table 4) respectively (Fig. 5). The strong association of these
haplotypes and SNPs with their respective traits combined
with the strong association of these traits with the STD size
support the implication of these regions in the development
of SM. No significantly associated haplotypes were identified
on CFA15 excluding his region from further analyses.

Fig. 3 Linear regression of traits and STD size including age as a covariate. A total of 6 measurements consisting of line AE, line AI, angle 3, angle
7, ratio F-d/BC and L4 + L7 all showed a significant association to STD size (Pbonferroni < 0.0019)
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Targeted next generation sequencing of the SM-
associated loci on CFA22 and CFA26
Each of the SM- associated regions harbored only one
coding gene: PCDH17 (PROTO-CADHERIN 17) on
CFA22 and ZWINT (ZW10 INTERACTING KINETO-
CHORE PROTEIN) on CFA26. In order to identify po-
tential SM -predisposing mutations, both CFA22 and

CFA26 candidate regions were submitted to targeted
next generation sequencing. The reads of the sequences
obtained from the 65 CKCS were aligned on CanFam
3.1 resulting in 5608 SNPs on CFA22 and 10,814 SNPs
on CFA26. Except for one SNP (rs2305483), that was
identified in the coding region of PCDH17 and that was
non-conserved and synonymous, all identified SNPs

Fig. 4 Manhattan plots (top) and QQ plots (bottom) of significant loci obtained by a mixed linear model in traits: ratio F-d/BC (left) and L4 + L7
(right). Two loci on CFA15 and CFA26 were significantly associated to ratio F-d/BC and L4 + L7 respectively

Table 2 Loci significantly associated to ratio F-d/BC and L4 + L7 in the mixed linear model

Chr SNP Position Raw P value FDR corrected P value

15 BICF2S23761321 28,798,671 3.81E-07 0.037545

15 BICF2G630435380 29,147,043 5.87E-07 0.037545

15 BICF2S22961368 26,586,223 1.11E-06 0.037545

15 BICF2G630437186 26,599,059 1.11E-06 0.037545

15 BICF2G630437178 26,605,637 1.11E-06 0.037545

15 BICF2G630437135 26,619,845 1.11E-06 0.037545

15 BICF2G630437112 26,623,178 1.11E-06 0.037545

15 BICF2G630437075 26,645,302 1.11E-06 0.037545

15 BICF2G630437073 26,645,969 1.11E-06 0.037545

15 BICF2S23311892 26,690,382 1.11E-06 0.037545

15 BICF2G630437043 26,734,763 1.11E-06 0.037545

15 BICF2G630437038 26,738,248 1.11E-06 0.037545

15 BICF2G630437002 26,797,343 1.11E-06 0.037545

26 BICF2P174010 32,735,128 5.99E-07 0.037545

26 BICF2P152116 32,738,238 5.99E-07 0.037545

Ancot et al. BMC Genetics  (2018) 19:16 Page 7 of 12



resided in intergenic and deep intronic regions. Using
improved coverage of the region, linkage disequilibrium
blocks were reevaluated based on the significant SNPs in
the regions. A total of 37 and 339 SNPs were defined as
significantly associated to F-d/BC and L4 + L7 respect-
ively. Based on the hypothesis that causative SNPs would
be significantly associated to their respective trait, these
SNPs refined the regions of interest to 13,785,828-
14,183,295 bp (397,467 bp) on CFA22 and 32,721,057 bp
to 33,094,292 bp (373,235 bp) on CFA26.

Genotyping of an extended CKCS cohort with SNPs
significantly associated to ratio F-d/BC and L4 + L7
To investigate the potential association between the iden-
tified SNPs and SM, a cohort of 461 CKCS including 187
unaffected and 274 SM-affected (that included the original
65 dogs) were genotyped with two TagSNPs from each of
the associated regions on CFA22 and CFA26. While the 2
selected TagSNPs on CFA26 at position 32,797,595 bp
and 32,757,080 bp did not show any significant association
to SM (P value = 0.7637 and 0.7614), the 2 selected
TagSNPs on CFA22 at position 13,933,606 bp and
13,804,718 bp reached significance (P value = 0.0104 and
0.02309). Bonferroni corrected P value of the TagSNP at
position 13,933,606 bp on CFA22, was still significant at a
P value of 0.0104. Hence, we successfully identified a re-
gion on CFA22 associated to ratio F-d/BC and SM in the
CKCS dogs.

Discussion
Studies of CM in large affected CKCS pedigrees suggested
a polygenic inheritance with a wide clinical spectrum
where CM with SM represents the most aggravated form
[11, 25]. The genetic factors predisposing to CM and SM
have been shown to be interrelated and seem to have their
origin in bone development with hypoplasia of the supra
and basisoccipital bones and reduced caudal fossa volume
associated with a compensatory increase in height of the
cranial fossa [7]. Other associated abnormalities include:
reduced occipital crest; rostral displacement of the atlas
and axis (atlantooccipital overlapping); medulla oblongata
elevation/kinking; more acute angulation of the axis bone
to the cranial bases (cervical flexure); more acute angle
at the spheno-occipital synchondrosis (sphenoid flex-
ure) [4, 6, 7, 26, 27]; reduced volume of jugular foramen
and venous sinus [28, 29]; a relatively large cerebellum
[10, 30, 31], and dorsal compression from atlantoaxial
bands [32, 33]. While some of these traits may be a conse-
quence or insufficiency of the occipital sclerotomes (par-
axial mesoderm) which form the skull base and parts of
the atlas and axis and associated ligaments [1], we cannot
exclude a complex origin where multiple genes lead to a
range of phenotypes regrouped as CM with SM.
As previously demonstrated, cranial morphometric

measurements can provide significant information to de-
compose the complex nature of CM and SM [6, 16, 17].
In this study, we identified 6 traits (line AE, line AI,
angle 3, angle 7, ratio F-d/BC and L4 + L7) significantly
associated to STD size. Genetic investigation of these
traits identified significant association with SNPs on
CFA15 with F-d/BC and on CFA26 with L4 + L7. Both
these traits represented a combination that demon-
strated a reduction in the overall size of the caudal cra-
nial fossa and rearrangement of the neural parenchyma
(Fig. 2). Screening of SNPs that were suggestive of asso-
ciation identified one SNP on CFA22, BICF2P1045632,
associated with F-d/BC, that mapped to a region found
to be associated with the line BC in a previous associ-
ation study of CM in the GB breed [17]. This replication

Table 3 Raw and permutation P values of the F-d/BC-associated
haplotypes in the CFA22 candidate region at 14107661-14276181 bp

Name Haplotype Frequency Raw P value Corrected P value

1 AGCCGTCCCTTG 0.431 0.956 1

2 GAACATTGCGTA 0.351 0.262 0.7261

3 AGCTGGCCTTCG 0.100 0.00153 0.009599

4 GGACAGCCTTCG 0.041 0.0644 0.2626

5 GAACATTGCTTA 0.062 0.223 0.659

Table 4 Raw and permutation P values of the F-d/BC-associated haplotypes in the CFA26 candidate region at 32226403-
33034398 bp

Name Haplotype Frequency Raw P value Corrected P value

1 TTCCCGACAGACGGTAATTGTGTTATAATGTTA 0.215 0.00237 0.01067

2 CCGTAAGTAAGAAGGCAGCGCGTCTCGAAACCG 0.492 0.903 1

3 TTCCAAGTAAGAAGGCAGCGCGTCTCGAAACCG 0.0538 0.562 0.998

4 TTCCCGACAGACGGTAATTGTGTTTCGAAACCG 0.0308 0.434 0.9865

5 CTCTAAGTGAACAATAGGCATACTTCGGAGCTG 0.108 0.000584 0.00231

6 CTGTCAATGAACAGTAGGCATACTTCGGAGCTG 0.0231 0.0584 0.3657

7 CCGTAAGTAAGCAATAGGCATACTTCGGAGCTG 0.0154 0.724 1

8 TTCCCGACAGACGGTAATTGTACTTCGGAGCTG 0.0154 0.301 0.9372
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strengthens the candidacy of the locus on CFA22 for fur-
ther genetic investigation. Haplotype analysis of candi-
date loci on CFA15, CFA26 and CFA22 identified
significantly associated haplotypes only on CFA22 and
CFA26 loci, but none on the CFA15 locus. This suggests
that CFA15 initial scores were driven by a rare haplotype
overrepresented in extreme cases. Line BC measures the
distance from the caudal end of the basiocciput to the
atlas, across the foramen magnum. Previous association
of line BC to CM in GB strengthens the candidacy of
F-d/BC as an important factor in CM and SM etiology
[16, 17]. L4 + L7 was found to be smaller in SM dogs as
compared to no SM dogs in linear regression analyses of
SM-significantly associated traits. This suggests that the
reduced caudal cranial fossa representing CM has a dir-
ect influence on SM. Replication of these findings in a
larger cohort could provide better diagnostic tools of
SM in CM-affected dogs.
Genotyping of tagSNPs selected from both candidate

loci on CFA22 and CFA26 in an extended cohort of 461
CKCS (187 SM unaffected, 274 SM-affected) identified a
significant association of the candidate locus on CFA22
and SM. Hence, this candidate locus that was suggestive
of association to the ratio F-d/BC in CKCS and to the
line BC in a previous association study in GB dogs was
found to be significantly associated to SM, strengthening
its candidacy for SM. On the other hand, the tagSNPs on
CFA26 that was significantly associated to L4 + L7 were
not significantly associated to SM in the larger cohort. In
a parallel study which characterized the phenotype of CM
in the CKCS, two different skull conformation anomalies
were identified which resulted in SM in this breed [6].

The trait of smaller L4 + L7 was a feature of one conform-
ation anomaly (case 2, Fig. 5 in reference [6]). It is there-
fore possible that significance of this trait in the larger
CKCS cohort was reduced since other associated features
were underrepresented. By contrast, higher F-d/BC in-
creased risk of SM in both CKCS skull anomalies.
The associated loci on CFA22 and CFA26 harboured

each only one gene: PCDH17 and ZWINT (respectively).
Targeted next generation sequencing of both CFA22 and
CFA26 candidate loci identified a total of 37 and 339 sig-
nificantly associated SNPs with ratio F-d/BC and L4 + L7
respectively. No mutation in the coding region of either
gene was detected, except for one synonymous mutation
in PCDH17. We hypothesize that predisposing muta-
tions in these two regions are most likely regulatory that
would affect RNA expression of either PCDH17 or
ZWINT or other unannotated transcripts. Alternatively,
these regulatory mutations could have a long-range ex-
pression effect on transcripts residing outside the 2 can-
didate regions. RNA-sequencing or quantitative RT-PCR
studies in affected tissues from dogs carrying the associ-
ated haplotypes are needed to test this hypothesis.
PCDH17 (PROTOCADHERIN 17) belongs to the fam-

ily of protocadherins that are involved in the adhesion
and sorting of cells during tissue morphogenesis. It is
expressed specifically in several regions of the develop-
ing and adult brain and spinal cord [34–41]. It regulates
spine development, presynaptic assembly, vesicle accu-
mulation and transmission in corticobasal ganglia synap-
ses [34]. Overexpression of PCDH17 in primary cortical
neurons is associated with significantly decreased den-
dritic spine density and abnormal dendritic morphology

Fig. 5 P value distribution inside the CFA26 (32226403-33034398 bp) and the CFA22 (14107661-14276181 bp) candidate loci. Top graphs
represent the P values before correction (black line) and after FDR correction (red line) for the SNPs in reconstructed regions
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[42] and it is possible that variants in the dog gene could
play a role in development of the neural tissue and affect
CM/SM disease expressivity. Additional knockout stud-
ies in cell or animal models are needed to further inves-
tigate the potential role of this gene in the pathogenesis
of SM. ZWINT (ZW10-INTERACTOR) has an important
role in kinetochore assembly and proper chromosome
segregation [43]. In rats, it was shown to be expressed in
different regions of the brain and in dorsal horn laminae
and its expression levels increased with the onset of
neuropathic pain after chronic constriction injury of the
sciatic nerve [44–46]. We tested for association between
the SM-associated locus on CFA26 and pain in our co-
hort of 65 CKCS and we did not detect any significant
association. However, at the time of DNA collection,
phenotyping for pain was not as rigorous and pain relat-
ing to CM versus SM pain was not separated. Moreover,
objective phenotyping for pain, a subjective experience, is
extremely difficult especially when it is partly dependent on
owner reporting. Genetic investigation in larger CKCS co-
horts with improved pain phenotyping data is needed to
further analyze the role of ZWINT in pain development
and in SM associated with CM.
CM with SM in the dog is very similar to a condition

in humans called Chiari malformation I (CMI) with a re-
ported frequency of 1 in 1280. As in dogs, the preva-
lence of SM secondary to CMI in humans is high
reaching 65%–85% [47, 48]. Genetic studies of CM and
SM in both humans and dogs clearly suggest a complex
genetic architecture which has hampered the identifica-
tion of predisposing genetic factors. The dog model is
the only known naturally-occurring animal model for
CMI in humans. The reduced genetic variability of dogs
caused by founder effects, genetic bottlenecks and
strong inbreeding make it an excellent tool for investiga-
tion of complex diseases [49] . Hence, gene identification
studies in CM with SM in the dog might provide an
entry point for identification of novel genes and path-
ways involved in the pathogenesis of CMI and SM in
humans.

Conclusions
In this study, we have used a genome-wide association
study to decipher the genetics of SM secondary to CM in
the CKCS breed. We identified 6 cranial T1-weighed sa-
gittal MRI measurements that were associated with the
syrinx transverse diameter. We next identified 2 haplo-
types on CFA22 and CFA26 that were significantly associ-
ated to ratio F-d/BC and L4 + L7 respectively. Genotyping
of a larger cohort of CKCS dogs confirmed association of
the locus on CFA22 with SM in this breed. Each of these
2 haplotypes harbored only one gene: PCDH17 on CFA22
that codes for a cell adhesion molecule specifically
expressed in the brain and spinal cord and ZWINT that

plays a role in proper chromosome segregation and whose
expression is increased with the onset of neuropathic pain.
Additional molecular genetic studies in larger CKCS co-
horts from various affected brachycephalic breeds and in
cell and animal models are needed to further investigate
the role of the 2 associated loci and the genes they harbor
in the pathogenesis of SM secondary to CM. Our study
represents an essential step towards a better understand-
ing of the complex genetics of this devastating condition
and development of breeding strategies that aim at elimin-
ating it from the affected dog breeds. It also provides an
important model for studying CMI/SM in humans.

Additional files

Additional file 1: Table S1. Characteristics and measurements of 96
CKCS of the cohort. This table includes the gender, age, clinical status
and all MRI cranial measurements taken on the 96 CKCS dogs included in
this study. (XLSX 41 kb)

Additional file 2: Table S2. SNPs suggestive of association to SM in the
CKCS breed. This table enlists all SNPs suggestive of association with FDR
corrected scores between 0.05 and 0.1. These SNPs were identified
following a GWAS using a mixed linear model with age as a covariate on
the previously identified traits (Line AE, line AI, angle 3, angle 7, ratio F-d/
BC and L4 + L7). (DOCX 15 kb)

Additional file 3: Figure S1. P value distribution inside the CFA15
(24537882-26,252,411 bp) associated region. This region spans 1.7 Mb
surrounding SNPs associated to ratio F-d/BC and was identified using
Haploview V4.2. (PDF 54 kb)

Abbreviations
CFA: Canis familiaris autosome; CM: Chiari-like malformation;
CSF: Cerebrospinal fluid; DICOM: Digital Imaging and Communications in
Medicine; GB: Griffon Bruxellois; GWAS: Genome-wide association study;
Mb: Mega basepairs; MRI: Magnetic Resonance Imaging;
PCDH17: Protocadherin 17; SM: Syringomyelia; STD: Syrinx transverse
diameter; TagSNPs: Tagging single nucleotide polymorphisms; ZWINT: ZW10-
interactor

Acknowledgements
Thanks are given to the dedication and generosity of the many Cavalier King
Charles owners worldwide who participated in, or supported the research
into CM/SM. In particular, Dana Schuller-Kuyper, Sandy Smith, Margaret Carter
and members of the Companion Cavalier King Charles Club, Maggie Ford
and members of the Cavalier Club UK, Karlin Lillington, Nickie Hughes and
the Cavalier Talk Forum, Pat Barrington and the Cavalier Fanciers of Southern
Ontario and the staff at Fitzpatrick Referrals and Stone Lion Veterinary
Hospital.

Availability of data and materials
Raw and processed data for the 65 dogs with genotypes are available at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102906

Funding
This study was mainly supported by funds from the Dog Trust foundation
https://www.dogstrust.org.uk/ (Z.K., C.R., S.P.K. and F.A.). MRI costs were
partially covered by ‘Syringomyelia DNA Research Fund (http://
www.veterinary-neurologist.co.uk/Syringomyelia/DNA_Research/), Cavalier
Matters Charity (http://www.cavaliermatters.org/) and ‘For the Love of Ollie’
(http://www.cavacare.org/). P.L. is awarded by the CHU Sainte Justine
Foundation (www.fondation-sainte-justine.org/) and the Fonds de Recherche
du Québec—Santé (www.frqs.gouv.qc.ca/). S.P.K. doctorate studies are
supported by Cavalier Matters Charity.

Ancot et al. BMC Genetics  (2018) 19:16 Page 10 of 12

https://doi.org/10.1186/s12863-018-0605-z
https://doi.org/10.1186/s12863-018-0605-z
https://doi.org/10.1186/s12863-018-0605-z
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102906
https://www.dogstrust.org.uk
http://www.veterinary-neurologist.co.uk/Syringomyelia/DNA_Research
http://www.veterinary-neurologist.co.uk/Syringomyelia/DNA_Research
http://www.cavaliermatters.org
http://www.cavacare.org
http://www.fondation-sainte-justine.org
http://www.frqs.gouv.qc.ca


Authors’ contributions
FA and PL contributed to the study design, analyzed the data from the
genome-wide association study, targeted next generation sequencing and
tagSNP association study and were major contributors in writing the manu-
script. SPK contributed to the study design, was a major contributor in co-
hort recruitment and selection, analyzed all DICOM T1-weighted midsagittal
MRI images and contributed to writing the manuscript. KK, SG, GBC, JS, PM
contributed to cohort recruitment and MRI data acquisition. GR contributed
to preparing DNA samples. CR was a major contributor to the study concep-
tion and design and data acquisition, contributed to revising the manuscript.
ZK was a major contributor to study conception and design, data interpret-
ation and writing the manuscript. All authors read and approved the final
manuscript.

Ethics approval
MRI of the brain and cervical region were obtained either for diagnostic
reasons or for screening prior to breeding. Blood or saliva was withdrawn at
the end of the MRI procedure whilst the dog is still under the effect of the
anaesthesia ensuring minimal stress to the animal. In the United Kingdom
(UK), Home Office regulations restrict blood sampling for non-diagnostic rea-
sons however if the dog had a blood sample taken for a veterinary diagnos-
tic test and a small amount of excess blood in EDTA remained then this
sample was submitted to the study. For majority of UK owned dogs, the
DNA was collected non-invasively via a sponge that absorbs saliva in the
mouth (Oragene-ANIMAL, DNA Genotek, Inc). It was not necessary to obtain
approval from an ethical committee as the procedures performed were the
necessary diagnostic tests for the animals undergoing veterinary treatment.
Written consent was obtained from all owners and actual identity of dogs
remained anonymous. It is important to note that dogs included in this
study were not experimental animals but animals undergoing appropriate
veterinary treatment or British Veterinary Association/Kennel Club health
screening for breeding purposes and therefore no additional welfare
considerations were required.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Neurosciences, CHU Sainte Justine Research Center,
University of Montréal, 3175 Cote-Sainte-Catherine, Room 3.17.006, Montreal,
QC H3T 1C5, Canada. 2School of Veterinary Medicine, Faculty of Health &
Medical Sciences, University of Surrey, Guildford, Surrey GU2 7AL, UK.
3Department of Medical Imaging, London Health Sciences Centre, London,
ON N6A 5A5, Canada. 4Stone Lion Veterinary Hospital, 42 High Street,
Wimbledon SW19 5AU, UK. 5Dick White Referrals, Six Mile Bottom,
Cambridgeshire CB8 0UH, UK. 6Thames Valley Veterinary Services, London,
ON N6A 4V2, Canada. 7Department of Clinical Sciences of Companion
Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584, CM,
The Netherlands. 8Montreal Neurological Institute and McGill University,
Montreal, QC H3A 2B4, Canada. 9Fitzpatrick Referrals, Godalming, Surrey GU7
2QQ, UK.

Received: 27 July 2017 Accepted: 15 March 2018

References
1. Flint G, Rusbridge C. Syringomyelia: A Disorder of CSF Circulation. 2nd ed.

Heidelberg: Springer Berlin; 2016.
2. Parker JE, Knowler SP, Rusbridge C, Noorman E, Jeffery ND. Prevalence of

asymptomatic syringomyelia in Cavalier King Charles spaniels. Vet Rec. 2011;
168:667.

3. Nalborczyk ZR, McFadyen AK, Jovanovik J, Tauro A, Driver CJ, Fitzpatrick N,
et al. MRI characteristics for “phantom” scratching in canine syringomyelia.
BMC Vet Res. 2017;13:340.

4. Cerda-Gonzalez S, Olby NJ, Broadstone R, McCullough S, Osborne JA.
Characteristics of cerebrospinal fluid flow in Cavalier King Charles Spaniels
analyzed using phase velocity cine magnetic resonance imaging. Vet Radiol
Ultrasound. 2009;50:467–76.

5. Driver CJ, De Risio L, Hamilton S, Rusbridge C, Dennis R, McGonnell IM, et al.
Changes over time in craniocerebral morphology and syringomyelia in
cavalier King Charles spaniels with Chiari-like malformation. BMC Vet Res.
2012;8:215.

6. Knowler SP, Cross C, Griffiths S, McFadyen AK, Jovanovik J, Tauro A, et al.
Use of Morphometric Mapping to Characterise Symptomatic Chiari-Like
Malformation, Secondary Syringomyelia and Associated Brachycephaly in
the Cavalier King Charles Spaniel. PLoS One. 2017;12:e0170315.

7. Knowler SP, Kiviranta A-M, McFadyen AK, Jokinen TS, La Ragione RM,
Rusbridge C. Craniometric Analysis of the Hindbrain and Craniocervical
Junction of Chihuahua, Affenpinscher and Cavalier King Charles Spaniel
Dogs With and Without Syringomyelia Secondary to Chiari-Like
Malformation. PLoS One. 2017;12:e0169898.

8. Mitchell TJ, Knowler SP, van den Berg H, Sykes J, Rusbridge C.
Syringomyelia: determining risk and protective factors in the conformation
of the Cavalier King Charles Spaniel dog. Canine Genet Epidemiol. 2014;1:9.

9. Schmidt MJ, Neumann AC, Amort KH, Failing K, Kramer M. Cephalometric
measurements and determination of general skull type of Cavalier King
Charles Spaniels. Vet Radiol Ultrasound. 2011;52:436–40.

10. Shaw TA, McGonnell IM, Driver CJ, Rusbridge C, Volk HA. Increase in
cerebellar volume in Cavalier King Charles Spaniels with Chiari-like
malformation and its role in the development of syringomyelia. PLoS One.
2012;7:e33660.

11. Lewis T, Rusbridge C, Knowler P, Blott S, Woolliams JA. Heritability of
syringomyelia in Cavalier King Charles spaniels. Vet J Lond Engl. 2010;183:
345–7.

12. Rusbridge C, Knowler SP. Hereditary aspects of occipital bone hypoplasia
and syringomyelia (Chiari type I malformation) in cavalier King Charles
spaniels. Vet Rec. 2003;153:107–12.

13. Mateescu RG, Burton-Wurster NI, Tsai K, Phavaphutanon J, Zhang Z, Murphy
KE, et al. Identification of quantitative trait loci for osteoarthritis of hip joints
in dogs. Am J Vet Res. 2008;69:1294–300.

14. Pfahler S, Distl O. Identification of quantitative trait loci (QTL) for canine hip
dysplasia and canine elbow dysplasia in Bernese mountain dogs. PLoS One.
2012;7:e49782.

15. Schoenebeck JJ, Hutchinson SA, Byers A, Beale HC, Carrington B, Faden DL,
et al. Variation of BMP3 contributes to dog breed skull diversity. PLoS Genet.
2012;8:e1002849.

16. Knowler SP, McFadyen AK, Freeman C, Kent M, Platt SR, Kibar Z, et al.
Quantitative analysis of Chiari-like malformation and syringomyelia in the
Griffon Bruxellois dog. PLoS One. 2014;9:e88120.

17. Lemay P, Knowler SP, Bouasker S, Nédélec Y, Platt S, Freeman C, et al.
Quantitative trait loci (QTL) study identifies novel genomic regions
associated to Chiari-like malformation in Griffon Bruxellois dogs. PLoS One.
2014;9:e89816.

18. Knowler SP, v/d Berg H, McFadyen A, La Ragione RM, Rusbridge C.
Inheritance of Chiari-Like Malformation: Can a Mixed Breeding Reduce the
Risk of Syringomyelia? PLoS One. 2016;11:e0151280.

19. Rusbridge C, Carruthers H, Dubé M-P, Holmes M, Jeffery ND. Syringomyelia
in cavalier King Charles spaniels: the relationship between syrinx dimensions
and pain. J Small Anim Pract. 2007;48:432–6.

20. R Core Team. R: A language and environment for statistical computing. Vienna:
R Foundation for StatisticalComputing; 2013. http://www.R-project.org/.

21. Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms
for genome-wide association studies. Nat Methods. 2014;11:407–9.

22. AJ Bass, Dabney A and Robinson D. qvalue: Q-value estimation for false
discovery rate control. R package version 2.8.0, 2015 http://github.com/
jdstorey/qvalue.

23. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of
LD and haplotype maps. Bioinform Oxf Engl. 2005;21:263–5.

24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007;81:559–75.

25. Rusbridge C, Knowler P, Rouleau GA, Minassian BA, Rothuizen J. Inherited
occipital hypoplasia/syringomyelia in the cavalier King Charles spaniel:
experiences in setting up a worldwide DNA collection. J Hered. 2005;
96:745–9.

Ancot et al. BMC Genetics  (2018) 19:16 Page 11 of 12

http://www.R-project.org/
http://github.com/jdstorey/qvalue
http://github.com/jdstorey/qvalue


26. Cerda-Gonzalez S, Olby NJ, Griffith EH. Medullary position at the
craniocervical junction in mature cavalier King Charles spaniels: relationship
with neurologic signs and syringomyelia. J Vet Intern Med. 2015;29:882–6.

27. Marino DJ, Loughin CA, Dewey CW, Marino LJ, Sackman JJ, Lesser ML, et al.
Morphometric features of the craniocervical junction region in dogs with
suspected Chiari-like malformation determined by combined use of
magnetic resonance imaging and computed tomography. Am J Vet Res.
2012;73:105–11.

28. Fenn J, Schmidt MJ, Simpson H, Driver CJ, Volk HA. Venous sinus volume in
the caudal cranial fossa in Cavalier King Charles spaniels with syringomyelia.
Vet J Lond Engl. 2013;197:896–7.

29. Schmidt MJ, Ondreka N, Sauerbrey M, Volk HA, Rummel C, Kramer M.
Volume reduction of the jugular foramina in Cavalier King Charles Spaniels
with syringomyelia. BMC Vet Res. 2012;8:158.

30. Cross HR, Cappello R, Rusbridge C. Comparison of cerebral cranium volumes
between cavalier King Charles spaniels with Chiari-like malformation, small
breed dogs and Labradors. J Small Anim Pract. 2009;50:399–405.

31. Driver CJ, Rusbridge C, Cross HR, McGonnell I, Volk HA. Relationship of brain
parenchyma within the caudal cranial fossa and ventricle size to syringomyelia
in cavalier King Charles spaniels. J Small Anim Pract. 2010;51:382–6.

32. Cerda-Gonzalez S, Olby NJ, Griffith EH. Dorsal compressive atlantoaxial
bands and the craniocervical junction syndrome: association with clinical
signs and syringomyelia in mature cavalier King Charles spaniels. J Vet
Intern Med. 2015;29:887–92.

33. Cerda-Gonzalez S, Olby NJ, McCullough S, Pease AP, Broadstone R, Osborne
JA. Morphology of the caudal fossa in Cavalier King Charles Spaniels. Vet
Radiol Ultrasound. 2009;50:37–46.

34. Hoshina N, Tanimura A, Yamasaki M, Inoue T, Fukabori R, Kuroda T, et al.
Protocadherin 17 regulates presynaptic assembly in topographic
corticobasal Ganglia circuits. Neuron. 2013;78:839–54.

35. Lin J, Wang C, Redies C. Expression of delta-protocadherins in the spinal
cord of the chicken embryo. J Comp Neurol. 2012;520:1509–31.

36. Liu Q, Chen Y, Pan JJ, Murakami T. Expression of protocadherin-9 and
protocadherin-17 in the nervous system of the embryonic zebrafish. Gene
Expr Patterns GEP. 2009;9:490–6.

37. Liu Q, Bhattarai S, Wang N, Sochacka-Marlowe A. Differential expression of
protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain.
J Comp Neurol. 2015;523:1419–42.

38. Hertel N, Redies C, Medina L. Cadherin expression delineates the divisions of
the postnatal and adult mouse amygdala. J Comp Neurol. 2012;520:3982–4012.

39. Krishna-K K, Hertel N, Redies C. Cadherin expression in the somatosensory
cortex: evidence for a combinatorial molecular code at the single-cell level.
Neuroscience. 2011;175:37–48.

40. Kim S-Y, Chung HS, Sun W, Kim H. Spatiotemporal expression pattern of
non-clustered protocadherin family members in the developing rat brain.
Neuroscience. 2007;147:996–1021.

41. Kim SY, Mo JW, Han S, Choi SY, Han SB, Moon BH, et al. The expression of
non-clustered protocadherins in adult rat hippocampal formation and the
connecting brain regions. Neuroscience. 2010;170:189–99.

42. Chang H, Hoshina N, Zhang C, Ma Y, Cao H, Wang Y, et al. The
protocadherin 17 gene affects cognition, personality, amygdala structure
and function, synapse development and risk of major mood disorders. Mol
Psychiatry. 2017; https://doi.org/10.1038/mp.2016.231. [Epub ahead of print]

43. Varma D, Salmon ED. The KMN protein network–chief conductors of the
kinetochore orchestra. J Cell Sci. 2012;125:5927–36.

44. Peng G, Han M, Du Y, Lin A, Yu L, Zhang Y, et al. SIP30 is regulated by ERK
in peripheral nerve injury-induced neuropathic pain. J Biol Chem. 2009;284:
30138–47.

45. Zhang Y-Q, Guo N, Peng G, Wang X, Han M, Raincrow J, et al. Role of SIP30
in the development and maintenance of peripheral nerve injury-induced
neuropathic pain. Pain. 2009;146:130–40.

46. Han M, Xiao X, Yang Y, Huang R-Y, Cao H, Zhao Z-Q, et al. SIP30 is required
for neuropathic pain-evoked aversion in rats. J Neurosci. 2014;34:346–55.

47. Hurlbert RJ, Fehlings MG. The Chiari malformations. In: Engler G, editor.
Spinal Cord Diseases: Diagnosis and Treatment. New York: Marcel Dekker
Inc.; 1998. p. 65–100.

48. Speer MC, Enterline DS, Mehltretter L, Hammock P, Joseph J, Dickerson M,
et al. Review Article: Chiari Type I Malformation with or Without
Syringomyelia: Prevalence and Genetics. J Genet Couns. 2003;12:297–311.

49. Karlsson EK, Lindblad-Toh K. Leader of the pack: gene mapping in dogs and
other model organisms. Nat Rev Genet. 2008;9:713–25.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Ancot et al. BMC Genetics  (2018) 19:16 Page 12 of 12

https://doi.org/10.1038/mp.2016.231

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Cohort and phenotypic traits
	Genotyping across the genome
	Targeted next generation sequencing
	Genotyping with tagSNPs
	Statistical analyses

	Results
	Association of skull measurements to SM in the CKCS breed
	Genome-wide association study of SM in CKCS
	Haplotype analysis of the candidate SM loci
	Targeted next generation sequencing of the SM-associated loci on CFA22 and CFA26
	Genotyping of an extended CKCS cohort with SNPs significantly associated to ratio F-d/BC and L4 + L7

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Availability of data and materials
	Funding
	Authors’ contributions
	Ethics approval
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

