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Abstract

Background: Coronary artery calcified atherosclerotic plaque (CAC) predicts cardiovascular disease (CVD). Despite
exposure to more severe conventional CVD risk factors, African Americans (AAs) are less likely to develop CAC, and
when they do, have markedly lower levels than European Americans. Genetic factors likely contribute to the observed
ethnic differences. To identify genes associated with CAC in AAs with type 2 diabetes (T2D), a genome-wide
association study (GWAS) was performed using the Illumina 5 M chip in 691 African American-Diabetes Heart
Study participants (AA-DHS), with replication in 205 Jackson Heart Study (JHS) participants with T2D. Genetic
association tests were performed on the genotyped and 1000 Genomes-imputed markers separately for each
study, and combined in a meta-analysis.

Results: Single nucleotide polymorphisms (SNPs), rs11353135 (2q22.1), rs16879003 (6p22.3), rs5014012, rs58071836 and
rs10244825 (all on chromosome 7), rs10918777 (9q31.2), rs13331874 (16p13.3) and rs4459623 (18q12.1) were associated
with presence and/or quantity of CAC in the AA-DHS and JHS, with meta-analysis p-values ≤8.0 × 10−7. The strongest
result in AA-DHS alone was rs6491315 in the 13q32.1 region (parameter estimate (SE) = −1.14 (0.20); p-value = 9.1 × 10−9).
This GWAS peak replicated a previously reported AA-DHS CAC admixture signal (rs7492028, LOD score 2.8).

Conclusions: Genetic association between SNPs on chromosomes 2, 6, 7, 9, 16 and 18 and CAC were detected in
AAs with T2D from AA-DHS and replicated in the JHS. These data support a role for genetic variation on these
chromosomes as contributors to CAC in AAs with T2D, as well as to variation in CAC between populations of
African and European ancestry.
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Background
Atherosclerotic coronary artery disease remains a lead-
ing cause of death in Western societies. In 2011, cardio-
vascular disease (CVD) accounted for 31.3% of all-cause
mortality in the US [1]. Non-invasive computed tomog-
raphy (CT)-based measures of coronary artery calcified
atherosclerotic plaque (CAC) are useful for risk stratifi-
cation. Higher levels of CAC are associated with CVD
risk and death and may refine existing algorithms used
to predict CVD events [2, 3].
Individuals with type 2 diabetes (T2D) have an elevated

burden of subclinical coronary atherosclerosis. The sever-
ity of CAC and suboptimal glycemic control are strong
risk factors for CAC progression [4]. However, marked
variation in levels of CAC and calcified atherosclerotic
plaque (CP) in other vascular beds, including the carotid
arteries and aorta, are observed between African and
European ancestral groups [5–7]. Despite exposure to
more severe conventional CVD risk factors, African
Americans (AAs) have the same or lower CP levels than
European Americans (EAs) [8, 9]. These risk factors in-
clude more frequent and more severe hypertension, higher
LDL-cholesterol levels, and excess albuminuria [10–12].
Similar population ancestry-based CAC differences are
observed in T2D individuals, with CAC levels generally
increased relative to those lacking diabetes. Despite higher
blood sugar, AAs with T2D have markedly lower CAC
levels than similarly affected EAs [13–15].
In addition to differences in environmental exposure,

abundant evidence supports inherited contributions to
ethnic-specific T2D rates and CP susceptibility. A genetic
basis for CAC differences based on ancestry is supported
by results of the Multi-Ethnic Study of Atherosclerosis
(MESA) and the African American-Diabetes Heart Study
(AA-DHS) [13, 14]. Higher proportions of European
ancestry were observed in AAs with higher CAC levels
in both studies. AAs are an admixed population with
approximately 80% African and 20% European ancestry
[16]. Mapping by admixture linkage disequilibrium (MALD
or admixture mapping) was performed in the AA-DHS [14].
Eleven genomic regions were suggestively or significantly
linked with CAC in the AA-DHS MALD study; all demon-
strated excess European ancestry in CAC-linked regions in
support of European-derived risk. The present analysis re-
ports results of the first genome-wide association study
(GWAS) for CAC in AAs with T2D, the second GWAS for
CAC in AAs to date.

Methods
Subjects
The present report contains GWAS results in 691 AAs
with T2D from AA-DHS. Replication analyses were
performed in AAs with T2D (N = 205) from the Jackson
Heart Study (JHS). Diabetes was defined as fasting blood

glucose (FBG) ≥126 mg/dL or a random glucose ≥200 mg/
dL, history of physician diagnosis of diabetes, or use of
insulin or an oral hypoglycemic agent.

African American-Diabetes Heart Study
As reported, AA-DHS consisted of AAs with T2D recruited
from two Wake Forest School of Medicine (WFSM) stud-
ies: the family-based Diabetes Heart Study (DHS) and unre-
lated individuals in the AA-DHS. DHS is a cross-sectional
study of EA and AA families with siblings concordant for
T2D. AA-DHS started after DHS and enrolled unrelated
AAs. AA-DHS objectives are to improve understanding of
ethnic differences in CAC and CP in populations of African
and European ancestry. T2D in AAs was diagnosed after
the age of 30 years in the absence of diabetic ketoacidosis.
Individuals who underwent prior coronary artery bypass
surgery or coronary artery angioplasty and/or stent place-
ment were not included in the analyses, because CAC
scores could have been impacted by the procedures. Those
with prior myocardial infarction (MI) or stroke were in-
cluded. The final analysis included 691 unrelated AAs and
AA sibpairs concordant for T2D obtained by selecting all
AA-DHS participants and DHS participants that passed the
quality control checks described in the genotyping section
(below). The study was approved by the WFSM Institu-
tional Review Board and all participants provided written
informed consent.

Jackson Heart Study
The Jackson Heart Study (JHS) is a prospective population-
based cohort study initiated in 2000 in the Jackson,
Mississippi tri-county area. The primary objective of
this study was to understand the determinants of the
high prevalence of common complex diseases including
CVD, T2D, obesity, chronic kidney disease, and stroke in
AAs [17]. The subset of JHS participants with diabetes
was between 35 and 84 years old.

Vascular imaging
CAC was quantified by non-contrast, ECG gated, cardiac
computed tomography (CT) in both studies using estab-
lished methods [18]. In AA-DHS, from the start of the
study in 1999, four generations of CT scanners all with
ECG gating were utilized (CTi, QXi, 16Pro and VCT,
GE Healthcare, Waukesha, WI). Image spatial resolution,
reconstruction kernel and image technique were held
constant. CAC was measured on a workstation and re-
ported as the Agatston Score using a 90 Hounsfield Unit
(HU) threshold (SmartScore GE Healthcare). Additional
scoring parameters included a 130 HU threshold and 2
adjacent pixels used to define the maximum calcified
lesion size; the program accounted for slice thickness. In
JHS, calcified plaque was measured on a 16-channel CT
system (16 Pro; GE Healthcare). The CAC score was
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reported as an Agatston score using a 130 HU threshold
(TeraRecon Aquarius Workstation, Foster City, CA). Image
analysis and quality control for both studies were per-
formed at the same central reading center. The minimum
lesion size in AA-DHS was 0.52 mm2 and the minimum
lesion size in the Jackson Heart Study was 1 mm2 [19, 20].
The robustness of the CAC score as an imaging bio-

marker across generations of CT scanners has been
previously documented [5, 19]. The calcium mass and
traditional Agatston scores are two scales for measuring
calcified plaque. The mass score is calibrated on a per
pixel basis to an external calibration phantom (Image
Analysis, Columbia, KY) which reduces noise related to
the method of quantification. The Agatston score uses
a threshold of 130 HU and calcified plaque below this
cut-point even when present are grouped with the zero
scores. This creates a group of false negatives by the
design of the scoring system. The calcium mass uses a
threshold of 90 and minimizes the probability of a false
negative result (increased sensitivity) with a modest
reduction in specificity. In AA-DHS, the Pearson and
Spearman correlations between the mass score and
Agatston scores were 0.97 and 0.95, respectively. How-
ever, the interquartile ranges were 397 for the mass
score and 180 Agatston score. Therefore, the 90 HU
CAC measure is better suited than 130 HU CAC to de-
tect low CP levels in vascular beds. Thus, the 90 HU
measure coupled with the MASS scoring algorithm we
employed are more sensitive for detecting calcified
plaques and reduce noise in the scoring methods. This
approach improved power for the CAC study outcome.
The 90 HU measure was only available in AA-DHS.
Therefore, we opted for a discovery approach which
was conducted in AA-DHS using the 90 HU CAC
measure as the outcome, followed by replication with
the 130 HU CAC in JHS. In addition, two meta-
analyses were performed. The main meta-analysis used
AA-DHS 90 HU CAC and 130 HU Jackson Heart Study
CAC measures; the inverse variance meta-analysis was
performed separately in the two studies using standard-
ized coefficients. This approach controls for minor dif-
ferences in test composition between studies (i.e., 90
HU vs 130 HU). For completeness, we also performed a
second meta-analysis using the 130 HU CAC score in
both study samples. Results of both analyses are re-
ported in Table 3 and Additional file 1: Table S4 for 90
HU in AA-DHS vs. 130 HU in JHS and 130 HU in both
studies, respectively.

Genotyping
DNA in AA-DHS participants was extracted from
peripheral blood using the PureGene system (Gentra
Systems, Minneapolis, MN). The AA-DHS GWAS utilized
the Illumina 5 M chip; the JHS GWAS genotyping was

performed with the Affymetrix 6.0 chip. Genotypic data
in both studies were imputed to 1000 Genomes (phase
1 version 3, cosmopolitan panel) [21].

Quality control
Quality control (QC) checks were performed before con-
ducting the GWAS. In AA-DHS, these checks led to the
exclusion of twelve individuals from the analyses: 6 had
call rates <90%, 2 had discordant self-reported and gen-
etically determined sex, 1 had a heterozygosity score
outside of the mean ± 4 times the standard error inter-
val, 2 had the same sample identifiers and 1 had 100%
European ancestry. Genome-wide association analyses
were performed on 691 individuals that met the QC in-
clusion criteria. We used a classification scheme to rank
SNPs and prioritize association results. This scheme was
based on the estimated minor allele frequency (MAF),
the Hardy-Weinberg equilibrium (HWE) p-value, and
the call rate. All SNPs were analyzed; however, results are
reported for common variants with a HWE p-value ≤10−4

and a call rate ≥ 95%. SNPs with these qualifications also
served as the basis for our imputation efforts. SNPs with a
MAF between 1 and 5% that met the HWE p-value and call
rate thresholds were also included in imputation. Similar
QC procedures were applied in JHS, which led to the exclu-
sion of 2 subjects. The final analysis included 205 JHS study
participants with T2D and available CAC measurements.

Local and global admixture
Local ancestry estimation was performed using LAMP-
ANC and HAPMIX [22, 23]. A linkage disequilibrium
(LD) pruning algorithm was applied with an R-squared
threshold of 0.8 to select a subset of SNPs among those
that met the above QC criteria. Observed data at these
SNPs were then combined with HapMap phase 3 geno-
types obtained from Yoruban and CEPH samples; the
HapMap samples were used as anchoring populations
and were not included in the analysis. The estimation
process was repeated twice in AA-DHS, once with LAMP-
ANC and once with HAPMIX. Results were comparable;
the distribution of Spearman correlation estimates ranged
between 0.88 and 0.97. Local admixture estimation in JHS
was performed with LAMP-ANC. The global ancestry pro-
portion estimates were obtained by averaging the local an-
cestry estimates across the genome. These global estimates
were used as covariates in the association models and are
reported in Tables 1 and 2.

Imputation
Imputation was performed using IMPUTE2 with phased
haplotypic data obtained from Shapeit2 [24]. The imput-
ation effort used all SNPs that passed the QC filters. Im-
putation was based on 3,436,913 and 733,318 autosomal
SNPs in AA-DHS and JHS, respectively. The multi-ethnic
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Table 1 Demographic characteristics of AA-DHS participants, by presence/absence of CAC

Variables CAC 130 HU <10 (N = 346) CAC 130 HU ≥10 (N = 345) ALL (N = 691) P-value

Mean SD Median Mean SD Median Mean SD Median

Age (years) 52.8 8.7 52.0 59.8 9.0 60.0 56.3 9.6 56.0 <0.0001

Female (%) 66.5 53.6 60.1 0.0006

African Ancestry proportion (%) 76.4 14.9 78.9 73.8 16.0 76.4 75.1 15.5 78.0 0.05

Diabetes duration (years) 8.4 6.1 7.0 12.2 9.3 10.0 10.3 8.1 8.0 <0.0001

HbA1c (%) 8.3 2.3 7.8 8.1 1.9 7.6 8.2 2.1 7.7 0.94

C-reactive protein (mg/dl) 1.0 1.5 0.5 0.9 1.3 0.4 0.9 1.4 0.5 0.27

Glucose (mg/dl) 154.7 68.8 138.0 148.9 67.1 132.0 151.7 68.0 136.0 0.19

Low density lipoprotein cholesterol (mg/dl) 108.5 37.4 106.0 107.1 36.6 103.0 107.8 36.9 105.0 0.46

High density lipoprotein cholesterol (mg/dl) 48.2 14.4 46.0 47.8 14.4 45.0 48.0 14.4 46.0 0.51

Triglycerides (mg/dl) 128.2 112.0 104.0 128.2 130.4 100.0 128.2 121.5 102.0 0.66

Body Mass Index (kg/m2) 35.9 8.6 34.6 34.4 8.2 32.9 35.1 8.4 33.7 0.02

CAC 90 (Hounsfield unit) 8.8 16.1 1.5 1212.0 1810.9 442.0 609.4 1413.3 44.0 NA

CAC 130 (Hounsfield unit) 0.8 1.8 0.0 445.1 646.1 190.5 222.6 507.5 9.5 NA

ACE inhibitor use (%) 46.8 51.3 49.1 0.25

Current smoker (%) 20.3 25.2 22.8 0.007

Past smoker (%) 31.7 40.2 36.0 0.001

Hypertension (%) 78.0 89.1 83.6 0.0001

Lipid-lowering medication (%) 39.5 53.4 46.4 0.0004

Table 2 Demographic characteristics of Jackson Heart Study participants with diabetes, by presence/absence of CAC

Variable CAC 130 HU <10 (N = 68) CAC 130 HU ≥10 (N = 137) Full Sample (N = 205) P-value

Mean SD Median Mean SD Median Mean SD Median

Age (years) 54.3 10.1 53.0 60.7 9.3 60.0 58.4 10.1 59.0 <0.0001

Female (%) 73.5 63.7 67.2 0.10

African Ancestry proportion (%) 79.9 6.5 80.7 78.1 8.4 79.5 78.8 7.8 80.0 0.21

Diabetes duration (years) 8.2 7.8 6.0 11.4 9.7 10.0 10.3 9.2 8.0 0.01

HbA1c (%) 7.7 2.0 7.2 7.9 1.8 7.6 7.8 1.9 7.4 0.06

C-reactive protein (mg/dl) 0.6 0.8 0.4 0.7 1.0 0.4 0.7 0.9 0.4 0.79

Glucose (mg/dl) 147.4 62.4 133.0 145.1 53.0 130.0 146.0 56.5 132.5 0.90

Low density lipoprotein cholesterol (mg/dl) 115.9 33.1 116.0 122.2 39.5 120.0 119.9 37.4 117.0 0.12

High density lipoprotein cholesterol (mg/dl) 50.3 13.0 47.0 48.3 13.9 45.0 49.0 13.6 46.0 0.12

Triglycerides (mg/dl) 118.5 63.1 100.0 142.0 100.3 113.0 133.6 89.5 108.0 0.12

Body Mass Index (kg/m2) 34.2 7.0 33.6 34.0 6.5 33.0 34.1 6.7 33.1 0.94

CAC 130 HU (Hounsfield unit) 1.2 2.4 0.0 548.4 866.1 206.4 354.8 743.3 60.0 NA

ACE inhibitor use (%) 78.0 79.8 79.2 0.73

Current smoker (%) 11.2 11.2 11.2 0.99

Past smoker (%) 20.4 30.7 27.1 0.06

Hypertension (%) 82.5 86.6 85.1 0.36

Lipid-lowering medication (%) 18.6 33.5 28.4 0.01
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1000 Genomes Phase I integrated variant set release (v3)
was used as the reference panel [21]. Imputation was
performed separately for each study. Statistical analyses
were performed on imputed SNPs that had certainty
score above 90%, info score above 50% and MAF greater
than 1%.

Statistical analysis
Analyses were run using Log(CAC + 1) and CAC dichot-
omized (presence (CAC ≥ 10) vs. absence (CAC < 10)).
The value of 1 added to the observed CAC score allowed
for the inclusion all subjects, even those with a CAC
score of zero. This approach is justified based on the
assumption that factors governing presence of CAC may
differ from those influencing amount of CAC once calcifi-
cation is initiated [25]. Age, gender, global African ancestry
proportion, diabetes duration, hemoglobin A1c, body mass
index, smoking status, and use of lipid-lowering medication
were included as covariates in the model to test for associ-
ation between each SNP and CAC. Analyses were run sep-
arately in each study using the same outcome definitions
based on the 90 HU CAC in AA-DHS and the 130 HU
score in JHS. For the continuous outcome, linear mixed
models were fitted using Genome-wide Efficient Mixed
Model Analysis (GEMMA) software [26]. Generalized esti-
mating equations were implemented to test for associations
with the binary outcome. All analyses adjusted for familial
relationships estimated using the Relatedness Estimation in
Admixed Populations (REAP) software [27]. SNPs were
tested for association using the likelihood ratio test for the
overall two degrees of freedom mode of inheritance model.
If the overall test of association is significant, then the three
a priori genetic models (dominant, additive, and recessive)
were explored; the model with the best fit for each SNP
was used. Correction for this maximization was applied to
account for the correlation between tests and to maintain
the type 1 error rate [28–30]. This approach is consistent
with Fisher’s protected least significant difference multiple
comparison procedure. Sample size weighted meta-analysis
was performed to compare and combine results observed
from each study. Penalized regression with the L1 norm
(LASSO) was used to identify the SNP with the strongest
effect size when LD caused several SNPs to display strong
association with the outcome. A cross validation approach
was used to determine the shrinkage parameter for each
region. SNP selection was performed only in the AA-DHS
subset, the larger of the two studies, to limit confounding
effects. Joint tests of association between local ancestry and
genotypes with CAC were also were performed. The model
used for testing for association between local ancestry and
CAC was similar to the one described for the genetic asso-
ciation tests, with local ancestry replacing the observed or
imputed genotypes. If TL and TG denote the test statistics
associated with the local ancestry and genotypic association

with CAC, the joint test of association with local ancestry
and genotype at each marker was calculated as T2

L þ T 2
G ,

which follows a Chi-square distribution with 2 degrees of
freedom [31]. An alternative test based on the maximum of
TG and TL was also computed, assuming these tests follow a
bivariate normal distribution with a non-zero correlation.
The empirical correlation was computed using the variance-
covariance matrix for 2 correlated score tests [32]. Results
from these tests are shown in Additional file 2: Table S3.

Significant effects and correction for multiple testing
The analysis involved more than 13 million directly
genotyped and imputed SNPs. A strict Bonferroni correc-
tion would place the significance threshold at 1.9 × 10−9

for a two-sided test, a highly conservative threshold. The
sample sizes required to adequately power genetic associ-
ation studies in AAs at this significance threshold are not
feasible for a single study (or even two). These limitations
are more pronounced when the focus is on atherosclerosis
in the subset of this population with T2D. We prioritized
meta-analysis association results that reached an adjusted
p-value ≤8.0 × 10−7, with a minimum adjusted p-value
≤8.0 × 10−3 observed in each study and prior evidence of
association of the gene with CAC, T2D and other factors
involved in the atherosclerosis process [33, 34]. This ap-
proach combines statistical plausibility, with nominal stat-
istical significance from both studies, and documented
prior evidence that these genomic regions have been im-
plicated in T2D and one or more processes leading to
atherosclerosis. The adjusted p-value (or best p-value) is
the p-value associated with the minimum of the three test
statistics obtained with the additive, dominant and reces-
sive mode of inheritance models.

Results
Table 1 displays demographic and clinical data in 691
AA-DHS participants with T2D; data in JHS participants
are displayed in Table 2. Although 90 HU CAC scores
were analyzed in the AA-DHS GWAS, demographic data
in both tables uses the 130 HU CAC score to permit com-
parability. AA-DHS study participants were on average two
years younger than those in JHS (56.3 ± 9.6 years vs. 58.4 ±
10.1 years; p-value = 6.7 × 10−3); had slightly higher HbA1c
(8.2 ± 2.1% vs. 7.8 ± 1.9%, p-value = 0.02); lower proportion
of African ancestry (75.1 ± 15.5% vs. 78.8 ± 7.8%, p-value =
0.001), and lower low density lipoprotein cholesterol (LDL)
levels (107.8 ± 36.9 mg/dl vs. 119.9 ± 37.4 mg/dl, p-value =
4.8 × 10−5). At the 130 HU threshold, JHS participant were
more likely to have CAC ≥ 10, compared to AA-DHS par-
ticipants (49.9% in AA-DHS vs. 66.8% in JHS, p-value =
8.6 × 10−6). However, when CAC was present, AA-DHS
and JHS had comparable levels (445.1 ± 646.1 vs. 548.4 ±
866.1, p-value = 0.11). In addition, participants in AA-DHS
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were less likely to be on angiotensin converting enzyme
(ACE) inhibitors than JHS (49.1% vs. 79.2%, p-value = 3.2 ×
10−35), but more likely to be current or former smokers
(58.8% vs. 38.3%, p-value = 7.8 × 10−26) and on lipid lower-
ing medications (46.4% vs. 28.4%, p-value = 6.1 × 10−17).
Within AA-DHS, individuals with 130 HU CAC ≥10

were on average 6 years older (p-value <0.0001), had longer
diabetes durations (12.2 ± 9.3 years vs. 8.4 ± 6.1, p-value =
5.3 × 10−5), and were more likely to be on lipid lowering
medications (53.4% vs. 39.5%, p-value = 2.2 × 10−4). Similar
patterns were observed in JHS; study participants with
CAC ≥10 were more likely to be older (average age differ-
ence 5.4 years, p-value < 0.0001), have longer diabetes dura-
tions (average difference 3.2 years, p-value = 0.01) and more
likely to receive lipid lowering medications (33.5% vs.
18.6%, p-value = 0.01). The 90 HU CAC measure was more
sensitive than the 130 HU CAC score at the lower end of
the calcified plaque (CP) distribution; 37.7% of AA-DHS
had 90 HU CAC <10 vs. 51.1% with 130 HU CAC, which
supports the use of 90 HU CAC measure as the outcome
in the GWAS, especially when focusing on presence of
CAC. The kappa statistic measuring the agreement
between the 2 measures was 0.75 with the cutoff value
of 10. However, the spearman rank correlation between
90 HU CAC and 130 HU CAC was over 99% when the
CP level was above 10 with both thresholds.
Complete results of the sample size weighted meta-

analysis GWAS for CAC are displayed in Figs. 1 and 2
for the continuous and binary analyses, respectively.
SNPs that reach a meta-analysis p-value less than 10−4

are shown in Additional file 3: Table S1. Table 3 displays
the top meta-analysis GWAS results for 90 HU CAC in
AA-DHS and 130 HU CAC in JHS, limited to those with
meta-analysis p-values ≤8.0 × 10−7. SNPs that were asso-
ciated with both presence and amount of CAC tended

to have stronger association effects with the amount of
CAC modeled as Log(CAC + 1). In this case, only the
association with the continuous outcome is reported.
Association effects shown with presence of CAC were
only observed with this outcome. We focus on six genomic
regions that meet our prioritization rule. Top results for
the meta-analysis of the 130 HU CAC in both AA-DHS
and JHS are shown in Additional file 1: Table S4. We note
that rs113805659 was the only SNP that met the statistical
significance threshold in both analyses. Regional associ-
ation plots for these regions are shown in Figs. 3 and 4.
The strongest association result was observed in the

ataxin-1 (ATXN1) gene located on 6p22.3. Penalized
regression suggests that rs16879003 had the strongest
estimated effect size under the additive mode of in-
heritance (MOI) with parameter estimate and (stand-
ard error) -0.19(0.04) in AA-DHS and −0.20(0.07) in
JHS for a meta-analysis p-value of 1.1 × 10−7. Variants
in the 6p22.3 region have been associated with MI
and coronary heart disease (CHD) [35].
Association was also detected within LRP1B, a LDL re-

ceptor gene, located on 2q22.1, a genomic region previ-
ously implicated in CHD and heart failure [36, 37].
Under the dominant MOI, the parameter estimates for
the association tests between rs113533135 and presence
of CAC were 0.19(0.05) in AA-DHS and 0.30(0.08) in
JHS for a meta-analysis p-value of 3.3 × 10−7.
Several SNPs in the membrane-associated guanylate

kinase inverted 2 gene (MAGI2) were strongly associated
with the binary outcome of presence (versus absence) of
CAC. This gene is located on chromosome 7q21.11.
Conditional analysis revealed that rs113805659 had the
strongest effect; under an additive mode of inheritance
model that counts the number of minor alleles, the param-
eter estimates (standard errors) were −0.19 (0.04) in AA-

Fig. 1 Manhattan Plot of the meta-analysis of Log(CAC + 1) between AA-DHS and JHS CAC was measured at the 90 HU threshold in AADHS and
the 130 HU threshold in JHS
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DHS and −0.21 (0.08) in JHS with p-values of 5.5 × 10−6

and 7.5 × 10−3, respectively. The association effect was in
the same direction in both studies, leading to a meta-
analysis p-value of 1.4 × 10−7. Variants in MAGI2 have
been associated with the disposition index, a measure of the
relationship between insulin secretion and insulin sensitivity,
cell-cell and cell-matrix adhesion in Hispanics and AAs with
T2D, and aortic CP in the Framingham study [38–40].
Several SNPs located in the 7q31.31 region showed

significance with presence of CAC. After conditional
analyses, rs58071836 had the strongest effect under an
additive MOI -0.13(0.04) in AA-DHS and −0.22(0.06) in
JHS for a meta-analysis p-value of 1.8 × 10−7. This chromo-
somal region harbors WNT16, a gene implicated in vascu-
lar calcification and bone mineral density (BMD) [41–43].
Similar strong association results were observed on

chromosome 9 with rs10918777 located on 9q31.2, under
the additive model (−0.63 (0.16), p-value = 1.3 × 10−4 in
AA-DHS and −0.95 (0.24), p-value = 8.7 × 10−5 in JHS and
meta-analysis p-value = 1.2 × 10−7), and on chromosome
12 with rs77934287, under the recessive model (−0.38
(0.10), p-value = 3.0 × 10−4 in AA-DHS and −0.59 (0.16),
p-value = 1.8 × 10−4 in JHS and meta-analysis p-value =
4.8 × 10−7).
Nearly 20 different SNPs were found to be associated

with the presence of CAC in the 18q12.1 region. These
SNPs were all significant under the recessive model in
both datasets. Conditional analyses showed that the
number of associated SNPs is primarily due to strong
LD in the region. The sentinel SNP (rs4459623) had an
effect size of (−0.32 (0.09), p = 4.1 × 10−4) in AA-DHS
and (−0.55 (0.13), p = 4.3 × 10−5) in JHS, for a meta-
analysis p-value 5.3 × 10−7. These SNPs are in an inter-
genic region 25 kb distal to the desmocollin 1 gene

(DSC1) and 99 kb proximal to desmoglein 1 gene
(DSG1) [44, 45].
Our previous admixture mapping effort identified sev-

eral regions with strong evidence for linkage with local
ancestry [14]. All of these regions showed that excess
European ancestry is associated with the risk and pro-
gression of CAC. However, these regions were identified
using a 90 HU threshold Agatston Score, a measure that
is not available in JHS. We were able to replicate these
results in the AA-DHS analysis, but not in JHS. For
example, the admixture mapping signal reported on
chromosome 13 near 13q32.1 (LOD = 2.8) replicated
with several SNPs showing statistical significance at the
10−8 threshold in AA-DHS alone. In the fully-adjusted
model, rs6491315 had an effect size of (−1.14 (0.2), p =
9.1 × 10−9); however, the effect was non-significant in
JHS (0.11 (0.36), p-value = 0.75), yielding a meta-analysis
p-value 5.8 × 10−7. Joint models that combine local an-
cestry with the observed genotypic data in AA-DHS are
shown in Additional file 4: Table S2 for completeness.

Discussion
This report contains one of the few GWAS for CAC in the
understudied AA population with T2D; it includes 896 sub-
jects from two of the largest studies in this population. Sev-
eral SNPs had a meta-analysis p-value less than 8.0× 10−7,
albeit none reached the strict Bonferroni corrected thresh-
old. Two SNPs, rs75916004 located on chromosome 11 in
the 11p15.4 region and rs13331874 located on 16p13.3
were close, with meta-analysis p-values of 5.9 × 10−8

and 6.3 × 10−8, respectively. However, their p-values were
greater than 8 × 10−3 in JHS. Genome-wide significant as-
sociation was detected between CAC and multiple SNPs
located on chromosome 13 near the HS6ST3 gene in

Fig. 2 Manhattan Plot of the meta-analysis of Presence of CAC between AA-DHS and JHS CAC was measured at the 90 HU threshold in AADHS
and the 130 HU threshold in JHS
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Fig. 4 Regional association plots for the ‘sentinel’ SNP in 11q22.1, AK094733, HS6ST3 and DSC1. –log10 (p-values) are shown for all SNPs in each
region with the color of circles indicating the degree of LD with the most associated SNP in the region. These regions are: a rs75916004 on
11q22.1, b rs77934287 in chromosome 12, c rs6491315 in HS6ST3 and d rs4459623 in DSC1. Observed p-values came from the meta-analysis for
all SNPs, except rs6491315 in HS6ST3. This is region with the strongest result in AA-DHS; however, this signal was not replicated in JHS

Fig. 3 Regional association plots for the ‘sentinel’ SNP in LRP1B, ATXN1, MAGI2, 9q31.2 –log10 (p-values) are shown for all SNPs in each region
with the color of circles indicating the degree of LD with the most associated SNP in the region. These regions are: a rs113533135 in LRP1B, b
rs16879003 in in ATXN1, c rs113805659 in MAGI2; and d rs10978777 on 9q31.2. Observed p-values came from the meta-analysis for all SNPs
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AA-DHS. Several other genomic regions displayed sug-
gestive evidence of association.
The chromosome 11 and 13 GWAS peaks overlay sug-

gestive MALD peaks for CAC in AA-DHS participants.
This result suggests that a portion of the ancestry-specific
risk for development of CAC lies in this genomic region.
Emerging data support a genetic basis for the markedly
lower levels of CAC in AAs, relative to EAs. In support of
clinical relevance, reduced rates of MI are present in AAs
with and without T2D, provided equal access to healthcare
as EAs [46–48]. We also note that no SNPs in the 9p21
and 6p24 regions that have been reported in previous
GWAS of European ancestry populations met the statistical
significance criteria defined for the genetic association tests.
The admixture mapping results shown in Additional file 4:
Table S2 still suggest that excess European ancestry in these
regions contributes to the likelihood and severity of CAC;
however, the association signals were weaker.
These results observed in AAs with T2D contrast with

those in a recent GWAS meta-analysis for CAC in AAs
where the prevalence of T2D varied between 10.3 and
33.2% [49]. That report identified significant heritability
for CAC in AAs, but failed to detect genome-wide evidence
of association. Gomez et al. identified one statistically sig-
nificant admixture mapping peaks on chromosome 12 and
three suggestive peaks on chromosomes 6, 9, and 15 [50].
These regions did not overlap with the admixture mapping
results reported in Divers et al. [14] and those described in
Table 3 below. Similar to Wojczynski et al. [49], only a frac-
tion of their sample (~28%) had T2D, which may partly
explain the discordant results.
We also note that some of the admixture results observed

in AA-DHS did not replicate in JHS (See Additional file 2:
Table S3), and we can only speculate on why that would be
the case. Possible reasons include the smaller sample size
(691 vs. 205), the greater sensitivity of the 90 HU CAC
measure that was only available in AA-DHS, and that
hyperglycemia and T2D likely provide a modifying environ-
mental stimulus that increases the development of CAC
more prominently in individuals who are genetically sus-
ceptible to atherosclerosis. All published reports that mea-
sured CAC and other sites of CP reveal markedly higher
levels in subjects with T2D, relative to those without T2D
[51, 52]. Therefore, it is probable that the diabetic milieu
predisposed to coronary artery atherosclerosis in our popu-
lations, even among participants at lower risk for CAC due
to their higher percentage of recent African ancestry. Ab-
sence of similar environmental triggers in the Wojczynski
et al. AA GWAS and Gomez et al. admixture mapping
meta-analyses with lower levels of CAC could have dimin-
ished the ability to detect genetic association [49, 50].
Among the significant associations identified, SNP

rs16879003 resides in the ATXN1 gene, a member of
the spinocerebellar ataxia (SCA) family. Although this

protein is ubiquitously expressed, its function remains
unknown. However, recent studies have linked variants
in this gene with adiposity, MI and CHD [35, 53]. Based
on these observations, there is support for a potential
role in which variation at this locus serves as a modifier,
either indirectly, i.e. metabolic syndrome, or directly as
a transcriptional repressor in the development of CAC
more prominently in individuals who are genetically
susceptible to atherosclerosis [54].
rs113533135 is located in the LRP1B gene, a member

of the LDL receptor family. LRP1B is a multi-ligand re-
ceptor that binds urokinase plasminogen activator and
plasminogen activator inhibitor-1, suggesting a role in
fibrinolysis and extracellular matrix remodeling [55]. The
LRP1B gene has also been associated with insulin resistance
and tumor suppression in humans and LDL cholesterol
levels in rats [56–58].
rs10978777 is located in the 9q31 region upstream of

the ABCA1 gene. This gene encodes a transmembrane
protein that is expressed in most cells in the body and is
critical for cellular cholesterol efflux and HDL particle
formation [59]. Mutations in ABCA1 cause Tangier disease,
a rare genetic disorder that is characterized by plasma HDL
cholesterol concentrations <5% of normal, ~50% reduction
in plasma LDL cholesterol concentrations, cholesterol ac-
cumulation in macrophages, peripheral neuropathy, and
hepatosplenomegaly. Some Tangier disease kindreds have
premature CHD, likely due to very low plasma HDL chol-
esterol levels, but some are spared, presumably due to sig-
nificant reductions in plasma LDL cholesterol.
rs77934287 is located on 12p12.1, a genomic region

that contains the LOX-1 gene and ABCC9, a gene that
has been associated with the Cantu syndrome, cardiac
conduction disturbances and possibly cardiomyopathy
[60, 61]. LOX-1 encodes the lectin-like oxidized LDL
receptor, which is expressed on the surface of macro-
phages, smooth muscle cells, and endothelial cells. The
LOX-1 receptor binds and internalizes proinflammatory
oxidized LDL, an initiator of macrophage lipid accumu-
lation and endothelial cell dysfunction. LOX-1 expres-
sion has been documented in human atherosclerotic
plaques and its expression is increased by proinflamma-
tory cytokines. ABCC9 is a member of the superfamily of
ATP-binding cassette (ABC) transporters. The ABCC9
protein is thought to form ATP-sensitive potassium chan-
nels in cardiac, skeletal, and vascular and non-vascular
smooth muscle.
Multiple SNPs in the 18q12.1 region were associated

with CAC in this study (Table 3). These SNPs are in an
intergenic region between DSC1 and DSG1, both of
which belong to the cadherin superfamily of cell-cell
adhesion genes that form a cluster on chromosome 18.
DSC1 and DSG1 are calcium-dependent transmembrane
glycoproteins involved in desmosome formation between
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cells. Atherogenic lipoproteins, such as oxidized LDL, that
initiate atherogenesis and endothelial cell inflammation
reportedly downregulate desmocollin and desmoglein ex-
pression. This may lead to endothelial barrier dysfunction
and increased influx of atherogenic lipoproteins into the
arterial intima of atherosclerotic lesions [62].
This study has limitations, including the small sample

size and limited generalizability of results observed to
AAs with longstanding T2D. Regarding the concern over
sample size, it is important to note that the replication
provides the ultimate protection against type 1 errors.
Unfortunately, CAC in AA populations has not been
studied as intensively as in EAs. When presence of T2D
is considered as an additional inclusion criterion, the
present study is the largest GWAS of which we are aware
in AAs with T2D, and it is unlikely that many genome-
wide association datasets will soon become available in
this minority population.
The 90 HU CAC variable was used instead of the 130

HU CAC in the AA-DHS because of its improved sensitiv-
ity for detection calcified plaques. A sample size weighted
meta-analysis was then performed to combine the observed
results with JHS. An inverse variance weighted meta-
analysis combining results observed with 130 HU CAC
measure that is available in both studies as a sensitivity
analysis. Results from these analyses are presented in
Additional file 4. Overall, they show similar patterns as
the main analyses, although the meta-analysis effect
sizes are usually stronger when the 90 HU CAC vari-
able is used in AA-DHS.

Conclusion
This report contains the first GWAS results for CAC in
the understudied African American population with
T2D. Potential roles for LRB1, ATXN1, MAGI2, DSC1
and DSG1 were reported and additional support for
genomic regions identified by admixture mapping was
identified. Hyperglycemia increases CAC, both in preva-
lence and severity, and may provide a necessary environ-
mental trigger to detect the genetic basis of coronary
atherosclerosis in populations with recent African ances-
try, who seem to be biologically protected from develop-
ing CP. Future functional studies of the roles of variation
in these genes in human tissues/cells and transgenic
animals will contribute to our understanding of genetic
susceptibility to coronary atherosclerosis.
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Additional file 1: Table S4. Meta-analysis of 130 HU CAC scores in
AA-DHS and JHS. (XLSX 230 kb)

Additional file 2: Table S3. Replication of AA-DHS admixture mapping
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Additional file 3: Table S1. List of SNPs with meta-analysis p-value less
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Additional file 4: Table S2. Joint test of association with local ancestry
and genotype. (XLSX 389 kb)
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