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Abstract

Background: Drug response variability observed amongst patients is caused by the interaction of both genetic
and non-genetic factors, and frequencies of functional genetic variants are known to vary amongst populations.
Pharmacogenomic research has the potential to help with individualized treatments. We have not found any
pharmacogenomics information regarding Uygur ethnic group in northwest China. In the present study, we
genotyped 85 very important pharmacogenetic (VIP) variants (selected from the PharmGKB database) in the Uygur
population and compared our data with other eleven populations from the HapMap data set.

Results: Through statistical analysis, we found that CYP3A5 rs776746, VKORC1 rs9934438, and VKORC1 rs7294 were
most different in Uygur compared with most of the eleven populations from the HapMap data set. Compared with
East Asia populations, allele A of rs776746 is less frequent and allele A of rs7294 is more frequent in the Uygur
population. The analysis of F-statistics (Fst) and population structure shows that the genetic background of Uygur
is relatively close to that of MEX.

Conclusions: Our results show significant differences amongst Chinese populations that will help clinicians triage
patients for better individualized treatments.
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Background
Reactions to the same drug differ significantly among indi-
viduals. Thus, analyzing a drug’s safety and efficacy is
complicated, causing difficulties in finding new treatments
for major diseases. Inherited differences in individual
drug-metabolizing enzymes are typically monogenic traits,
and their influence on the pharmacokinetics and pharma-
cologic effects of medications are determined by the im-
portance of the polymorphic enzymes for the activation or
inactivation of drug substrates [1]. Pharmacogenetics and
pharmacogenomics deal with possible associations of a
single genetic polymorphism or multiple gene profiles and

responses to drugs [2]. The goal of pharmacogenetic re-
search is to provide information for a patient with the
right medicine at the right dose for optimal treatment out-
comes. The majority of pharmacogenomic studies have fo-
cused on candidate genes thought to be involved in the
pharmacokinetics or mechanism of drug action [3, 4].
Recent studies have shown that certain genes have

close relationships with the outcomes of drug therapy
and that different genotypes may determine how the pa-
tient responds to a drug. These gene variants are called
very important pharmacogenetic (VIP) variants [5], and
are listed in the Pharmacogenomics Knowledge Base
(PharmGKB: http://www.pharmgkb.org). In total, there
are 126 VIP variants that occur in 44 different genes and
variously code for cytochrome P450 oxidases, drug tar-
gets, drug receptors, and drug transporters.
Individual responses to medications vary significantly

among different populations, and great progress in
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understanding the molecular basis of drug actions has
been made in the past 50 years. The field of pharmacogen-
omics seeks to elucidate inherited differences in drug dis-
position and effects. While we know that different
populations and ethnic groups are genetically heteroge-
neous, we have not found any pharmacogenomics infor-
mation regarding minority groups, such as the Uygur
ethnic group in northwest China.
The Uygur is an ethnic group primarily located in the

Xinjiang Uygur Autonomous Region of China. The
Uygur is one of China’s largest ethnic groups, with a
long history in the region and distinct culture and tradi-
tions. They were originally a nomadic Turkish people in
north and northwestern China. The Uygur language is a
Turkic language very similar to Turkish.
In this study, we aimed to identify the allele frequencies

of VIP variants in the Uygur and to determine the differ-
ence in allele frequencies between the Uygur and 11 popu-
lations from the HapMap data set. The results of this
study will extend our understanding of ethnic diversity
and pharmacogenomics, and enable medical professionals
to use genomic and molecular data to effectively imple-
ment personalized medicine in the future.

Materials and methods
Study participants
We recruited a random sample of unrelated Uygur adults
from the Xinjiang Region of China. The subjects selected
were judged to be of good health and had exclusively
Uygur ancestry for at least the last three generations.
Thus, the subjects were thought to be representative sam-
ples of the Uygur population with regard to ancestry and
environmental exposures. Blood samples were taken ac-
cording to the study protocol, which was approved by the
Clinical Research Ethics of Northwest University, Tibet
University for Nationalities, Xinjiang Medical University,
and the people’s hospital of Xinjiang Uygur Autonomous
Region. Signed informed consent was also obtained from
each participant enrolled in the study. Based on the above-
mentioned inclusion criteria, 96 randomly-selected,
healthy, unrelated Uygur individuals were recruited from
the Xinjiang Province.

Variant selection and genotyping
We selected genetic variants from published polymor-
phisms associated with VIP variants from the PharmGKB
database. We designed assays for the 85 genetically-
variant loci in 37 genes that formed the basis for our our
analyses. We excluded loci if we could not design an assay.
We extracted genomic DNA from peripheral blood ob-
tained from the subjects using the GoldMag-Mini Whole
Blood Genomic DNA Purification Kit (GoldMagLtd.
Xi’an, China) according to the manufacturer’s protocol.
The DNA concentration was measured with a NanoDrop

2000C spectrophotometer (Thermo Scientific, Waltham,
MA, USA). The Sequenom MassARRAY Assay Design 3.0
software (San Diego, CA, USA) was used to design multi-
plexed single nucleotide polymorphism (SNP) MassEX-
TEND assays [6]. SNP genotyping analysis was performed
using the standard protocol recommended by the
manufacturer with a Sequenom MassARRAY RS1000.
Sequenom Typer 4.0 software was used to manage and
analyze the SNP genotyping data as described in a previ-
ous report [7].

HapMap genotype data
The genotype data of individuals from eleven populations
were downloaded from the International HapMap Project
web site (HapMap_release127) at http://hapmap.ncbi.nlm.
nih.gov/biomart/martview/e4f42d4d0acde5ea6c35312381c
1e461. The eleven populations included those of (1) African
ancestry in Southwest USA (ASW); (2) Utah, USA residents
with Northern and Western European ancestry from the
CEPH collection (CEU); (3) Han Chinese in Beijing, China
(CHB); (4) Chinese in metropolitan Denver, CO, USA
(CHD); (5) Gujarati Indians in Houston, Texas, USA (GIH);
(6) Japanese in Tokyo, Japan (JPT); (7) Luhya in Webuye,
Kenya (LWK); (8) Mexican ancestry in Los Angeles,
California, USA (MEX); (9) Maasai in Kinyawa, Kenya
(MKK); (10) Toscani in Italy (TSI); and (11) Yoruba in
Ibadan, Nigeria (YRI).

Statistical analyses
We used Microsoft Excel and SPSS 17.0 statistical
packages (SPSS, Chicago, IL, USA) to perform Hardy–
Weinberg Equilibrium (HWE) analysis and the χ2 test.
The validity of the frequency of each VIP variant in the
Uygur data was tested by assessing the departure from
HWE using an exact test. We calculated and compared
the genotype frequencies of the variants in the Uygur
data with those in the eleven populations separately
using the χ2 test. All p values obtained in this study
were two-sided, and Bonferroni’s adjustment for mul-
tiple tests was applied to the level of significance, which
was set at p < 0.05/(85*11). The purpose of the χ2 test was
to discover sites with significant differences. After-
wards, we obtained the SNP allele frequencies from the
ALleleFREquency Database (http://alfred.med.yale.edu),
and analyzed the global patterns of genetic variation at
specific loci.

Analysis of population genetic structures
Some studies point out that population genetic structure
is central to the study of human origins, DNA forensics,
and complex diseases [8]. We believe it is also important
for pharmacogenomics. Fst and structure analyses are
common in population genetic studies. Because of the
insights that F-statistics can provide about the processes
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Table 1 Basic characteristic of selected variants and allele frequencies in the Uygur population

SNP ID Genes Family Phase Allele A Allele B Allele A Allele B Amino Acid
Translation

Function

rs1801131 MTHFR methylenetetrahydrofolate
reductase family

Phase I C A 0.292 0.708 Glu429Ala Missense

rs1801133 MTHFR methylenetetrahydrofolate
reductase family

Phase I T C 0.349 0.651 Ala222Val Missense

rs890293 CYP2J2 cytochrome P450 superfamily Phase I G T 0.5 0.5 - 5′ Flanking

rs3918290 DPYD - PhaseI G A 1 0 - Donor

rs6025 F5 - Others G A 0.979 0.021 Arg534Gln Missense

rs20417 PTGS2 - Phase I G C 0.99 0.01 - 5′ Flanking

rs689466 PTGS2 - Phase I A G 0.721 0.279 - 5′ Flanking

rs4124874 UGT1A1 UDP-glucuronosyltransferase
family

Phase II C A 0.474 0.526 - 5′ Flanking

rs10929302 UGT1A1 UDP-glucuronosyltransferase
family

Phase II G A 0.763 0.237 - 5′ Flanking

rs4148323 UGT1A1 UDP-glucuronosyltransferase
family

Phase II A G 0.125 0.875 Gly71Arg Intronic

rs7626962 SCN5A sodium channel gene family Others G T 1 0 Ser1103Tyr Missense

rs1805124 SCN5A sodium channel gene family Others G A 0.193 0.807 Pro1090Leu Missense

rs6791924 SCN5A sodium channel gene family Others G A 1 0 Arg34Cys Missense

rs3814055 NR1I2 nuclear receptor family Others C T 0.641 0.359 - 5′ Flanking

rs2046934 P2RY12 G-protein coupled receptor
family

Others T C 0.839 0.161 - Intronic

rs1065776 P2RY1 G-protein coupled receptor
family

Others T C 0.073 0.927 Ala19Ala Synonymous

rs701265 P2RY1 G-protein coupled receptor
family

Others G A 0.219 0.781 Val262Val Synonymous

rs975833 ADH1A alcohol dehydrogenase family Phase I G C 0.625 0.375 - Intronic

rs2066702 ADH1B alcohol dehydrogenase family Phase I C T 1 0 Arg370Cys Missense

rs1229984 ADH1B alcohol dehydrogenase family Phase I G A 0.672 0.328 His48Arg Missense

rs698 ADH1C alcohol dehydrogenase family Phase I A G 0.805 0.195 Ile350Val Missense

rs17244841 HMGCR - Phase I A T 1 0 - Intronic

rs3846662 HMGCR - Phase I T C 0.474 0.526 - Intronic

rs17238540 HMGCR - Phase I T G 1 0 - Intronic

rs1042713 ADRB2 adrenergic receptors family Phase I G A 0.495 0.505 Arg16Gly Missense

rs1042714 ADRB2 adrenergic receptors family Phase I G C 0.153 0.847 Gln27Glu Missense

rs1800888 ADRB2 adrenergic receptors family Phase I C T 0.974 0.026 Thr164Ile Missense

rs1142345 TPMT methyltransferase superfamily Phase II G A 0.005 0.995 Tyr240Cys Missense

rs1800460 TPMT methyltransferase superfamily Phase II A G 0.005 0.995 Ala154Thr Missense

rs2066853 AHR - Others G A 0.784 0.216 Arg554Lys Missense

rs1045642 ABCB1 ATP-binding cassette (ABC)
transporters superfamily

Others T C 0.574 0.426 Ile1145Ile Synonymous

rs2032582 ABCB1 ATP-binding cassette (ABC)
transporters superfamily

Others G T 0.382 0.618 Ser893Ala
Ser893Thr

Missense

rs2032582 ABCB1 ATP-binding cassette (ABC)
transporters superfamily

Others G A 0.806 0.194

rs2032582 ABCB1 ATP-binding cassette (ABC)
transporters superfamily

Others T A 0.908 0.092

rs1128503 ABCB1 ATP-binding cassette (ABC)
transporters superfamily

Others T C 0.667 0.333 Gly412Gly Synonymous
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Table 1 Basic characteristic of selected variants and allele frequencies in the Uygur population (Continued)

rs10264272 CYP3A5 cytochrome P450 superfamily Phase I C T 1 0 Lys208Lys Not Available

rs776746 CYP3A5 cytochrome P450 superfamily Phase I G A 0.984 0.016 - Acceptor

rs4986913 CYP3A4 cytochrome P450 superfamily Phase I C T 1 0 Pro467Ser Missense

rs4986910 CYP3A4 cytochrome P450 superfamily Phase I T C 1 0 Met445Thr Missense

rs4986909 CYP3A4 cytochrome P450 superfamily Phase I C T 1 0 Pro416Leu Missense

rs12721634 CYP3A4 cytochrome P450 superfamily Phase I T C 1 0 Leu15Pro Missense

rs2740574 CYP3A4 cytochrome P450 superfamily Phase I A G 0.984 0.016 - 5′ Flanking

rs3815459 KCNH2 eag family Others A G 0.564 0.436 - Intronic

rs36210421 KCNH2 eag family Others G T 1 0 Arg707Leu Missense

rs12720441 KCNH2 eag family Others C T 1 0 Arg444Trp Missense

rs3807375 KCNH2 eag family Others A G 0.521 0.479 - Intronic

rs4986893 CYP2C19 cytochrome P450 superfamily Phase I G A 0.974 0.026 Trp212null Stop Codon

rs4244285 CYP2C19 cytochrome P450 superfamily Phase I G A 0.828 0.172 Pro227Pro Synonymous

rs1799853 CYP2C9 cytochrome P450 superfamily Phase I C T 1 0 Arg144Cys Missense

rs1801252 ADRB1 adrenergic receptors family Phase I G A 0.167 0.833 Ser49Gly Missense

rs1801253 ADRB1 adrenergic receptors family Phase I C G 0.813 0.188 Gly389Arg Missense

rs5219 KCNJ11 inward-rectifier potassium
channel family

Others C T 0.688 0.312 Lys23Glu Intronic

rs1695 GSTP1 glutathione S-transferase
family

Phase II A G 0.683 0.317 Ile105Val Missense

rs1138272 GSTP1 glutathione S-transferase
family

Phase II T C 0.058 0.942 Ala114Val Missense

rs1800497 ANKK1 Ser/Thr protein kinase family Phase I T C 0.253 0.747 Glu713Lys Missense

rs6277 DRD2 G-protein coupled receptor
family

Others C T 0.656 0.344 Pro290Pro Synonymous

rs4149056 SLCO1B1 solute carrier family Others T C 0.889 0.111 Val174Ala Missense

rs7975232 VDR nuclear receptor family Others C A 0.615 0.385 - Intronic

rs1544410 VDR nuclear receptor family Others G A 0.74 0.26 - Intronic

rs2239185 VDR nuclear receptor family Others T C 0.395 0.605 - Intronic

rs1540339 VDR nuclear receptor family Others G A 0.5 0.5 - Intronic

rs2239179 VDR nuclear receptor family Others A G 0.62 0.38 - Intronic

rs3782905 VDR nuclear receptor family Others C G 0.742 0.258 - Intronic

rs2228570 VDR nuclear receptor family Others T C 0.316 0.684 Met51Arg,
Met51Lys,
Met51Thr

Missense

rs10735810 VDR nuclear receptor family Others C T 0.688 0.313 - -

rs11568820 VDR nuclear receptor family Others G A 0.658 0.342 - Not Available

rs1801030 SULT1A1 sulfotransferase family Phase II A G 1 0 Val223Met Not Available

rs3760091 SULT1A1 sulfotransferase family Phase II C G 0.659 0.341 - 5′ Flanking

rs7294 VKORC1 - Phase I G A 0.695 0.305 - 3′ UTR

rs9934438 VKORC1 - Phase I G A 0.427 0.573 - Intronic

rs28399454 CYP2A6 cytochrome P450
superfamily

Phase I G A 1 0 Val365Met Missense

rs28399444 CYP2A6 cytochrome P450
superfamily

Phase I AA - 1 0 Glu197Ser,
Glu197Arg

Frameshift

rs1801272 CYP2A6 cytochrome P450
superfamily

Phase I T A 1 0 Leu160His Missense

rs28399433 CYP2A6 cytochrome P450
superfamily

Phase I G T 0.13 0.87 - 5′ Flanking

Wang et al. BMC Genetics  (2015) 16:66 Page 4 of 13



of differentiation among populations, over the past 50
years they have become the most widely used descriptive
statistics in population and evolutionary genetics [9].
Wright’s F-statistics describe the level of heterozygosity
in each level of a hierarchically-subdivided population.
More specifically, F-statistics relate the departure from
panmixia in the total population and within subpopula-
tions to the total homozygosity. The most commonly re-
ported statistic, Fst, measures the differentiation of a
subpopulation relative to the total population, and is dir-
ectly related to the variance in allele frequency between
subpopulations. To further investigate variation at the
VIP locus in terms of population structure, we used the
model-based clustering method implemented in Struc-
ture (http://pritchardlab.stanford.edu/structure.html).
We used the Arlequin ver 3.1 software to calculate the

value of Fst to infer the pairwise distance between popula-
tions. Pairwise Fst values were calculated on the primary,
84 SNP dataset in Arlequin3.5 [10] using Reynolds’ dis-
tance [11] with significance tested using 100 permutations.
To further investigate population structure, we used the
model-based clustering method implemented in Structure
ver. 2.3.1. Fst is directly related to the variance in allele
frequency among populations and to the degree of resem-
blance among individuals within populations. If Fst is
small, it means that the allele frequencies within each
population are similar; if it is large, it means that the allele
frequencies are different.

To analyze the genetic structure, the Bayesian clustering
algorithm-based program Structure ver. 2.3.1 was used to
assign the samples within a hypothetical K number of
populations as proposed by Pritchard et al. [12]. Analyses
were performed using the ancestry model with correlated
allele frequencies in eleven independent runs from K = 2
to K = 7. The MCMC analyses for each structure analysis
(from K = 2 to K = 7) was run for 10,000 steps after an ini-
tial burn-in period of 10,000 steps. To assess the most
likely number of clusters, we calculated △K following
Evanno et al. [13]. When the software ran to completion
and results were obtained, we constructed bar charts sum-
marizing the results using drawing software.

Results
Basic information about the selected VIP loci in Uygur
is listed in Table 1. The 85 VIP loci relate to 37 genes
that belong to the cytochrome P450 superfamily, the nu-
clear receptor family, the G-protein coupled receptor
family, the alcohol dehydrogenase family, the adrenergic
receptors family, the ATP-binding cassette (ABC) trans-
porters superfamily, and the eag family.
Using the χ2 test with the Bonferroni correction for

multiple hypotheses and multiple comparisons, we found
0, 1, 3, 5, 7, 9, 10, 13, 16, 17, and 25 different loci in the
frequency distributions when the Uygur population was
compared to the TSI, MEX, GIH, CHD, CEU, CHB, ASW,
JPT, MKK, LWK, and YRI populations, respectively. Three

Table 1 Basic characteristic of selected variants and allele frequencies in the Uygur population (Continued)

rs3745274 CYP2B6 cytochrome P450
superfamily

Phase I G T 0.792 0.208 Gln172His Missense

rs28399499 CYP2B6 cytochrome P450
superfamily

Phase I T C 1 0 Ile328Thr Missense

rs3211371 CYP2B6 cytochrome P450
superfamily

Phase I C T 0.495 0.505 Arg487Cys Missense

rs12659 SLC19A1 solute carrier family Others C T 0.589 0.411 Pro192Pro Synonymous

rs1051266 SLC19A1 solute carrier family Others G A 0.579 0.421 His27Arg Missense

rs1131596 SLC19A1 solute carrier family Others T C 0.872 0.128 - 5′ UTR

rs4680 COMT - Phase II A G 0.432 0.568 Val158Met 5′ Flanking

rs59421388 CYP2D6 cytochrome P450
superfamily

Phase I C T 1 0 Val287Met Missense

rs28371725 CYP2D6 cytochrome P450
superfamily

Phase I G A 0.896 0.104 - Intronic

rs16947 CYP2D6 cytochrome P450
superfamily

Phase I G A 0.726 0.274 - Not Available

rs61736512 CYP2D6 cytochrome P450
superfamily

Phase I C A/G/T 1 0 Val136Met Intronic

rs28371706 CYP2D6 cytochrome P450
superfamily

Phase I C T 1 0 Thr107Ile Missense

rs5030656 CYP2D6 cytochrome P450
superfamily

Phase I AAG - 1 0 - Non-synonymous
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Table 2 Significant variants in Uygur compared to the 11 populations, as determined by Chi-square test

SNP ID Genes Chi-square test p value

CHB JPT CEU YRI ASW CHD GIF LWK MEX MKK TSI

rs1801131 MTHFR 2.64E-01 5.50E-02 5.61E-01 4.64E-05 1.28E-01 1.28E-01 1.23E-01 5.13E-02 3.21E-01 6.99E-01 4.68E-01

rs1801133 MTHFR 5.56E-02 8.61E-01 6.49E-01 5.64E-09 6.93E-06 9.87E-01 6.81E-04 4.89E-08 4.45E-01 4.97E-11 7.77E-02

rs6025 F5 - - 5.47E-01 - - - - - - - -

rs20417 PTGS2 2.27E-30 3.82E-30 1.42E-30 3.59E-25 - - - - - - -

rs689466 PTGS2 1.58E-04 9.82E-03 1.79E-02 8.07E-06 2.72E-03 3.17E-03 1.18E-02 4.71E-09 6.02E-01 6.96E-13 3.42E-02

rs4124874 UGT1A1 5.43E-04 2.54E-02 8.95E-01 1.45E-18 6.07E-06 2.73E-02 1.58E-02 2.31E-14 6.95E-01 8.73E-14 5.94E-01

rs10929302 UGT1A1 1.27E-02 1.55E-02 7.21E-01 2.68E-02 - - - - - - -

rs4148323 UGT1A1 1.00E-02 8.23E-01 3.34E-04 3.34E-04 - 4.91E-01 1.52E-03 - 4.21E-02 - -

rs7626962 SCN5A - - - 1.61E-03 - - - - - - -

rs1805124 SCN5A 5.41E-02 1.67E-01 7.66E-01 3.09E-02 3.68E-01 7.42E-03 9.77E-01 1.04E-01 5.81E-01 1.01E-03 4.23E-01

rs3814055 NR1I2 2.86E-01 1.37E-01 8.69E-01 1.21E-01 7.00E-01 7.20E-02 4.08E-01 2.75E-01 2.51E-01 8.66E-04 8.24E-01

rs2046934 P2RY12 6.84E-01 6.10E-01 2.60E-01 2.50E-01 - - - - - - -

rs701265 P2RY1 2.09E-01 5.56E-01 6.25E-01 2.75E-23 7.57E-11 4.26E-01 2.11E-01 4.41E-21 8.25E-01 1.87E-23 4.24E-01

rs975833 ADH1A 7.76E-11 3.63E-09 2.56E-01 2.56E-01 - - - - - - -

rs2066702 ADH1B - - - 1.70E-14 2.43E-10 - - 7.05E-07 - - -

rs1229984 ADH1B 4.84E-10 6.69E-09 1.28E-11 1.79E-11 - - - - - - -

rs698 ADH1C 2.29E-04 4.26E-04 5.04E-08 1.35E-04 5.01E-02 3.58E-03 2.41E-01 3.71E-01 5.69E-01 4.18E-01 2.40E-02

rs3846662 HMGCR 7.31E-01 9.72E-01 6.50E-02 1.61E-21 1.18E-08 6.07E-01 3.68E-02 8.13E-20 2.60E-02 2.51E-12 1.88E-01

rs1042713 ADRB2 5.37E-01 2.62E-01 7.49E-03 2.31E-01 4.76E-01 3.59E-01 1.81E-01 5.87E-01 6.38E-01 6.13E-01 2.35E-03

rs1042714 ADRB2 6.84E-01 7.77E-02 5.86E-08 3.04E-01 - - - - - - -

rs1142345 TPMT - - - 6.38E-02 - - - 5.08E-05 4.66E-03 7.52E-52 -

rs2066853 AHR 6.40E-04 9.34E-06 5.30E-03 1.34E-05 2.98E-03 2.09E-03 2.84E-02 5.09E-07 1.08E-01 1.26E-03 3.22E-03

rs1045642 ABCB1 8.23E-03 3.13E-02 3.10E-01 3.16E-18 7.87E-08 1.84E-04 9.12E-01 - 1.07E-01 4.28E-17 1.33E-01

rs2032582 ABCB1 8.02E-01 3.09E-01 9.05E-03 - 1.06E-14 3.95E-02 - - - - -

rs2032582 ABCB1 - - - - 1.49E-01 1.77E-04 - - - - -

rs2032582 ABCB1 - - - - 1.23E-16 1.51E-10 - - - - -

rs1128503 ABCB1 7.10E-01 2.93E-01 1.73E-05 1.63E-22 4.13E-12 7.84E-01 2.67E-01 1.51E-20 2.52E-03 5.63E-23 6.23E-05

rs10264272 CYP3A5 - - - 1.76E-08 - - - 3.72E-12 - 1.61E-07 -

rs776746 CYP3A5 4.82E-13 1.37E-12 5.51E-02 1.56E-43 9.11E-27 2.09E-10 1.04E-10 9.92E-38 3.17E-11 2.71E-28 1.52E-02

rs3815459 KCNH2 4.49E-02 6.90E-04 - 2.69E-03 - - - - - - -

rs3807375 KCNH2 9.10E-04 8.15E-08 8.52E-03 2.75E-07 1.82E-02 5.77E-04 1.94E-02 3.81E-07 6.07E-01 1.36E-05 2.76E-03

rs4244285 CYP2C19 7.60E-03 7.79E-02 7.63E-01 8.20E-01 - - - - - - -
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Table 2 Significant variants in Uygur compared to the 11 populations, as determined by Chi-square test (Continued)

rs1801252 ADRB1 3.99E-04 4.69E-04 - 1.77E-04 - - - - - - -

rs1801253 ADRB1 4.01E-01 5.97E-01 4.11E-02 1.39E-04 - - - - - - -

rs1695 GSTP1 1.97E-02 5.30E-06 4.87E-02 2.14E-01 5.59E-02 3.14E-02 5.37E-01 2.61E-04 1.46E-03 5.49E-01 5.90E-01

rs1138272 GSTP1 - - - - - - - - 3.82E-01 - -

rs1800497 ANKK1 5.75E-03 7.02E-03 4.03E-01 2.26E-03 3.61E-02 1.02E-03 9.04E-01 4.19E-02 7.81E-03 3.21E-02 5.35E-01

rs6277 DRD2 7.51E-07 9.21E-07 2.73E-03 1.15E-09 - - - - - - -

rs4149056 SLCO1B1 3.90E-01 2.55E-01 3.73E-01 - 3.47E-02 3.12E-01 - - - 4.92E-01 1.43E-02

rs7975232 VDR 3.64E-01 5.13E-01 2.26E-03 7.99E-06 3.56E-04 2.20E-01 7.13E-03 5.31E-09 5.87E-02 8.30E-09 7.35E-04

rs1544410 VDR 7.55E-08 2.36E-03 6.90E-04 8.50E-01 2.39E-01 5.95E-08 3.45E-03 9.28E-01 9.17E-01 3.44E-02 6.49E-03

rs2239185 VDR 2.76E-01 3.57E-01 - 4.96E-02 - - - - - - -

rs1540339 VDR 4.18E-04 7.39E-05 2.87E-02 2.34E-08 2.07E-04 2.63E-05 1.43E-02 3.95E-11 2.23E-01 7.15E-11 2.40E-02

rs2239179 VDR 1.49E-02 4.20E-03 3.05E-02 1.57E-01 1.22E-01 4.13E-03 7.35E-02 7.84E-01 2.95E-01 4.02E-01 7.32E-01

rs3782905 VDR 3.53E-13 2.82E-17 1.09E-10 2.88E-14 - - - - - - -

rs10735810 VDR 1.61E-01 1.87E-01 9.34E-02 1.81E-02 4.22E-02 4.66E-03 5.86E-01 1.58E-03 2.77E-03 1.90E-02 2.90E-01

rs11568820 VDR 1.28E-01 8.00E-02 6.18E-03 1.16E-31 5.41E-08 8.53E-01 3.03E-01 3.47E-19 3.45E-02 6.79E-17 7.59E-02

rs7294 VKORC1 4.64E-08 2.30E-05 3.77E-01 5.06E-05 2.06E-03 7.51E-07 1.38E-12 1.46E-02 7.81E-01 1.90E-04 3.15E-01

rs9934438 VKORC1 3.05E-12 2.10E-09 4.69E-03 2.89E-26 1.19E-11 2.46E-11 4.83E-11 9.77E-19 1.61E-01 3.19E-16 9.26E-02

rs1801272 CYP2A6 - 1.08E-30 3.63E-34 - - - - - - - -

rs3745274 CYP2B6 3.21E-01 2.23E-01 1.95E-01 2.27E-05 2.73E-01 1.80E-01 6.90E-05 3.31E-02 2.34E-01 4.15E-04 1.30E-01

rs28399499 CYP2B6 - - - 3.33E-06 4.73E-04 - - - - 1.80E-01 -

rs1051266 SLC19A1 8.64E-03 2.37E-03 4.08E-01 3.20E-09 2.10E-01 2.71E-01 4.03E-01 3.44E-10 3.83E-02 1.97E-14 4.33E-02

rs4680 COMT 4.53E-02 8.67E-03 5.32E-01 1.75E-02 1.64E-02 2.29E-03 9.75E-01 5.38E-02 6.03E-01 3.36E-03 3.41E-01

p <0.05 indicates statistical significance
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loci (rs776746, rs9934438, and rs7294) located in the
CYP3A5 and VKORC1 genes were different in the Uygur
population when compared with most of the populations
(Tables 2 and 3).
For a global analysis, we combined our new data with

previously published data, for a total of 66 population
samples at rs776746 and rs7294. From Table 4 it can
clearly be seen that the frequencies of the A allele of
rs776746 were higher in Africa than in Asia and East
Asia, but lower in Europe. For the East Asia data, fre-
quencies ranged from 5 % to 50 %, and the frequencies
were high in the She and Tujia population and lower in
the Uygur and Tu populations. The frequencies of the A
allele of rs7294 in East Asia ranged from 1 % to 35 %,
and the frequency in the Uygur population was higher
than in the other populations from East Asia.
Pairwise Fst values were calculated for all population

comparisons across loci. As shown in Table 5, we found
that pairwise Fst values for comparisons of the Uygur
population with the other 11 populations ranged from
0.49686 to 0.581. Fst is directly related to the variance
in allele frequency among populations and to the degree
of resemblance among individuals within populations. If

Fst is small, it means that the allele frequencies within
each population are similar; if it is large, it means that
the allele frequencies are different. The value of Fst for
the Uygur and MEX populations was the smallest. We
therefore conclude that the allele frequencies of the
Uygur and MEX are similar. We speculate that the gen-
etic backgrounds of the Uygur and MEX populations
are similar.
We used a model-based clustering approach, as imple-

mented in Structure, to infer population structure
among the 12 populations. Different values ranging from
2 to 7 were assumed for K in Structure calculations. K =
3, 4, 5 were selected, based on the Estimated Ln Prob of
Data and other recommendations of the Structure soft-
ware manual. As shown in Fig. 1, when the K value was
equal to 3, individuals were independently assigned to
three affinity groups (subpopulations 1: Uygur, CEU,
GIH, MEX, TSI; subpopulations 2: ASW, LWK, MKK,
YRI; subpopulations 3: CHB, CHD, JPT) using the rela-
tive majority of likelihood to assign individuals to sub-
populations. We tested additional values of K and
obtained results suggesting that the genetic backgrounds
of the Uygur and MEX populations are simila.

Table 3 Number of variants significantly different from the 11 populations and corresponding gene families after correction for
multiple tests

Gene Family Significant Variants (N)

TSI MEX GIH CHD CEU CHB ASW JPT MKK LWK YRI

methylenetetrahydrofolate reductase
family

0 0 0 0 0 0 0 0 2 2 2

cytochrome P450 superfamily 0 1 1 2 1 1 1 2 2 2 4

UDP-glucuronosyltransferase family 0 0 0 0 0 0 1 0 1 1 1

sodium channel gene family 0 0 0 0 0 0 0 0 0 0 0

nuclear receptor family 0 0 0 2 1 2 1 1 3 3 4

G-protein coupled receptor family 0 0 0 0 0 0 1 0 1 1 0

alcohol dehydrogenase family 0 0 0 0 2 2 1 2 0 1 2

adrenergic receptors family 0 0 0 0 1 0 0 0 0 0 0

methyltransferase superfamily 0 0 0 0 0 0 1 0 0 0 0

ATP-binding cassette (ABC)
transporters superfamily

0 0 0 0 1 0 2 0 2 1 2

eag family 0 0 0 0 0 0 0 1 1 1 1

inward-rectifier potassium channel
family

0 0 0 0 0 0 0 0 0 0 0

glutathione S-transferase family 0 0 0 0 0 0 0 1 0 0 0

Ser/Thr protein kinase family 0 0 0 0 0 0 0 0 0 0 0

G-protein coupled receptor family 0 0 0 0 0 1 0 1 0 0 2

solute carrier family 0 0 0 0 0 0 0 0 0 1 1

sulfotransferase family 0 0 0 0 0 0 0 0 1 0 0

- 0 0 2 1 1 3 2 4 3 4 6

Sum 0 1 3 5 7 9 10 12 16 17 25
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Table 4 Allele frequencies of rs776746 and rs7294 in populations from different regions of the world

Geographic
Region

Population CYP3A5rs776746 VKORC1rs7294

Allele A frequency Allele G frequency Allele A frequency Allele G frequency

Africa Bantu speakers 0.81 0.19 0.38 0.63

Bantu speakers 0.83 0.17 0.67 0.33

San 0.92 0.08 0.33 0.67

Biaka 0.94 0.06 0.81 0.19

Mbuti 0.93 0.07 0.83 0.17

Yoruba 0.94 0.06 0.50 0.50

Mandenka 0.69 0.31 0.56 0.44

Mozabite 0.15 0.85 0.27 0.73

Asia Bedouin 0.15 0.85 0.30 0.70

Druze 0.09 0.91 0.21 0.79

Palestinian 0.18 0.82 0.28 0.72

Burusho 0.22 0.78 0.62 0.38

Kalash 0.24 0.76 0.30 0.70

Pashtun 0.13 0.87 0.70 0.30

Mongolian 0.35 0.65 0.15 0.85

Balochi 0.20 0.80 0.52 0.48

Balochi 0.14 0.86 0.50 0.50

Brahui 0.12 0.88 0.48 0.52

Hazara 0.25 0.75 0.21 0.79

Sindhi 0.22 0.78 0.52 0.48

Oroqen 0.15 0.85 0.00 1.00

East Asia Dai 0.45 0.55 0.20 0.80

Daur 0.11 0.89 0.06 0.94

Han 0.26 0.74 0.01 0.99

Hezhe 0.17 0.83 0.17 0.83

Japanese 0.23 0.77 0.09 0.91

Koreans 0.19 0.82 0.05 0.95

Lahu 0.30 0.70 0.15 0.85

Miao 0.35 0.65 0.20 0.80

Naxi 0.22 0.78 0.11 0.89

She 0.45 0.55 0.25 0.75

Tu 0.10 0.90 0.10 0.90

Tujia 0.50 0.50 0.05 0.95

Uyghur 0.05 0.95 0.35 0.65

Xibe 0.22 0.22 0.17 0.83

Yi 0.20 0.80 0.15 0.85

Cambodians, Khmer 0.27 0.73 0.14 0.86

Europe Adygei 0.12 0.88 0.15 0.85

Basque 0.04 0.96 0.28 0.72

Estonian 0.08 0.92 0.41 0.59

French 0.09 0.91 0.28 0.72

Italians 0.06 0.94 0.50 0.50

Italians 0.19 0.81 0.31 0.69
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Discussion
The genotype frequencies of VIP variants differs among
human populations. In this study, we genotyped the var-
iants related to drug response in the Uygur ethnic group
and compared the genotype frequencies with those in
eleven populations. From the χ2 test, we found clear evi-
dence that the allele characteristics of the CYP3A5
rs776746 and VKORC1 (rs9934438 and rs7294) variants
in the Uygur population are quite different from that in
other ethnic groups. We also found that the genetic back-
grounds of the Uygur and MEX populations are similar, via
Fst calculations and analysis of population structure.
CYP3A5, localized on chromosome 7q21-q22.1, en-

codes one of the CYP3A subfamily of enzymes [14]. The
most common nonfunctional variant of CYP3A5 is des-
ignated as CYP3A5*3. CYP3A5*3 status is determined
by the derived allele at rs776746, a change from A to G
located in intron 3. This change creates a cryptic splice
site that results in altered mRNA splicing, which may
alter the reading frame and result in a premature
termination codon and hence a nonfunctional protein
[14, 15].

Individuals with CYP3A5*1/*1 and *1/*3 expresser ge-
notypes metabolize some CYP3A substrates more rap-
idly than CYP3A5*3/*3 nonexpressers. One such
substrate is tacrolimus, which is used to prevent post-
transplantation organ rejection. CYP3A5*1 carriers have
a higher rate of tacrolimus clearance than those with the
other genotypes, with *1/*1 individuals having a higher
clearance than *1/*3 individuals, who have higher clear-
ance than *3/*3 individuals [16]. In ideal situations, the
target tacrolimus concentration must be high enough to
prevent transplant rejection [17, 18], but low enough to
minimize toxicity [19]. Tacrolimus trough concentra-
tions are routinely monitored after transplantation, and
the dose is appropriately adjusted.
Carbamazepine (CBZ), a first-line antiepileptic drug,

has been widely prescribed for the treatment of partial
and generalized tonic-clonic seizures. It has been re-
ported that CYP3A5*3 is associated with CBZ pharma-
cokinetics in Japanese [20], Korean [21], and Chinese
[22] epileptic patients, and that CYP3A5 expressers are
more likely to require higher CBZ maintenance doses
than nonexpressers (GA + AA vs. GG). The CYP3A5

Table 4 Allele frequencies of rs776746 and rs7294 in populations from different regions of the world (Continued)

Orcadian 0.16 0.84 0.38 0.63

Russians 0.06 0.94 0.36 0.64

Sardinian 0.04 0.96 0.32 0.68

North America Pima, Mexico 0.54 0.46 0.48 0.52

Maya, Yucatan 0.30 0.70 0.64 0.36

Oceania Papuan New Guinean 0.21 0.79 0.74 0.24

Melanesian, Nasioi 0.18 0.82 0.66 0.34

Siberia Yakut 0.10 0.90 0.06 0.94

South America Amerindians 0.15 0.85 0.31 0.69

Karitiana 0.23 0.77 0.79 0.21

Surui 0.17 0.83 0.40 0.60

Table 5 Fst values between population pairs

Uygur ASW CEU CHB CHD GIH JPT LWK MEX MKK TSI YRI

Uygur 0

ASW 0.53235 0

CEU 0.50418 0.15651 0

CHB 0.52377 0.20398 0.13482 0

CHD 0.52714 0.20593 0.12811 −0.0009 0

GIH 0.50346 0.09725 0.03652 0.16088 0.15637 0

JPT 0.52382 0.18675 0.12683 0.00348 0.00521 0.14951 0

LWK 0.56694 0.02014 0.23624 0.28267 0.28819 0.17427 0.26257 0

MEX 0.49686 0.12632 0.02647 0.08544 0.0786 0.05464 0.08481 0.21135 0

MKK 0.54064 0.01817 0.15704 0.22475 0.22848 0.10714 0.20085 0.02468 0.15325 0

TSI 0.49987 0.15367 0.00183 0.11417 0.11244 0.04155 0.10694 0.23517 0.0262 0.15761 0

YRI 0.581 0.01805 0.24612 0.28525 0.29191 0.17483 0.26311 0.00481 0.22153 0.02523 0.24647 0
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genotype may also have dose-dependent effects on ABT-
773 plasma levels. CYP3A5 expressers have a higher rate
of ifosfamide N-demethylation in the liver and kidney
and of cyclosporine A metabolism in the kidney [15].
CYP3A5*3 is the most frequent and well-studied vari-

ant allele of CYP3A5. Its frequency varies widely across
human populations. In white populations, the estimated
allele G frequency of CYP3A5*3 is 0.82–0.95, in African
American is 0.33, in Japanese is 0.85, in Chinese is 0.65,
in Mexicans is 0.75, in Pacific Islanders is 0.65, and in
Southwest American Indians is 0.4 [15]. In our study,
the frequency of allele G is higher than in other popula-
tion from China. This suggests that ancestry should be
considered when determining dosages for different
patients.
The VKORC1 (vitamin K epoxide reductase complex,

subunit 1) gene, which encodes vitamin K epoxide reduc-
tase complex subunit 1, located on chromosome 16,
includes three exons [23]. The 1173C > T (rs9934438)
transition in intron 1 and the 3730G > A (rs7294) tran-
sition in the 3ʹ untranslated region (UTR), are two
common polymorphisms [24].
Several authors have shown that acenocoumarol dose

is also influenced by VKORC1 genotype. Reitsma et al.
showed in 2005 that Dutch patients carrying one or
two variant alleles for the 1173 polymorphism required
a 28 % and 47 % lower dose, respectively, when com-
pared with wild types [25]. In Greek acenocoumarol
users, heterozygous carriers of a variant allele required
a 19 % lower dose and homozygous carriers a 63 %
lower dose [26]. Similar percentages were found in a
German and Austrian population (25 % and 52 %) [27],

in a Serbian population (27 % and 62 %) [28], and
amongst Lebanese acenocoumarol users (34 % and 50
%) [29]. Reitsma et al. also investigated the influence of
VKORC1 polymorphism on phenprocoumon dose re-
quirements. Patients with a CT genotype at position
1173 had a 10 % lower dose and patients with a TT
genotype a 52 % lower dose than wild types (CC) [25].
This effect was also seen in several German and
Austrian studies. The dose in phenprocoumon users
with one variant VKORC1 allele was 19–31 % lower
than in wild type users, and 43–51 % lower in users
with two variant alleles [27].
Warfarin is a commonly prescribed oral anticoagulant,

used to prevent thromboembolic diseases in patients
with deep vein thrombosis, atrial fibrillation, recurrent
stroke, or heart valve prosthesis [30]. Some studies have
suggested that carriers of the 1173TT genotype require a
dose of warfarin significantly lower than that of carriers
with the CC or CT genotypes [24]. On the other hand,
the 3730G > A polymorphism was associated with differ-
ences in the average dose of warfarin prescribed, with
patients carrying the GG genotype being prescribed a sig-
nificantly lower average daily dose of warfarin [24, 31].
In summary,VKORC1 polymorphisms can significantly

alter warfarin pharmacodynamics and maintenance dose
requirements. Patients with the 1173T (rs9934438) allele
require a lower warfarin dose compared with 35 mg/
week for the wild-type carriers [32]. Patients with 3730A
(rs7294) need a higher warfarin dose [32, 33]. In our
study, the frequency of carriers of the allele T of
rs9934438 and allele G of rs7294 are lower than in other
Asian populations, and higher than in European and YRI

Fig. 1 Bayesian clustering of genotypic samples from 12 populations. Each vertical bar denotes an individual, whilst colors denote inferred
clusters. Note that colors are not universal between k = 3 and 5
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populations, which suggests that the optimal dosage of
warfarin should be decided based on the specific geno-
type in individual Uygur patients.

Conclusion
The genotype frequencies of VIP variants affect a popu-
lations’ response to drugs to a great extent. Determin-
ation of the genotype distribution and frequencies of
VIP variants in a population is necessary to provide a
theoretical basis for safer drug administration and an
improved curative effect. Our results complement the
currently available data on the Uygur ethnic group in
the pharmacogenomics database, and furthermore, pro-
vide a basis for safer and more effective drug adminis-
tration in the Uygur. However, our sample size of
Uygur is relatively small, and further investigation in a
larger cohort of Uygur is necessary to ascertain the
generalizability and extrapolation of our results to these
and other conditions in the Uygur population.
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