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Abstract

Background: Dyslexia is a polygenic speech and language disorder characterized by an unexpected difficulty in
reading in children and adults despite normal intelligence and schooling. Increasing evidence reveals that different
speech and language disorders could share common genetic factors. As previous study reported association of
GNPTAB, GNPTG and NAGPA with stuttering, we investigated these genes with dyslexia through association analysis.

Results: The study was carried out in an unrelated Chinese cohort with 502 dyslexic individuals and 522 healthy
controls. In all, 21 Tag SNPs covering GNPTAB, GNPTG and NAGPA were subjected to genotyping. Association
analysis was performed on all SNPs. Significant association of rs17031962 in GNPTAB and rs882294 in NAGPA with
developmental dyslexia was identified after FDR correction for multiple comparisons.

Conclusion: Our results revealed that the stuttering risk genes GNPTAB and NAGPA might also associate with
developmental dyslexia in the Chinese population.
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Background
Speech and language disorders can be classified into nu-
merous categories, including stuttering, speech sound
disorder (SSD), verbal dyspraxia, specific language im-
pairment (SLI) and developmental dyslexia (DD) [1].
Dyslexia, also known as reading disability (RD), is char-
acterized by difficulties in reading and spelling despite of
normal intelligence and adequate education background
without any neurological impairments [2,3]. Though lan-
guage disorders such as dyslexia are quite different con-
cept from speech disorders, in many cases, it is difficult
to discriminate a language disorder from a speech dis-
order in a specific individual [4]. Hence, some re-
searchers regard them as a continuum of language
disorders [5-7]. Motor deficiency might be one of the
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underlying mechanisms that explain how the two defects
are connected. For instance, stuttering has been attrib-
uted to a temporal motor defect in speech preparation
[8,9]. In terms of dyslexia, some recent studies have re-
vealed that dyslexic individuals suffer from motor prob-
lems as well, especially in performing fine movements
[6,10]. A great deal of evidence reveals that language dis-
orders and speech disorders could share some genetic
factors. For example, forkhead box P2 (FOXP2) and its
downstream target gene contactin associated protein-
like 2 (CNTNAP2) have been shown to be an important
link in the networks of several speech and language dis-
orders, including SLI, dyslexia, stuttering and dyspraxia
[1,11-20]. This viewpoint triggered us to verify whether
candidate genes for stuttering were also involved in the
pathogenesis of developmental dyslexia.
Recently, in a study of stuttering individuals from Pakistan

and North America, candidate gene and linkage analyses
identified several mutations in the lysosomal enzyme-
targeting pathway genes N-acetylglucosamine-1-phos-
phate transferase gene (GNPTAB), N-acetylglucosamine-
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1-phosphate transferase, gamma subunit (GNPTG) and
N-acetylglucosamine-1-phosphodiester alpha-N-acetyl-
glucosaminidase (NAGPA) [21]. Subsequent studies of
stuttering identified mutations in the GNPTAB gene
and two functionally related GNPTG and NAGPA genes
in large families and in the sporadic patients, reaffirm-
ing their association with stuttering [22-24]. However,
the relevance of these genes with dyslexia has not yet
been reported. It has been shown that stuttering is
more common in children who suffer from concomi-
tant speech, language, or motor deficiencies, implying
that speech and language disorders may be connected
genetically to some extent. Therefore, the three genes
(GNPTAB, GNPTG and NAGPA) that may predispose
people to stuttering are potential candidate risk genes
for other speech and language disorders. Based on the
above evidence, we performed association analysis on
these genes with dyslexia in a large unrelated Chinese
cohort.

Results
Single marker analysis
In the present study, we performed genotyping on Tag
SNPs of three candidate genes for stuttering, GNPTAB,
GNPTG and NAGPA. Data adjustment for age and sex
was performed on genotyping results. Table 1 shows the
SNP markers with significant unadjusted p-values
(<0.05) in the study.
In GNPTAB, we genotyped 11 Tag SNPs and found

nominal association of one SNP with dyslexia before ad-
justment (Additional file 1). SNP rs10778148 showed
significant association with dyslexia under recessive
model (P = 0.007633, OR = 7.568) and in homozygous
genotype (P = 0.008803, OR = 7.3083). After the adjust-
ment for age and sex, the association between SNP
rs10778148 and dyslexia remained significant under re-
cessive model (P = 0.01205, OR = 7.462) and in homozy-
gous genotype (P = 0.01364, OR = 7.2499). Moreover,
we found rs17031962 achieved significant level under
dominant model (Padjusted = 0.003443, OR = 0.6647) and
in heterozygous genotype (Padjusted = 0.007001, OR =
0.6738) after adjustment for age and sex. However, only
the P-value of rs17031962 under dominant model
(Padjusted = 0.0357) remained significant after the FDR
adjustment for multiple comparisons.
In GNPTG, we genotyped 2 Tag SNPs (Additional file 2)

and only found one SNP significantly associated with dys-
lexia before adjustment. SNP rs2887538 showed signifi-
cantly associated with dyslexia under dominant model
(P = 0.03411, OR = 0.7634). However, no significant associ-
ation was found after FDR correction.
In NAGPA, we genotyped 8 Tag SNPs (Additional

file 3) and only found one SNP significantly associated
with dyslexia before adjustment. SNP rs882294 showed
significantly associated with dyslexia under additive model
(P = 0.006043, OR = 1.404), dominant model (P = 0.006426,
OR = 1.462) and in heterozygous genotype (P = 0.01175,
OR = 1.4361). After the adjustment for age and sex, the
association between SNP rs882294 and dyslexia
remained significant under additive model (Padjusted =
0.001571, OR = 1.531), dominant model (Padjusted =
0.00167, OR = 1.611) and in heterozygous genotype
(Padjusted = 0.003546, OR = 1.6765). While after FDR
correction, the association between SNP rs882294 and
dyslexia remained significant under additive model
(Padjusted = 0.0336) and dominant model (Padjusted =
0.0357).

Haplotype analysis
We built 3 blocks within GNPTAB and 3 blocks within
NAGPA through Haploview software (Figures 1 and 2).
In GNPTAB, haplotype analysis was conducted in

three blocks (Table 2). All blocks were not associated
with dyslexia (P > 0.05 Omnibus test), but a four marker
protective haplotype TTCT (Block1 rs1811338-rs1703
1962-rs10778148-rs11111007) was identified after ad-
justment for age and sex (Padjusted = 0.00985, OR =
0.761). However, all P-values failed to reach significance
after the FDR correction.
In NAGPA, haplotype analysis was conducted in three

blocks (Table 3). Block 3 consisting of rs1001170,
rs882294 and rs17137545 was associated with dyslexia
(P = 0.0228 Omnibus test), and included one risk haplo-
type TCT (Punadjusted = 0.0129, OR = 1.38). After adjust-
ment for age and sex, the association for haplotype TCT
in Block 1 remain significant (Padjusted = 0.00289, OR =
1.52), and a risk haplotype GTC in Block 2 (rs12929808-
rs7110-rs3743840) achieved significant level (Padjusted =
0.0494, OR = 1.28). However, all P-values failed to reach
significance after the FDR correction.

Discussion
Generally, deficits in speech and language functions can
be characterized as expressive (production), as receptive
(comprehension) or as mixed [4]. Genetically, different
mental disorders may share some common factors
[1,11-20]. The present study aimed to identify the correl-
ation between dyslexia and three stuttering associated
genes, GNPTAB, GNPTG, and NAGPA. Our data
showed that genetic variants of GNPTAB and NAGPA
might contribute to the pathogenesis of dyslexia.
GNPTAB and GNPTG genes encode the alpha and

beta subunits and gamma subunit of enzyme UDP-
GlcNAc-1-phosphotransferase (GNPT), which is essen-
tial to proper trafficking of lysosomal acid hydrolases
[25]. Mutations in GNPTAB and GNPTG genes could
cause mucolipidosis types II and III, which are severe
forms of autosomal recessive lysosomal storage diseases



Table 1 Association between significant SNP markers and dyslexia using the additive, dominant, genotype, and the
recessive models

Gene SNP Patient Control Crude OR
(95%CI)

Unadjusted
p-value

Adjusted OR
(95%CI)

Adjusted
p-value

FDR corrected
p-value

GNPTAB rs17031962

C Allele 677 678 1.000 1.000

T Allele 287 340 0.844 0.082 0.748 0.006 0.065

(0.6977-1.022) (0.6079-0.9209)

CC 240 222 1.000 1.000

CT 197 234 0.779 0.062 0.674 0.007 0.074

(0.5986-1.0131) (0.5057-0.8977)

TT 45 53 0.785 0.279 0.672 0.093 0.326

(0.5072-1.2161) (0.4226-1.0687)

Dom 0.780 0.052 0.665 0.003 0.036

(0.6074-1.002) (0.5056-0.8739)

Rec 0.886 0.571 0.771 0.255 0.596

(0.5831-1.346) (0.4917-1.207)

rs10778148

C Allele 854 909 1.000 1.000

T Allele 110 107 1.090 0.540 1.148 0.368 0.639

(0.827-1.437) (0.8501-1.55)

CC 386 403 1.000 1.000

CT 82 103 0.831 0.260 0.899 0.547 0.976

(0.6024-1.1468) (0.6350-1.2722)

TT 14 2 7.308 0.009 7.250 0.014 0.286

(1.6501-32.3685) (1.5021-34.9920)

Dom 0.955 0.769 1.022 0.897 0.966

(0.7001-1.301) (0.731-1.43)

Rec 7.568 0.008 7.462 0.012 0.254

(1.711-33.48) (1.554-35.83)

GNPTG rs2887538

G Allele 713 709 1.000 1.000

A Allele 253 309 0.814 0.040 0.850 0.132 0.401

(0.6689-0.9909) (0.6879-1.05)

GG 265 245 1.000 1.000

AG 183 219 0.773 0.054 0.829 0.195 0.775

(0.5944-1.0041) (0.6243-1.1006)

AA 35 45 0.719 0.173 0.754 0.275 0.481

(0.4473-1.1559) (0.4533-1.2525)

Dom 0.763 0.034 0.815 0.138 0.454

(0.5947-0.98) (0.6225-1.068)

Rec 0.806 0.357 0.816 0.421 0.695

(0.5083-1.277) (0.4968-1.34)

NAGPA rs882294

T Allele 785 877 1.000 1.000

C Allele 179 143 1.404 0.006 1.531 0.002 0.034

(1.102-1.789) (1.176-1.994)
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Table 1 Association between significant SNP markers and dyslexia using the additive, dominant, genotype, and the
recessive models (Continued)

TT 318 377 1.000 1.000

CT 149 123 1.436 0.012 1.577 0.004 0.074

(1.0837-1.9032) (1.1609-2.1408)

CC 15 10 1.778 0.166 2.060 0.112 0.337

(0.7880-4.0131) (0.8443-5.0280)

Dom 1.462 0.006 1.611 0.002 0.036

(1.113-1.921) (1.197-2.169)

Rec 1.606 0.252 1.793 0.195 0.560

(0.7144-3.61) (0.742-4.333)
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[26,27]. Here we identified that two SNP markers,
rs17031962 and rs10778148, were associated with dyslexia
with significant adjusted p-value. However, only an in-
tronic SNP marker rs17031962 was associated with dys-
lexia under dominant model after the FDR correction.
Moreover, NAGPA encodes a Golgi enzyme that cata-

lyzes the second step in the formation of the mannose
6-phosphate recognition marker on lysosomal hydrolases
[28]. Our data showed that SNP rs882294 was associated
with dyslexia with the allele C as a risk factor after FDR
correction. Recently, three mutations in the NAGPA
gene including one deletion and two missenses have
been identified in patients with persistent stuttering.
Further biochemical analysis shows that these mutations
could impair folding and change degradation activity by
the proteasomal system [29]. Since both GNPTAB and
NAGPA are involved in lysosomal decomposition, the
above evidence may reveal a potential role for inherited
Figure 1 Linkage disequilibrium analysis of the 11 SNPs in GNPTAB in
using Haploviewsoftware (b).
enzyme deficiencies in lysosomal metabolism in speech
and language disorders such as stuttering and dyslexia.
Furthermore, this knowledge may trigger a variety of new
investigations that could help to explore the biological
mechanism underlying speech and language disorders.

Conclusion
In conclusion, we found significant association between
development dyslexia and genetic variants in genes en-
coding the lysosomal targeting system in a large unre-
lated Chinese cohort. Our data also supported that there
are common genetic factors underlying the pathophysi-
ology of different speech and language disorders.

Methods
Subjects
Dyslexia screening underwent the two-stage procedures
as previously reported. The criteria for dyslexic patients
vestigated in healthy controls (a). Three blocks were identified



Figure 2 Linkage disequilibrium analysis of the 8 SNPs in NAGPA investigated in healthy controls (a). Three blocks were identified using
Haploviewsoftware (b).
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and healthy individuals was described previously [30].
This study was approved by the ethical committee of
Tsinghua University School of Medicine. The guardians
of children under 16 gave informed, written consent
about participation in the study. Briefly, 6,900 primary
school students aged between 7 to 13 from Shandong
province of China were subjected to a Chinese reading
test consisting of character-, word-, and sentence-level
questions. Then, 1794 participants whose reading scores
Table 2 Haplotypes of the three blocks in GNPTAB between d

Haplotype Haplotype frequency OR

Patient Control

OMNIBUS NA

TCCC 0.169 0.174 0.965

TCTT 0.113 0.104 1.090

TTCT 0.297 0.331 0.853

GCCT 0.418 0.388 1.130

OMNIBUS NA

TCT 0.102 0.113 0.888

CAC 0.463 0.497 0.880

TCC 0.177 0.144 1.260

CCC 0.258 0.246 1.050

OMNIBUS NA

CCG 0.134 0.125 1.080

CTC 0.286 0.254 1.170

ACC 0.577 0.619 0.850
were above 87th percentile or below the 13th percentile
among all students in the same grade were chosen for
further evaluation. These participants were subjected to
a character reading test composed of 300 Chinese char-
acters individually for the assessment of reading ability.
Then the Raven’s Standard Test was performed to ex-
clude individuals with intelligent deficiency. In total,
1024 children were selected for subsequent analysis, in-
cluding 502 dyslexic patients and 522 controls.
evelopmental dyslexia and control subjects

Punadjusted OR Padjusted PFDR

0.354 NA 0.078 0.204

0.764 1.060 0.660

0.541 1.150 0.372

0.103 0.761 0.010

0.178 1.160 0.128

0.194 NA 0.166 0.212

0.415 0.932 0.651

0.152 0.831 0.055

0.056 1.240 0.108

0.617 1.130 0.276

0.190 NA 0.177 0.212

0.558 1.180 0.249

0.120 1.150 0.197

0.074 0.833 0.063



Table 3 Haplotypes of the three blocks in NAGPA between developmental dyslexia and control subjects

Haplotype Haplotype frequency OR Punadjusted OR Padjusted PFDR

Patient Control

Block1 rs2972284-rs2270256

OMNIBUS NA 0.494 NA 0.467 0.467

CC 0.333 0.328 1.030 0.770 1.060 0.572

TT 0.322 0.302 1.090 0.381 1.080 0.470

CT 0.344 0.369 0.896 0.253 0.880 0.218

Block2 rs12929808-rs7110-rs3743840

OMNIBUS NA 0.203 NA 0.102 0.204

GTT 0.388 0.411 0.900 0.263 0.881 0.210

GCC 0.280 0.267 1.070 0.511 1.080 0.493

ATC 0.108 0.125 0.840 0.217 0.787 0.117

GTC 0.212 0.183 1.220 0.090 1.280 0.049

Block3 rs1001170-rs882294-rs17137545

OMNIBUS NA 0.078 NA 0.023 0.137

GTC 0.337 0.345 0.965 0.709 0.954 0.648

TCT 0.170 0.131 1.380 0.013 1.520 0.003

GTT 0.026 0.027 0.979 0.941 0.896 0.722

TTT 0.445 0.482 0.859 0.094 0.831 0.061
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SNP markers selection and genotyping
In total, 21 Tag SNPs covering GNPTAB, GNPTG and
NAGPA were selected through Tagger program [31] with
parameters of minor allele frequency (MAF) over 5%
and pairwise r2 threshold of 0.8. The SNP genotyping
was performed on SequenomMassARRAY platform
(Sequenom, San Diego, CA) at CapitalBio Corporation
(Beijing, China). Genomic DNA samples were extracted
from saliva samples using Oragene™ DNA self-collection
kit (DNA Genotek Inc., Ottawa, Ontario, Canada) and
DNA quantity was determined by Nanodrop spectropho-
tometry (Nanodrop 1000 Spectrophotometer, Thermo Sci-
entific, Wilmington, DE). A locus-specific PCR reaction
based on a locus-specific primer extension reaction was
designed using the MassARRAY Assay Design software
package (v3.1). MALDI-TOF mass spectrometer and Mass
ARRAY Type 4.0 software were used for mass determin-
ation and data acquisition.

Data analysis
Statistical analysis was undertaken using PLINK software
(http://pngu.mgh.harvard.edu/~purcell/plink/), which is
an open-source whole genome association analysis tool-
set and is commonly used to perform a range of basic,
large-scale analyses [32]. Hardy-Weinberg equilibrium
(HWE) tests were undertaken for each SNP, and associ-
ation tests were performed using additive, dominant, or
recessive genetic models. Haplotype analyses were per-
formed using Haploview software (Version 4.2). Haplo-
view is a software package that provides computation of
linkage disequilibrium (LD) in genetic data, performs as-
sociation studies, chooses tagSNPs and estimates haplo-
type frequencies [33,34]. Chi square tests were used to
test for haplotype association and full model association
(Genotype, Dom, Rec). A Fisher’s exact test was used for
allelic association. Logistic regression was applied for
risk stratification with or without covariate (age and sex)
in both single marker and haplotype analysis. False dis-
covery rate (FDR) correction for multiple testing was
undertaken for the 21 SNPs that were adopted into the
single site association analysis.
Additional files

Additional file 1: Table S1. Association between SNPs in GNPTAB and
dyslexia using the additive, dominant, genotype, and the recessive models.

Additional file 2: Table S2. Association between SNPs in GNPTG and
dyslexia using the additive, dominant, genotype, and the recessive models.

Additional file 3: Table S3. Association between SNPs in NAGPA and
dyslexia using the additive, dominant, genotype, and the recessive models.
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