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Abstract

Background: Recent advancements in sequencing and computational technologies have led to
rapid generation and analysis of high quality genetic data. Such genetic data have achieved wide
acceptance in studies of historic human population origins and admixture. However, in studies
relating to small, recent admixture events, genetic factors such as historic population sizes, genetic
drift, and mutation can have pronounced effects on data reliability and utility. To address these
issues we conducted genetic simulations targeting influential genetic parameters in admixed
populations.

Results: We performed a series of simulations, adjusting variable values to assess the affect of
these genetic parameters on current human population studies and what these studies infer about
past population structure. Final mean allele frequencies varied from 0.0005 to over 0.50, depending
on the parameters.

Conclusion: The results of the simulations illustrate that, while genetic data may be sensitive and
powerful in large genetic studies, caution must be used when applying genetic information to small,
recent admixture events. For some parameter sets, genetic data will not be adequate to detect
historic admixture. In such cases, studies should consider anthropologic, archeological, and
linguistic data where possible.

Background

In the past 20 years, DNA sequence data and advanced
computational techniques have provided an unparalleled
resource in the study of human origins[1] and migra-
tion[2]. These tools have demonstrated a Pleistocene col-
onization of America by Asian populations|3,4] and have
even prompted calculations of the size of the original
human founding populations[5]. Similarly, DNA
sequence data have helped demonstrate the dynamics of

large human populations such as primitive human migra-
tion out of Africa|6], the American migration[3], the
Lemba migration in Africa[7], the migratory history of the
Baltic States[8], and many others. Researchers have even
used the population genetics of human disease vectors to
trace human migration events[9]. It may be difficult to
underestimate the value genetic data have played and will
continue to play on our ability to reconstruct historic pop-
ulation events.
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But while sequence data have been used to study many
forms of human migration, their utility in the study of
small-scale migration is still in question. Research into
small migrations like the Norse settlements in Green-
land[10], a possible Polynesian migration to the New
World[11], the North African Slave migration to Amer-
ica[12], and the pre-Columbian European migration to
America[13,14], have traditionally been based primarily
on evidence other than DNA sequence information. How-
ever, recently, researchers have begun to apply genetic
data to these smaller historical migrations and make con-
clusions about small historic populations using current
DNA. For example, DNA information has recently been
used to study the small indigenous populations of Tierra
del Fuego[15], and to analyze Caucasian admixture in
specific African American populations|[16,17]. It should
be noted that genetic data have been used to study the
large Norse migration to Ireland[18], but are an after-
thought when researching their short-lived occupation of
Canada[19,20].

This raises questions about the utility of genetic data in
providing evidence for historic migrations and inferences
of unknown past events. While genetic studies can pro-
vide considerable information, they are also accompanied
by variation and stochasticity. Because of these limita-
tions, even the most complete studies of human popula-
tions have been called "not unequivocal"[21] or
"sobering"[22] by those conducting the research. Recent
reports have also addressed the limited depth of current
genetic studies[23], indicating that most studies make
conclusions after sequencing less than 1% of subjects'
genomes, and sampling only small numbers of a popula-
tion. Such methods can be especially problematic when
dealing with historic admixture events that are very small.
The difficulty is a function of the current architecture of
genetic studies: researchers sample loci from a group of
individuals and categorize individuals into groups based
on which alleles they have at the loci tested[24,25]. These
categorizations are determined based on the most preva-
lent or probable genetic markers in an individual's
genome. The results of these studies, then, can overlook
genetic markers that simply are not sampled, which is
common in small admixture events. Additionally, sto-
chastic events can lead to allele fixation and further com-
plicate matters, particularly in small populations. It has
been suggested that studies of even the largest migrations
should couple genetic information with archeological,
anthropological, and linguistic data[26].

As our ability to collect and analyze DNA sequence data
increases, understanding the probabilities and variability
associated with admixture becomes especially important.
In this study, we explore the utility of DNA sequence data
in small, recent human migration studies. We use for-
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ward-based genetic simulation to explore three questions:
1) what variables contribute to the presence (or absence)
of historic markers in today's genomes, 2) how do these
variables affect the probability of finding historically
admixed DNA in today's populations, and 3) how can
studies be designed to maximize information from
genetic data? These questions are answered through
genetic simulation and a sample size study aimed at sug-
gesting the numbers of subjects and loci that should be
sampled to successfully detect small-scale admixture. In
our simulations, we assume that migrant allele frequen-
cies are known a priori. The simulations test our ability to
detect these known migrant alleles in admixed descended
populations. We find that genetic parameters, the stochas-
ticity of genetic drift, and experimental design all play an
important role in the ability to find historic DNA in cur-
rent admixed populations.

Methods

We used the simuPOP software package for forward-based
genetic simulations[27]. In each simulation, a "migrant”
population with distinct, known alleles was admixed with
a "native" population. We followed the combined popu-
lation through time and recorded the frequency of
migrant alleles at each generation. Because migrant
genetic parameters were known a priori, these simulated
allele frequencies allow us to assess how parameters affect
the ability of detecting migrant alleles in an admixed
descendant population. We used a generation time of 23
years as a compromise among differing estimates of
human generation times [28-30]. The simuPOP module
allows numerous genetic variables to be altered and stud-
ied independently. The variables of interest in these initial
simulations are basic genetic variables: native population
size, migrant population size, mutation rate, time since
admixture event, and initial allele frequencies. These vari-
ables allow the assessment of the role that population
sizes, mutation, genetic drift, and allele frequency have on
the amount of migrant DNA present in the admixed pop-
ulation after a number of generations. Our simulations
have been designed so that total population sizes are as
analogous to effective population sizes (N,) as possible.
We assume that each individual has an equal expectation
of obtaining progeny, that there are equal sex ratios, and
that the population remains constant over time[31].
These assumptions allow the population size used in our
study to be interpreted as an effective population size,
though under some definitions of N, our numbers will
have different values of N than those assigned. The statis-
tics and results in this study are based on the allele fre-
quencies retrieved from the simuPOP software. We
imported these numbers into the R statistical package for
numeric and graphical analysis.
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In our genetic simulations, we make a number of assump-
tions about the populations: random mating, absence of
selection, no gene flow, and constant population size
from time of the migratory event to the present. Actual
populations experience some gene flow with neighboring
populations[32,33]; however, in our simulations, we do
not consider this in an attempt to create a best-case sce-
nario for the migrant allele. If such gene flow did occur, it
could only decrease the chances of detecting the migra-
tion event by lowering the frequency of the migratory
allele in the admixed population. In addition, real popu-
lations often experience growth following admixture.
However, assuming that the migrant allele is growing at
the same rate as the other alleles (random mating), the
allele frequency should not be changed directly by popu-
lation size increase[34], although the effects of drift could
become less pronounced as a result of a greater popula-
tion size. Further studies and simulations using popula-
tion growth rates may be helpful in addressing the effects
of population growth.

Simulations

Our simulations can be grouped into two separate catego-
ries. The first is a series of simulations designed to assess
how the parameters mentioned above can influence the
presence of historic migrant DNA in today's populations.
More concretely, these simulations answer this question:
how does each genetic parameter affect the frequency of
migrant alleles in an admixed population? Our simula-
tions tested the effect of 4 variables: size of migrant popu-
lation, size of native population, time since admixture
event, and mutation rate at the locus of interest. We
assigned each variable a high value and a low value based
on current literature and ran a total of 16 simulations
using a full factorial experimental design, altering only
one variable at a time. This allowed us to study variables
independently and assess how they affect the frequency of
the migrant allele over time. We compare the impact of
each variable by holding other variables constant and
comparing the frequencies of the migrant allele.

We assigned high and low values for the four parameters
based on actual events of historic admixture (Table 1).

Table I: Simulation variables

Variable Low Value  High Value Source
Migrant Population Size 40 1,000 [10]

Native Population Size 1,000 40,000 [35]
Generations Ago 44 174 [10,36]
Mutation Rate 0.0043 1.3x 108 see Table 2

http://www.biomedcentral.com/1471-2156/9/66

The high value for migrating population size was set at
1000, indicative of a large group like the Norse in the
North of America[10]; the low value was set at 40, a
generic number that could represent any small group of
migrants, either in a boat or a migrating family. The high
value for native population size was set at 40,000, the size
of a large Mayan city in 1492; the low value was 1000, the
size of a small city at the same time[35]. The high value for
the number of generations since the migratory event was
174 generations ago, roughly the time of the ancient
Lemba migration to Africa|36]; the low value of 44 gener-
ations represents the recent Norse migration[10]. Our
simulations represent migration events that have occurred
relatively recently (in the past 3,000 years), and the results
should be interpreted accordingly. Although one may be
able to extrapolate our results to more distant admixture
events, additional simulations could better illustrate these
scenarios.

The high and low values for mutation rate were chosen
based on the mutation rates of the regions of the genome
that are used in current genetic research. Determining
which regions are preferred in genetic studies is a difficult
question, as there are many possibilities; the literature
involving just the human migration to America contains
(but is not limited to) studies performed using autosomal
genes[37], autosomal microsatellites[38], Y chromo-
some[26], mtDNA[39,40], and SNPs[38]. To determine
the mutation rates used in our simulations, we chose a
high and low value among these genomic regions (Table
2). In our simulations, we used a high mutation rate of
0.0043 mutations/locus/generation and a low rate of 1.3
x 108 which represent mtDNA and autosomal loci,
respectively.

In the first simulations, we modeled only one locus per
individual and assumed no recombination; one locus is
adequate to assess the role of these parameters on allele
frequencies. We also initialized the migrant population
with the migrant allele fixed (all migrant individuals pos-

Table 2: Mutation rates

Genome Region Mutation Rate Source
Autosomal 25x 108 [48]
Y Chromosome 3x103to | x |08 [49,50]
X Chromosome | x 108 [51]
Microsatellites 4.5 x |04 [52-55]
mtDNA control region 43 % 1073 [56,57]

Common regions of the human genome used in genetic research and
their mutation rates.
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sessed the migrant allele). This is unrealistic, but provides
a best-case scenario for detecting the migrant allele. We
replicated each simulation 250 times.

The second simulation category was a single simulation
designed to mimic the genetic landscape of a true
admixed population. We assigned mid-range values for
migrant population size (200), native population size
(5,000), and generations (100). In order to more realisti-
cally model a current study, we followed 1,000 loci on 20
different chromosomes on each individual. This repre-
sents a sample much larger than the recommended
number needed in order to detect large human admix-
ture[41]. A standard recombination rate of 1.26 cM/Mb
was used[42], though the human recombination rate has
been shown to be negligible over 100 generations[42]. At
the beginning of the simulation, an initial migrant allele
frequency and a mutation rate were randomly generated
for each of the 1,000 loci on each individual, in order to
model the DNA seen in actual human genetics research.
The methods of random generation are outlined below.

Initial allele frequency is difficult to assign because of the
variability of allele frequencies in the human genome.
Alleles with frequencies less than 5% are considered rare
but are the most common categorization of SNPs and
some alleles demonstrate frequencies greater than 90%
(though these common alleles are rarely used in genetic
studies)[43]. While the majority of SNPs are found in the
5% range, we built a simulation that will provide the best-
case scenario for finding migrant alleles. Accordingly, we
chose a much larger level for the average of initial allele
frequencies, 30%. To generate frequencies in this range,
we used a Beta distribution with a mean of 0.30 (Figure 1)
and assigned a random frequency to each migrant locus.
We also assumed that the migrant alleles were all absent
in the native populations.

Mutation rates depend on the region of the genome used
in a study. Differing mutation rates in the literature were
presented earlier (Table 2). There is no estimate for which
region of the genome is used most often in genetic studies;
we, therefore, drew random values that capture the entire
distribution of mutation rates seen in today's literature.
For this simulation, we drew mutation rates equally from
three different uniform distributions: one representing
autosomal DNA with a low mutation rate (1 x 109, 1 x 10
¢ mutations/locus/generation), one representing micros-
atellites and some sex chromosomes (1 x 109, 7 x 104),
and one representing mtDNA (1 x 10, 3 x 10-3) (Figure
2). We followed the migrant allele frequency at each locus
through 100 generations. Final analyses and graphs were
completed using the R software.

http://www.biomedcentral.com/1471-2156/9/66
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Initial allele frequencies. Density of a Beta distribution
with a mean of 0.3 and a standard deviation of 0.17. Initial
allele frequencies for all alleles were randomly generated
from this density.

Sample size study

In order to understand what must be done to successfully
study data from historic admixture, we constructed a sam-
ple size study using the data from simulation 2. Small
human genetics studies test approximately 50 loci when
studying populations[44]. Given the calculated frequency
of migrant alleles in our simulated population, we calcu-
lated the number of migrant alleles that would be seen, on
average, in each human subject of a genetic study. This is
accomplished using the cumulative density function
(CDF) of a binomially distributed random variable where
the size parameter is 50 and the probability parameter is
the expected migrant allele frequency. In comparison, one
of the larger human genetic studies to date sequenced 993
loci in each human subject[45]. Accordingly, we followed
the same protocol to investigate a study of this magnitude,
using the binomial CDF with a size parameter of 993 and
the same probability parameter.

The most recent studies have again raised the bar as far as
loci per subject, sampling 650,000 loci in each individ-
ual[25]. Although sampling more loci will find a larger
number of migrant alleles, the proportion of such markers
in the population does not change when more samples
are taken. The study conducted by Li et al. (2008) samples
about 20 individuals per population group, a number
similar to previous studies. Accordingly, we investigated
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Mutation rates. Histogram demonstrating the distribution of mutation rates randomly assigned to the 1,000 simulated loci.

the sample size necessary to find at least one migrant
allele at each of the loci sequenced in a large genetic study.

Results

Simulation study |

We calculated the frequency of the migrant allele at the
final generation in each of the 16 simulations. The mean
and standard deviation of this frequency, among the 250
replicates, are reported for each of the 16 simulations (Fig-
ure 3). We found that the parameter set that led to the
highest mean allele frequency value included a low native
population size, high migrant population size, and low
mutation rate and was unchanged by the time since the
migration event. The parameter sets that led to the lowest
mean allele frequency value were: high native population
size, low migrant population size, high mutation rate, and
high number of generations (highlighted in Figure 3). For
these two parameter sets, we randomly selected a fifth of
the 250 replicates to illustrate the stochasticity of genetic
drift (Figures 4 and 5). For the parameter set with the
highest final mean allele frequency, we found replicates
with final allele frequencies as low as 25.5% or as high as
78.5%. This parameter set also had the highest standard
deviation (.1044), indicative of the wide range of final val-

ues in the different replicates. For the parameter set with
the lowest final mean allele frequency, many of the repli-
cates drifted to extinction (45.6%), while the highest
allele frequency was 0.006%.

Simulation study 2

For the second simulation study, we followed 1,000 loci
through a simulation that could represent a human pop-
ulation (of 5,000 individuals) that experienced admixture
(of 200 individuals) circa 2,000 years ago. Out of the
1,000 simulated loci, 140 (14%) drifted to extinction
within 100 generations (Figure 6). These extinct alleles,
combined with the effects of mutation, decreased the
expected allele frequency of the final generation to
1.017%, a 16% decrease from the original value.

Sample size study

The average final allele frequency of the migrant allele in
our population from the second simulation was 1.017%.
We calculated the cumulative density function (CDF) for
a genetic study that samples 50 loci for each individual
and where the probability of detecting the migrant allele
is equal to the probability found in our simulations. The
CDF demonstrates that in 60% of individuals sequenced
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Figure 3

Simulation results. The probability of detecting historic, migrant alleles under all combinations of 4 essential genetic param-
eters. The average final migrant allele frequency of 250 replications of each parameter set is reported as the mean (p) fre-
quency of migrant alleles. The standard deviation (o) of the 250 replications is reported for each parameter set below the
corresponding mean. The two parameter sets with the highest and lowest mean allele frequencies are in bold.

for 50 loci, we would not expect to find a single migrant
allele (Figure 7a). Furthermore, we will only find more
than one migrant allele in 9% of the subjects examined.

In the case of a large study with as many as 933 loci, based
upon the expected migrant allele frequency of 1.017%,
almost every subject would demonstrate at least one
migrant allele (Figure 7b). In fact, most subjects would
demonstrate more than 9 migrant alleles. However, while
large studies would expect to succeed in finding more
migrant alleles in today's population, this alone cannot
link the admixed population to the migrant population.
The migrant alleles will still only represent, on average,
1% of every allele sequenced in the entire study. There-
fore, although 9 migrant alleles may, on average, be found
in each subject, it is hard to know if the migrant alleles
will be redundant among loci and subjects or spread
evenly throughout all the loci in the study. Additionally,
these numbers could be considerably lower depending on
the allele frequency in the migrating population.

Discussion

Our results provide some important insights in detecting
historic admixture. The simulations we present illustrate
the effect that initial parameters have on the outcome of
human admixture. Simple adjustments in the parameters
in our simulation series changed the expected allele fre-
quency outcome from as low as 0.0005 to over 0.50, an
increase of three orders of magnitude. The results of any
admixture study using genetic data, then, are highly
dependent on the variables presented in these simulations
(e.g., mutation rate, population sizes, and time since
admixture (number of generations)).

High mutation rates can decrease the expected migrant
allele frequency and the variability by more than 50 per-
cent, especially in populations that experienced earlier
migrations. For example, an increased mutation rate can
change the mean final allele frequency from .0243 to
.0128, or from .5016 to .2699 (depending on other varia-
bles, as reported in Figure 3). Researchers should keep this
in mind when selecting loci for analysis. Because some
DNA mutation rates are highly variable, choice of locus
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Genetic drift. Individual replications of the parameter sets highlighted in Figure 3. The migrant allele frequency of each repli-
cation at each generation are reported and plotted in line format, each replication is described by a single line. Only a sample of
50 replications was used, as 250 lines would be difficult to distinguish. The first parameter set is characterized by an initial allele
frequency of 0.5 while the second parameter set has an initial migrant allele frequency of less than 0.001. Genetic drift and
mutation cause the allele frequencies to change over time, resulting in some allele extinction and an overall distribution of fre-
quencies at the end of the simulation.
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Distribution of final allele frequencies. Histogram of the final allele frequencies recorded over 250 replicates in the
parameter sets highlighted in Table 2. These histograms are a representation of the last recorded allele frequencies from Figure
4. They demonstrate the distribution of the migrant allele frequency expected to be found in today's population, given the
assumed genetic parameters (A: large migrant population, small native population, low mutation rate, and more distant admix-
ture advent. B: small migrant population, large native population, high mutation rate, and a more distant admixture advent)
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Distribution of final allele frequencies. A histogram showing the migrant allele frequencies found at 1,000 loci in a generic
simulated population. This histogram illustrates the allele frequencies one would expect to find if 1,000 informative alleles were
sampled from a current population that experienced admixture circa 2,000 years ago, given that the population had the speci-

fied genetic parameters.

can have a profound impact on the number of migrant
alleles detected years later. Many studies advocate the use
of mtDNA due to data collecting feasibility and other fac-
tors. However, because the mutation rate is generally
higher in mtDNA, it could corrupt signal in studies
addressing historic admixture, even when the time frame
is relatively recent.

The sizes of the migrant and native populations are funda-
mental for an understanding of expected allele frequency.
With time since admixture as low as those we consider in
our simulations, the most important factors are the sizes
of the migrating and native populations. In our simula-
tions, if the native population is large, changing the
migrating population size results in a change of mean
final allele frequency from .0243 to .0010. If the native
population is small, those numbers change to .5016 and
.0407. These are the most significant differences illus-

trated by our simulations and they attest to the important
role of population sizes. Researchers should not expect to
find many alleles from a small migratory group of 50 indi-
viduals in a large population today, even if sampling
methods are exhaustive.

Additionally, we see that time plays an important role.
The standard deviations presented in Table 1 demonstrate
that allelic frequencies vary widely, particularly as the
number of generations increases. High mutation rates
combined with large time spans can reduce migrant allele
frequencies significantly. When the mutation rate is low,
however, the time since admixture does not affect the final
mean allele frequency much (or at all), but it still has a
profound impact on the standard deviation. For example,
a change in time since admixture in one parameter set
almost doubles the standard deviation from .0525 to
.1044. As time increases, genetic drift causes the spread of
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Migrant allele expectation CDFs. The CDF functions for the number of migrant alleles expected to be found in an
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an expected migrant allele frequency of 1.017%).
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final allele frequencies to increase, particularly when the
population sizes are small. Thus, as the time since the
admixture event increases, sample size for both loci and
subjects becomes increasingly important.

In our second simulation, most of the migrant alleles are
present in less than 2% of the population. In a study of a
population where few subjects from many human popu-
lations are studied, alleles from a small-scale admixture
will usually not be recovered at all. And these rare alleles
could easily be ignored in favor of haplotypes that better
categorize the population into clusters.

Our results demonstrate a profound and general fact: the
values of these genetic parameters can drastically alter the
expected frequency of migrant alleles in today's popula-
tions. Even in our simulations, where steps have been
taken to ensure a best-case scenario for the migrant allele,
there is often a large spread of possible outcomes. DNA
data have been touted as a panacea for recovering infor-
mation about the past, but their use depends so exten-
sively on factors that are beyond our control that their
application is not always appropriate. It is imperative,
therefore, that researchers understand the implications of
the variables we have presented and not rely solely on
DNA sequence data when researching small, recent
human migrations. We can only hope to understand basic
details of population history when quantifying genetic
data and even valid results derived from genetic data may
still be misleading if viewed unilaterally, as demonstrated
by Harpending et al [46,47].

Our results, however, are not completely ominous. Care-
fully designed studies should be able to draw specific and
valid conclusions from genetic data. One area for major
improvement is the number of individuals and loci sam-
pled. Our results indicate that a large sample size and
large number of loci are needed to obtain robust results.
Studies that are unable to sample sufficiently do not have
the power to draw appropriate conclusions and should be
interpreted with caution. Our results give guidelines for a
variety of conditions and allow researchers to analyze the
benefits of increasing sample sizes given their populations
of interest. Because of the real possibility that a certain
allele will have drifted to extinction, even sampling 100%

Table 3: Improving probability of detecting historic admixture

http://www.biomedcentral.com/1471-2156/9/66

of a population at a single locus may not reveal a single
migrant allele, even if it was fixed in the migrant popula-
tion. If one is faced with the challenge of researching
small-scale admixture, it is necessary to identify migrant
alleles even if they show up in a very small proportion of
loci and subjects. Consequently, phylogenetic methods
must be created that can pinpoint very small similarities
between populations. Table 3 summarizes the genetic and
experimental factors that we believe will increase the
chance of detecting admixture in today's populations.
One complication that arises in such situations, however,
is that very recent migration and admixture will further
complicate the results. Identifying migrant alleles that are
rare will be very difficult, not only because of the
increased sampling necessary to detect them, but because
of the noise that is likely to be introduced in the time since
the event under examination.

Perhaps most importantly, it must be remembered that
drift is stochastic and that historic genetic parameters are,
for the most part, unknown. Thus, the absence of specific
genetic data is not conclusive evidence against historic
admixture. Our results illustrate several parameter sets
that would cause admixture to be either completely or
practically undetectable today. To address the inconsist-
ent results found in DNA all but the largest genetic studies
need to continue to consider anthropologic, archeologi-
cal, and linguistic data in order to formulate conclusions.
Finally, our study demonstrates the utility of simulation
studies to put bounds on parameter values and sample
sizes for studies of human migration events.

Conclusion

The ability to detect historic admixture and make correct
inferences based on genetic data depends on the interplay
between population sizes, mutation rates, time, and other
parameters. We explore the parameter space of historic
alleles in current populations and demonstrate the broad
implications of each of these genetic parameters on mod-
ern allele frequencies. Our results provide guidelines with
respect to the population genetic parameters and their val-
ues needed to detect migrant alleles in an admixed popu-
lation. While studies that focus on large admixture events
should be able to draw specific and valid conclusions, we
suggest that genetic data be used with caution when stud-

Genetic Parameters

Experimental Design

* Large Migrant Population

* Small Native Population

* Low mutation rate at loci of interest

* Fewer generations since admixture event

* Identify informative migrant alleles

* Test large number of loci

* Large sample size for each population

* Establish methods for detecting rare alleles

* Collaborative approach (Archeology, Anthropology, Linguistics)
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ying small admixture events. The random nature of
admixed genetic data seen in these simulations demon-
strates that the utility of genetic data is dependent on the
context of each individual study. Increasing the number of
loci and the number of individuals sampled will increase
the probability of detecting small traces of signal, but
other sources of evidence should always be considered
where possible.
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