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Abstract
Background: Assessing the non-random associations of alleles at different loci, or gametic
disequilibrium, can provide clues about aspects of population histories and mating behavior and can
be useful in locating disease genes. For gametic data which are available from several strata with
different allele probabilities, it is necessary to verify that the strata are homogeneous in terms of
gametic disequilibrium.

Results: Using the likelihood score theory generalized to nuisance parameters we derive a score
test for homogeneity of gametic disequilibrium across several independent populations. Simulation
results demonstrate that the empirical type I error rates of our score homogeneity test perform
satisfactorily in the sense that they are close to the pre-chosen 0.05 nominal level. The associated
power and sample size formulae are derived. We illustrate our test with a data set from a study of
the cystic fibrosis transmembrane conductance regulator gene.

Conclusion: We propose a large-sample homogeneity test on gametic disequilibrium across
several independent populations based on the likelihood score theory generalized to nuisance
parameters. Our simulation results show that our test is more reliable than the traditional test
based on the Fisher's test of homogeneity among correlation coefficients.

Background
Measuring gametic disequilibrium can provide important
information about aspects of population histories and
mating behavior [1] and can be useful in locating disease
genes [2]. The term gametic disequilibrium is used in this
article instead of the traditional term linkage disequilib-
rium to measure the extent of non-random association
because such non-random association may be present
between unlinked loci [3]. Various measures of gametic
disequilibrium have been proposed [4-6], ranging from
pairs of diallelic loci model to multiple multiallelic loci
model. In this article, we consider the gametic disequilib-

rium which is defined as the difference between the
gametic probability and its expected probability under the
assumption of no statistical association of alleles, and the
gametic disequilibrium calculations are based on two-
allele, two-locus model [7].

Consider two loci, A and B, each having two possible alle-
les (A0, A1) and (B0, B1), respectively. With two loci and
two alleles, there are four possible gametes, namely, A0B0,
A0B1, A1B0 and A1B1. The gametic disequilibrium between
the two loci is defined by
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where  and  denote the allele probabilities of Ai

and Bj,  denotes the gamete probability of AiBj, i, j =

0, 1. Suppose that the gametic data are available from K
strata and let pijk denote the gametic probability of array of

AiBj for the k-th stratum, i, j = 0, 1; k = 1,...,K, ∑i,jpijk = 1 for

each k. According to the relationship between allelic prob-
ability and gametic probability, the allele probabilities of
A0, A1, B0 and B1 are derived as p0+k, p1+k, p+0k and p+1k,

respectively. Here "+" denote the summation over 0 and
1, for example, p0+k = p00k + p01k. For stratum k (k = 1,...,K),

the gametic disequilibrium is calculated as

Dk = p11k - p1+kp+1k.

It is easy to show that Dk is bounded by

Dk,min ≤ Dk ≤ Dk,max,

where Dk,min = -min{p1+kp+1k, p0+kp+0k}, Dk,max =
min{p1+kp+0k, p0+kp+1k}. Testing for the homogeneity of
gametic disequilibrium among strata can be informative
in discriminating among the evolutionary agents generat-
ing them in natural population [8]. Detecting gametic dis-
equilibrium can be informative in mapping gene and
providing meaningful clues of population evolution.
Combining the evidence of gametic disequilibrium across
several strata may be more sufficient to support the clues,
in contrast to analysis with each strata. In this case, it is
crucial to test the homogeneity of gametic disequilibrium
across strata before combining the data. For this purpose,
it is interesting to consider the following hypothesis

H0 : D1 = � = DK versus H1 

: Di ≠ Dj for at least a pair i ≠ j. (1)

Weir [9] recommended a homogeneity test on gametic
disequilibrium, based on Fisher's test of homogeneity
among correlation coefficients [10]. In his method, the
gametic disequilibrium Dk is first transformed to a corre-

lation coefficient rk by rk = Dk/ , rk is

then transformed to a normal variable zk by Fisher's z

transformation, and a weighted sum of squares of the z

values which has χ2 distribution with K - 1 degrees of free-
dom is finally proposed for testing homogeneity of
gametic disequilibrium. As pointed out by Zapata and
Alvarez [8], this test is actually for homogeneity of r values

instead of D values. They may not be equivalent when the
allele probabilities are different across strata. Instead, Zap-
ata and Alvarez [8] suggested the use of the normalized

difference D' [11]. Specifically,  is the ratio of Dk to

Dk,max when Dk > 0, or the ratio of Dk to -Dk,min when Dk <

0. Zapata and Alvarez obtained the bias-corrected confi-
dence interval for each D' value across strata via the boot-
strap method. Hence, acceptance or rejection of
homogeneity of D' values can be determined by evaluat-
ing the obtained confidence intervals. For the example
considered in Zapata and Alvarez [8], there is no intersec-
tion for the confidence intervals obtained from all strata.
Hence, one has evidence to reject the null hypothesis of
homogeneity. Unfortunately, Zapata and Alvarez [8] did
not discuss the decision rules for cases such as intersec-
tions exist but the extent are different. Hence, no rigorous
rule based on this confidence interval approach was pro-
posed and this makes their method less practicable. How-
ever, no rigorous rule based on this confidence interval
approach was proposed and this makes their method less
practicable. It should be noted that the homogeneity test
of either r values or D' values is not equivalent to the
homogeneity test of D values. In particular, transforma-
tion D' only guarantees that the range of D' is [-1, 1].
However, there remains difficulties in interpreting the
value of D'. Lewontin [11] noted that values of D' at dif-
ferent loci and in different populations tend to vary with
the values of the allele probabilities, so that the problem
of cross-locus and cross-population comparisons is not
fully overcome by the use of D'. In this article, without
doing any transformation, we develop an asymptotic
homogeneity test directly based on D values via score
method.

Methods
Homogeneity test
Let xijk (i, j = 0, 1 and k = 1,�,K) be the number of the gam-
ete AiBj in the k-th stratum with the total gametes being nk
= x00k + x01k + x10k + s11k. Let M(nk, {pijk}) denote the quad-
rinomial distribution with parameter vector (p00k, p01k,
p10k, p11k)'. Thus, we have {xijk : i, j = 0, 1} ~ M(nk, {pijk})
for k = 1,...,K. The homogeneity hypothesis in (1) is of
interest in this article. Here, we assume that K is fixed and
nk is sufficiently large for k = 1, 2,...,K. Noticing that p00k =
p0+kp+0k + Dk, p01k = p0+kp+1k - Dk, p10k = p1+kp+0k - Dk, p11k =
p1+kp+1k + Dk, the log-likelihood for the k-th stratum can be
expressed in terms of Dk, p1+k and p+1k (k = 1,....,K). That is,

D p p pA B A B= −
1 1 1 1

,

pAi
pBj

pA Bi j

p p p pk k k k1 0 1 0+ + + +

′Dk

l D p p x p p D x ln p p D

x
k k k k k k k k k k k k( , , ) ln( ) ( )1 1 00 0 0 01 0 1+ + + + + += + + − +

110 1 0 11 1 1k k k k k k k kp p D x ln p p Dln( ) ( ),+ + + +− + +
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where p0+k = 1 - p1+k, p+0k = 1 - p+1k. Let D denote the com-
mon gametic disequilibrium under H0, p1+ = (p1+1,...,p1+K)'
and p+1 = (p+11,...,p+1K)' denote the nuisance parameter
vectors. Under H0, the total log-likelihood for all K strata
is given by

Hence, the efficient scores for the k-th stratum (i.e., the
first order derivatives of lk(D, p1+k, p+1k) with respect to D,
p1+k and p+1k) are given by

If ,  and  are the maximum likelihood estimates

(MLEs) of D, p1+ and p+1 under H0, respectively, then they

satisfy the following 2K + 1 equations:

Variances and covariances for the efficient scores are given
by

Denote

Hence, the likelihood score test for the homogeneity
hypothesis H0 : D1 = � = DK is given by

which asymptotically follows the chi-square distribution
with K - 1 degrees of freedom under H0.

Unfortunately, ,  and  cannot be expressed in a

closed form and this makes the likelihood score test X2

less appealing in practice. To overcome this issue, apply-
ing the theory of homogeneity score test extended to nui-
sance parameters [12] we propose the following modified
score statistic

where D*,  and  are any consistent estimators of

D, p1+ and p+1, respectively. To this end, we choose D* to

be , and  and  be

the solutions to the following equations

or equivalently the following quartic polynomial equa-
tions,

where

l D l D p pk k k

k

K
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Here, D* is analogous to the well-known Mantel-Haen-
szel estimator [13]. It is a consistent estimator to D. In
general, it is not an efficient estimator to D. The proof of
consistency and the conditions for achieving asymptotic
efficiency for D* is presented in Appendix. We notice that

the calculation of  in (2) is quite tedious. None-

theless, it is easy to show that  is simply given by

nk/wk(D, p1+k, p+1k) with

 (see Appendix for the proof). It can be shown that X2* has
an asymptotic chi-square distribution with K - 1 degrees of
freedom under H0. Therefore, the homogeneity hypothe-

sis H0 is rejected at level α when X2* ≥ , where

 is the 100 × (1 - α) percentile point of the chi-

square distribution with K - 1 degrees of freedom. Finally,
it is noteworthy that if the consistent estimators of D, p1+

and p+1 are the constrained MLEs under H0 then the sec-

ond term of (2) vanishes, since

, and (2) reduces to the likeli-

hood score statistic.

Asymptotic power and sample size

We will present the asymptotic power and sample size for-
mulae based on X2* [14]. For this purpose, we assume nk =

nak for some n and ak > 0. Let ,  and  be the

true parameter values for Dk, p1+k and p+1k under H1, where

k = 1, 2,�,K and  for at least a pair k ≠ j. Thus, the

asymptotic power for the homogeneity score test X2* at α
level is given by

where  denotes the non-central chi-square distri-

bution with K - 1 degrees of freedom with the non-central-
ity parameter being

where

, , , p1+k and p+1k are the solu-

tions of the following equations

where

The desirable sample size n required to attain the power at

1 - β with ,  and  being the true parameter val-

ues for Dk, p1+k and p+1k under the alternative H1 at nomi-

nal level α can be found by the relation

where  is the 100 × β percentile point of the

non-central chi-square distribution with K - 1 degrees of

freedom and non-centrality parameter Δ. The sample size
n can be readily obtained by solving the above equation.
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Availability and requirements
We have implemented the test procedures for computing
our score statistic X2* in a Matlab project. Project name:
gametic disequilibrium homogeneity score test (GDHST);
Project home page: http://math.nenu.edu.cn/jhguo/pro
gram.htm; Operating system: Windows XP; Programming
language: Matlab 6.1; Licence: GNU GPL.

Results
Simulation results
To evaluate the performance of our proposed homogene-
ity score test, we include the homogeneity test recom-
mended by Weir [9] in our comparison study. The
corresponding test statistic for homogeneity is given by

where K is the total number of strata, nk is the total gamete

number in stratum k,  is the Fisher's z

transformation with  and (x00k,

x01k, x10k, x11k)' being the number of the gamete array in

the k-th stratum, and  is the average of the zk values.

We investigate the performance of X2* and T2 in terms of
type I error rate and power. For type I error rates, we con-
sider both equal and unequal allele probabilities varying
from 0.1 to 0.5 across (K = 3 and 5) strata with equal sam-
ple sizes (nk = 50, 100 and 200) for k = 1,...,K and com-

mon disequilibrium (D = Dmin, 0 and Dmax), where

Dmin = max{D1,min,...,DK,min}, Dmax = min{D1,max,...,DK,max}.

Monte Carlo simulations with 5,000 repetitions at 0.05
nominal level are summarized in Table 1, 2, 3, 4. Table 1
shows the performance of empirical type I error rates for
X2* and T2 with equal allele probabilities across K = 3
strata. We observe the following.

1. When D is large (i.e., Dmax), both tests generally

appear to be quite liberal (e.g., empirical size being 10
times of the nominal level), especially for small sample
size (e.g., nk = 50) and small allele probability (e.g., p1+
= p+1 = (0.1, 0.1, 0.1)'). Such liberty in empirical size is
more severe in T2 than in our asymptotic homogeneity
test X2* and is significantly alleviated in X2* when sam-
ple size increases. However, sample size increase does not
alleviate the liberty of T2 much. In fact, even for nk = 3200
for k = 1, 2, 3, T2 is still very liberal for D = 0.045 with

empirical type I errors rate being 0.456 (data are not
shown).

2. For other settings, both tests perform quite satisfactorily
in the sense that their empirical sizes are well controlled
around the pre-chosen nominal level. In general, the
larger the sample size, the closer the empirical type I error
rate to the pre-chosen nominal level.

Table 2 reports the empirical size performance of X2* and
T2 for unequal allele probabilities across K = 3 strata. We
observe similar phenomena above. However, our asymp-
totic homogeneity test X2* performs quite well in all set-
tings under consideration for moderate to large sample
sizes (i.e., nk = 100 and 200) while it is not the case for T2.
For T2, the resultant empirical type I error rate can be
extremely inflated even for large sample design (e.g., more
than 17 times of the nominal level when nk = 200 (for k =
1, 2, 3), p1+ = p+1 = (0.5, 0.3, 0.1)', and D = 0.045).

Table 3 and 4 shows the empirical type I error rate per-
formance of X2* and T2 for K = 5. The parameter settings
are similar to Table 1 and 2. According to the simulation
results, liberty issue becomes more serious and larger sam-
ple sizes are required to attain similar performance when
K increases from 3 to 5 under similar parameter settings.

Since many type I error rates for X2* and T2 are liberal in
Tables 1 to 4. The two-sided t-test is conducted to deter-
mined if an empirical type I error rate is significantly dif-
ferent from the nominal lever of 0.05. The t-test statistics
is

where m = 5000 and W represents the empirical type I
error rate of X2* or T2. Here, the t-test is almost identical to
the z-test for the sample size is very large. Those empirical
type I error rates which are significantly different from the
nominal level of 0.05 are underlined in Tables 1 to 4. In
Table 1, the total number of significant difference from
the nominal level of 0.05 for X2* and T2 is 28 and 38,
respectively. The pair (28, 38) can be further decomposed
to (14, 14), (8, 13) and (6, 11) according to n = 50, 100
and 200. The decreasing rate of the number of empirical
type I error rates which is significant different from the
nominal level of 0.05 for X2* is 14/18-6/18 = 44.4% as n
increases from 50 to 200. While the corresponding
decreasing rate for T2 is 14/18-11/18 = 16.7%. It is easy to
see that our X2* is less liberal than T2 as sample size
increases.
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Table 1: Empirical type I error rates for X2* and T2 for equal allele probabilities across K = 3 strata under H0

n D p1+ p+1 X2* T2

50, 50, 50 -0.125 0.5, 0.5, 0.5 0.5, 0.5, 0.5 0.047 0.110
0.0 0.055 0.052

0.125 0.076 0.116
-0.075 0.5, 0.5, 0.5 0.3, 0.3, 0.3 0.051 0.061

0.0 0.053 0.049
0.075 0.075 0.063
-0.045 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.042 0.021

0.0 0.044 0.053
0.105 0.100 0.167
-0.025 0.5, 0.5, 0.5 0.1, 0.1, 0.1 0.061 0.036

0.0 0.067 0.041
0.025 0.089 0.029
-0.015 0.3, 0.3, 0.3 0.1, 0.1, 0.1 0.024 0.017

0.0 0.025 0.047
0.035 0.104 0.117
-0.005 0.1, 0.1, 0.1 0.1, 0.1, 0.1 0.031 0.024

0.0 0.024 0.087
0.045 0.413 0.515

100, 100, 100 -0.125 0.5, 0.5, 0.5 0.5, 0.5, 0.5 0.049 0.106
0.0 0.052 0.051

0.125 0.065 0.112
-0.075 0.5, 0.5, 0.5 0.3, 0.3, 0.3 0.051 0.059

0.0 0.049 0.051
0.075 0.055 0.063
-0.045 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.046 0.024

0.0 0.048 0.051
0.105 0.048 0.156
-0.025 0.5, 0.5, 0.5 0.1, 0.1, 0.1 0.053 0.029

0.0 0.048 0.047
0.025 0.089 0.030
-0.015 0.3, 0.3, 0.3 0.1, 0.1, 0.1 0.026 0.013

0.0 0.029 0.048
0.035 0.075 0.109
-0.005 0.1, 0.1, 0.1 0.1, 0.1, 0.1 0.012 0.014

0.0 0.013 0.057
0.045 0.278 0.474

200, 200, 200 -0.125 0.5, 0.5, 0.5 0.5, 0.5, 0.5 0.050 0.050
0.0 0.052 0.048

0.125 0.058 0.112
-0.075 0.5, 0.5, 0.5 0.3, 0.3, 0.3 0.050 0.057

0.0 0.050 0.049
0.075 0.054 0.058
-0.045 0.3, 0.3, 0.3 0.3, 0.3, 0.3 0.049 0.025

0.0 0.049 0.049
0.105 0.052 0.156
-0.025 0.5, 0.5, 0.5 0.1, 0.1, 0.1 0.053 0.030

0.0 0.050 0.051
0.025 0.052 0.032
-0.015 0.3, 0.3, 0.3 0.1, 0.1, 0.1 0.044 0.014

0.0 0.044 0.051
0.035 0.045 0.105
-0.005 0.1, 0.1, 0.1 0.1, 0.1, 0.1 0.020 0.010

0.0 0.020 0.049
0.045 0.098 0.463

The empirical type I error rate which is significant for the two-sided t-test at the nominal level of 0.05 is marked with underline.
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Table 2: Empirical type I error rates for X2* and T2 for unequal allele probabilities across K = 3 strata under H0

n D p1+ p+1 X2* T2

50, 50, 50 -0.045 0.5, 0.4, 0.3 0.5, 0.4, 0.3 0.048 0.044
0.0 0.049 0.051

0.105 0.071 0.149
-0.015 0.5, 0.4, 0.3 0.5, 0.3, 0.1 0.046 0.037

0.0 0.046 0.051
0.035 0.066 0.105
-0.005 0.5, 0.3, 0.1 0.5, 0.3, 0.1 0.063 0.036

0.0 0.053 0.052
0.045 0.100 0.474
-0.015 0.5, 0.4, 0.3 0.3, 0.2, 0.1 0.040 0.032

0.0 0.042 0.049
0.035 0.074 0.101
-0.005 0.5, 0.3, 0.1 0.3, 0.2, 0.1 0.056 0.033

0.0 0.048 0.054
0.045 0.108 0.452
-0.005 0.3, 0.2, 0.1 0.3, 0.2, 0.1 0.048 0.031

0.0 0.041 0.053
0.045 0.123 0.452

100, 100, 100 -0.045 0.5, 0.4, 0.3 0.5, 0.4, 0.3 0.051 0.048
0.0 0.050 0.050

0.105 0.055 0.162
-0.015 0.5, 0.4, 0.3 0.5, 0.3, 0.1 0.047 0.043

0.0 0.046 0.050
0.035 0.054 0.150
-0.005 0.5, 0.3, 0.1 0.5, 0.3, 0.1 0.064 0.037

0.0 0.052 0.051
0.045 0.059 0.658
-0.015 0.5, 0.4, 0.3 0.3, 0.2, 0.1 0.044 0.035

0.0 0.047 0.051
0.035 0.051 0.124
-0.005 0.5, 0.3, 0.1 0.3, 0.2, 0.1 0.055 0.033

0.0 0.052 0.053
0.045 0.063 0.623
-0.005 0.3, 0.2, 0.1 0.3, 0.2, 0.1 0.055 0.033

0.0 0.043 0.051
0.045 0.061 0.593

200, 200, 200 -0.045 0.5, 0.4, 0.3 0.5, 0.4, 0.3 0.050 0.052
0.0 0.050 0.052

0.105 0.053 0.211
-0.015 0.5, 0.4, 0.3 0.5, 0.3, 0.1 0.049 0.049

0.0 0.048 0.049
0.035 0.049 0.220
-0.005 0.5, 0.3, 0.1 0.5, 0.3, 0.1 0.058 0.037

0.0 0.051 0.050
0.045 0.048 0.860
-0.015 0.5, 0.4, 0.3 0.3, 0.2, 0.1 0.048 0.043

0.0 0.049 0.048
0.035 0.050 0.190
-0.005 0.5, 0.3, 0.1 0.3, 0.2, 0.1 0.056 0.035

0.0 0.051 0.051
0.045 0.053 0.829
-0.005 0.3, 0.2, 0.1 0.3, 0.2, 0.1 0.051 0.034

0.0 0.050 0.050
0.045 0.049 0.791

The empirical type I error rate which is significant for the two-sided t-test at the nominal level of 0.05 is marked with underline.
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Table 3: Empirical type I error rates for X2* and T2 for equal allele probabilities across K = 5 strata under H0

n D p1+ p+1 X2* T2

50, 50, 50, 50, 50 -0.125 0.5, 0.5, 0.5, 0.5, 0.5 0.5, 0.5, 0.5, 0.5, 0.5 0.041 0.146
0.0 0.053 0.048

0.125 0.090 0.148
-0.075 0.5, 0.5, 0.5, 0.5, 0.5 0.3, 0.3, 0.3, 0.3, 0.3 0.049 0.059

0.0 0.053 0.051
0.075 0.084 0.063
-0.045 0.3, 0.3, 0.3, 0.3, 0.3 0.3, 0.3, 0.3, 0.3, 0.3 0.036 0.018

0.0 0.039 0.048
0.105 0.172 0.228
-0.025 0.5, 0.5, 0.5, 0.5, 0.5 0.1, 0.1, 0.1, 0.1, 0.1 0.075 0.029

0.0 0.071 0.038
0.025 0.059 0.026
-0.015 0.3, 0.3, 0.3, 0.3, 0.3 0.1, 0.1, 0.1, 0.1, 0.1 0.015 0.012

0.0 0.028 0.043
0.035 0.136 0.147
-0.005 0.1, 0.1, 0.1, 0.1, 0.1 0.1, 0.1, 0.1, 0.1, 0.1 0.025 0.024

0.0 0.026 0.079
0.045 0.500 0.715

100, 100, 100, 100, 100 -0.125 0.5, 0.5, 0.5, 0.5, 0.5 0.5, 0.5, 0.5, 0.5, 0.5 0.046 0.135
0.0 0.051 0.050

0.125 0.068 0.141
-0.075 0.5, 0.5, 0.5, 0.5, 0.5 0.3, 0.3, 0.3, 0.3, 0.3 0.050 0.059

0.0 0.051 0.051
0.075 0.054 0.059
-0.045 0.3, 0.3, 0.3, 0.3, 0.3 0.3, 0.3, 0.3, 0.3, 0.3 0.046 0.020

0.0 0.044 0.052
0.105 0.051 0.212
-0.025 0.5, 0.5, 0.5, 0.5, 0.5 0.1, 0.1, 0.1, 0.1, 0.1 0.063 0.030

0.0 0.058 0.048
0.025 0.057 0.029
-0.015 0.3, 0.3, 0.3, 0.3, 0.3 0.1, 0.1, 0.1, 0.1, 0.1 0.026 0.009

0.0 0.025 0.047
0.035 0.088 0.137
-0.005 0.1, 0.1, 0.1, 0.1, 0.1 0.1, 0.1, 0.1, 0.1, 0.1 0.016 0.007

0.0 0.008 0.006
0.045 0.476 0.667

200, 200, 200, 200, 200 -0.125 0.5, 0.5, 0.5, 0.5, 0.5 0.5, 0.5, 0.5, 0.5, 0.5 0.051 0.134
0.0 0.049 0.049

0.125 0.061 0.133
-0.075 0.5, 0.5, 0.5, 0.5, 0.5 0.3, 0.3, 0.3, 0.3, 0.3 0.051 0.055

0.0 0.049 0.050
0.075 0.054 0.059
-0.045 0.3, 0.3, 0.3, 0.3, 0.3 0.3, 0.3, 0.3, 0.3, 0.3 0.053 0.022

0.0 0.050 0.051
0.105 0.050 0.203
-0.025 0.5, 0.5, 0.5, 0.5, 0.5 0.1, 0.1, 0.1, 0.1, 0.1 0.054 0.027

0.0 0.048 0.049
0.025 0.053 0.028
-0.015 0.3, 0.3, 0.3, 0.3, 0.3 0.1, 0.1, 0.1, 0.1, 0.1 0.037 0.008

0.0 0.037 0.049
0.035 0.044 0.123
-0.005 0.1, 0.1, 0.1, 0.1, 0.1 0.1, 0.1, 0.1, 0.1, 0.1 0.017 0.007

0.0 0.018 0.053
0.045 0.193 0.651

The empirical type I error rate which is significant for the two-sided t-test at the nominal level of 0.05 is marked with underline.
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Table 4: Empirical type I error rates for X2* and T2 for unequal allele probabilities across K = 5 strata under H0

n D p1+ p+1 X2* T2

50, 50, 50, 50, 50 -0.045 0.5, 0.4, 0.3, 0.4, 0.5 0.5, 0.4, 0.3, 0.4, 0.5 0.048 0.049
0.0 0.048 0.049

0.105 0.085 0.163
-0.025 0.5, 0.4, 0.3, 0.4, 0.5 0.5, 0.4, 0.3, 0.2, 0.1 0.047 0.041

0.0 0.057 0.054
0.025 0.077 0.060
-0.005 0.5, 0.4, 0.3, 0.2, 0.1 0.5, 0.4, 0.3, 0.2, 0.1 0.048 0.035

0.0 0.042 0.057
0.045 0.133 0.489
-0.015 0.5, 0.4, 0.3, 0.4, 0.5 0.3, 0.2, 0.1, 0.2, 0.3 0.045 0.037

0.0 0.045 0.053
0.035 0.082 0.100
-0.015 0.5, 0.4, 0.3, 0.2, 0.1 0.3, 0.2, 0.1, 0.2, 0.3 0.032 0.023

0.0 0.034 0.048
0.035 0.104 0.136
-0.005 0.3, 0.2, 0.1, 0.2, 0.3 0.3, 0.2, 0.1, 0.2, 0.3 0.045 0.034

0.0 0.035 0.057
0.045 0.160 0.475

100, 100, 100, 100, 100 -0.045 0.5, 0.4, 0.3, 0.4, 0.5 0.5, 0.4, 0.3, 0.4, 0.5 0.050 0.051
0.0 0.051 0.051

0.105 0.060 0.190
-0.025 0.5, 0.4, 0.3, 0.4, 0.5 0.5, 0.4, 0.3, 0.2, 0.1 0.050 0.050

0.0 0.051 0.051
0.025 0.062 0.067
-0.005 0.5, 0.4, 0.3, 0.2, 0.1 0.5, 0.4, 0.3, 0.2, 0.1 0.050 0.037

0.0 0.041 0.049
0.045 0.058 0.653
-0.015 0.5, 0.4, 0.3, 0.4, 0.5 0.3, 0.2, 0.1, 0.2, 0.3 0.046 0.040

0.0 0.047 0.051
0.035 0.054 0.118
-0.015 0.5, 0.4, 0.3, 0.2, 0.1 0.3, 0.2, 0.1, 0.2, 0.3 0.037 0.027

0.0 0.037 0.050
0.035 0.060 0.168
-0.005 0.3, 0.2, 0.1, 0.2, 0.3 0.3, 0.2, 0.1, 0.2, 0.3 0.047 0.035

0.0 0.038 0.053
0.045 0.060 0.610

200, 200, 200, 200, 200 -0.045 0.5, 0.4, 0.3, 0.4, 0.5 0.5, 0.4, 0.3, 0.4, 0.5 0.049 0.050
0.0 0.048 0.049

0.105 0.053 0.230
-0.025 0.5, 0.4, 0.3, 0.4, 0.5 0.5, 0.4, 0.3, 0.2, 0.1 0.049 0.062

0.0 0.051 0.050
0.025 0.053 0.081
-0.005 0.5, 0.4, 0.3, 0.2, 0.1 0.5, 0.4, 0.3, 0.2, 0.1 0.051 0.039

0.0 0.043 0.048
0.045 0.052 0.865
-0.015 0.5, 0.4, 0.3, 0.4, 0.5 0.3, 0.2, 0.1, 0.2, 0.3 0.048 0.044

0.0 0.049 0.049
0.035 0.048 0.169
-0.015 0.5, 0.4, 0.3, 0.2, 0.1 0.3, 0.2, 0.1, 0.2, 0.3 0.042 0.029

0.0 0.045 0.053
0.035 0.045 0.229
-0.005 0.3, 0.2, 0.1, 0.2, 0.3 0.3, 0.2, 0.1, 0.2, 0.3 0.047 0.035

0.0 0.040 0.053
0.045 0.051 0.815

The empirical type I error rate which is significant for the two-sided t-test at the nominal level of 0.05 is marked with underline.
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For Table 2, the total number of significant difference
from the nominal level of 0.05 for X2* and T2 is 17 and 33,
respectively. The pair (17, 33) can again be decomposed
to (14, 14), (8, 13) and (6, 11) according to n = 50, 100
and 200. The decreasing rate of the number of empirical
type I error rates which is significant different from the
nominal level of 0.05 for X2* is 10/18-1/18 = 50.0% as n
increases from 50 to 200. While the decreasing rate for T2

is 12/18-10/18 = 11.1%. The decreasing rate of our X2* is
again more significant than that of T2.

In Table 3 to 4, the strata increases from 3 to 5. However,
the decreasing rates of the number of empirical type I
error rates which is significant different from the nominal
level of 0.05 for Tables 3 and 4 is very close to that of
Tables 1 and 2, respectively. Therefore, we have reason to
believe that this decreasing rate is not greatly affected by
the number of strata.

Table 5 summarizes the empirical powers for X2* and T2.
Here, {Dk} are specified under H1 and we set Dk = D0 + δ(k
- 1). For K = 3, we consider: (i) D0 = -0.03, δ = 0.03 and (ii)
D0 = -0.05, δ = 0.05. For K = 5, we consider: (i) D0 = -0.06,
δ = 0.03 and (ii) D0 = -0.1, δ = 0.05. From the simulation
results, we observe both X2* and T2 perform similarly
under the designed parameter settings. In general, powers
increase with n and δ.

In view of the above results, we prefer the proposed
homogeneity test X2* to the traditional T2 which is based
on the Fisher's test of homogeneity among correlation
coefficient.

Real and hypothetical examples
It is reported that mutations at the cystic fibrosis trans-
membrane conductance regulator gene (CFTR) cause
cystic fibrosis, the most prevalent severe genetic disorder

Table 5: Empirical powers for X2* and T2

n D p1+ p+1 X2* T2

50, 50, 50 -0.03, 0.0, 0.03 0.5, 0.5, 0.5 0.5, 0.5, 0.5 0.205 0.210
100, 100, 100 0.311 0.306
200, 200, 200 0.560 0.558

50, 50, 50 -0.03, 0.0, 0.03 0.5, 0.4, 0.3 0.5, 0.4, 0.3 0.196 0.203
100, 100, 100 0.360 0.368
200, 200, 200 0.630 0.641

50, 50, 50 -0.03, 0.0, 0.03 0.5, 0.5, 0.5 0.5, 0.4, 0.3 0.197 0.187
100, 100, 100 0.354 0.340
200, 200, 200 0.612 0.612

50, 50, 50 -0.05, 0.0, 0.05 0.5, 0.5, 0.5 0.5, 0.5, 0.5 0.430 0.421
100, 100, 100 0.724 0.720
200, 200, 200 0.958 0.958

50, 50, 50 -0.05, 0.0, 0.05 0.5, 0.4, 0.3 0.5, 0.4, 0.3 0.474 0.483
100, 100, 100 0.797 0.806
200, 200, 200 0.980 0.981

50, 50, 50 -0.05, 0.0, 0.05 0.5, 0.5, 0.5 0.5, 0.4, 0.3 0.457 0.446
100, 100, 100 0.763 0.760
200, 200, 200 0.973 0.973

50, 50, 50, 50, 50 -0.06, -0.03, 0.0, 0.03, 0.06 0.5, 0.5, 0.5, 0.5, 0.5 0.5, 0.5, 0.5, 0.5, 0.5 0.523 0.512
100, 100, 100, 100, 100 0.846 0.841
200, 200, 200, 200, 200 0.993 0.993

50, 50, 50, 50, 50 -0.06, -0.03, 0.0, 0.03, 0.06 0.5, 0.4, 0.3, 0.4, 0.5 0.5, 0.4, 0.3, 0.4, 0.5 0.526 0.526
100, 100, 100, 100, 100 0.854 0.853
200, 200, 200, 200, 200 0.995 0.995

50, 50, 50, 50, 50 -0.06, -0.03, 0.0, 0.03, 0.06 0.5, 0.5, 0.5, 0.5, 0.5 0.5, 0.4, 0.3, 0.4, 0.5 0.535 0.522
100, 100, 100, 100, 100 0.855 0.850
200, 200, 200, 200, 200 0.994 0.994

50, 50, 50, 50, 50 -0.1, -0.05, 0.0, 0.05, 0.1 0.5, 0.5, 0.5, 0.5, 0.5 0.5, 0.5, 0.5, 0.5, 0.5 0.957 0.953
100, 100, 100, 100, 100 1.000 1.000
200, 200, 200, 200, 200 1.000 1.000

50, 50, 50, 50, 50 -0.1, -0.05, 0.0, 0.05, 0.1 0.5, 0.4, 0.3, 0.4, 0.5 0.5, 0.4, 0.3, 0.4, 0.5 0.960 0.960
100, 100, 100, 100, 100 1.000 1.000
200, 200, 200, 200, 200 1.000 1.000

50, 50, 50, 50, 50 -0.1, -0.05, 0.0, 0.05, 0.1 0.5, 0.5, 0.5, 0.5, 0.5 0.5, 0.4, 0.3, 0.4, 0.5 0.957 0.954
100, 100, 100, 100, 100 1.000 1.000
200, 200, 200, 200, 200 1.000 1.000
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in individuals of European descent. Mateu [15] conducted
a worldwide genetic analysis of the CFTR region and ana-
lyzed normal allele and haplotype variation at two single-
nucleotide polymorphisms (SNPs), namely the T854/
AvaII (2694 T/G) and TUB20/PVUII (4006-200 G/A). The
T854 and TUB20 markers can be used to define the core
haplotypes since they are diallelic, have presumably much
lower mutation rates than the other polymorphisms and
the ancestral state can be inferred for them.

Mateu [15] reported the T854-TUB20 haplotype frequen-
cies by 18 populations. After communicating with one of
their coauthors (Prof. Kenneth, pers. comm. 1996), it was
found that their reported gametic frequencies were actu-
ally the maximum likelihood estimates of the gametic
probabilities obtained from HAPLO, a software which can
be applicable to missing data. In other words, all individ-
uals with results for at least one of the two markers were
included to estimate the gametic frequencies and no
actual gametic counts were available. To create the
gametic counts for each population, we first estimate the
total number of participants in each population by the
number of individuals who yielded results for at least one
of the two markers. The reported gametic frequencies of
each population given in Mateu [15] are multiplied to the
estimated number of participants of this population and

the closest integers are then taken to be the estimated
gametic counts. The estimated gametic counts across the
18 populations are reported in Table 6, which is adopted
as the real data in all subsequent analysis.

It is noticed that the gametic counts for the populations of
Japanese (14th) and Surui (18th) are (0, 32, 0, 12)' and
(0, 7, 0, 35)', respectively and their estimated gametic dis-
equilibrium Dk, Dk,min and Dk,max are all equal to zero.
Therefore, we will exclude these two populations for sub-
sequent homogeneity testings. We consider the following
scenarios.

(i) Homogeneity of gametic disequilibrium among the 16
populations (i.e., excluding Japanese and Surui). The sta-
tistic value of our proposed X2* is 121.35 with p-value
being less than 0.0001 while that of T2 yields 99.64 with
p-value being less than 0.0001. In this case, both tests
reject the homogeneity hypothesis at the 0.05 nominal
level.

(ii) Homogeneity of gametic disequilibrium among those
populations with the same numbers of participants for
both markers T854 and TUB20 (i.e., Mbuti, Yemenites,
Druze, Adygei, Catalans, Basques, Chinese, and Nasioi).

Table 6: T854-TUB20 haplotype counts by 18 populations and some related statistics

Gametic counts Allele frequencies Disequilibrium Estimation

Population 1 - 1 1 - 2 2 - 1 2 - 2 1 1 r D' D

Africa:
Biaka 5 16 12 29 0.339 0.274 -0.058 -0.132 -0.012
Mbuti 0 14 5 14 0.424 0.152 -0.363 -1.000 -0.064

Tanzanian 0 13 3 20 0.361 0.083 -0.227 -1.000 -0.030
North Africa:

Saharawi 5 22 12 16 0.491 0.309 -0.263 -0.401 -0.061
Middle East:
Yemenites 2 29 4 5 0.775 0.150 -0.444 -0.570 -0.066

Druze 2 47 10 4 0.778 0.191 -0.713 -0.786 -0.116
Europe:
Adygei 1 34 9 5 0.714 0.204 -0.689 -0.860 -0.125

Russians 0 17 10 5 0.531 0.313 -0.718 -1.000 -0.166
Finns 0 23 6 4 0.697 0.182 -0.715 -1.000 -0.127

Catalans 3 53 18 9 0.675 0.253 -0.661 -0.788 -0.135
Basques 4 72 15 17 0.704 0.176 -0.500 -0.701 -0.087

Asia:
Kazakhs 1 18 2 12 0.576 0.091 -0.155 -0.421 -0.022
Chinese 0 22 1 20 0.512 0.023 -0.158 -1.000 -0.012
Japanese 0 32 0 12 0.727 0 NaN NaN 0
Yakut 0 18 1 4 0.783 0.044 -0.405 -1.000 -0.034
Pacific:
Nasioi 1 20 0 22 0.488 0.023 0.158 1.000 0.012

America:
Maya 2 15 0 31 0.354 0.042 0.282 1.000 0.027
Surui 0 7 0 35 0.167 0 NaN NaN 0
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Our proposed statistic X2* yields 50.56 with p-value being
less than 0.0001 while T2 gives 39.72 with p-value being
less than 0.0001. Again, both tests suggest rejection of the
homogeneity hypothesis at the 0.05 nominal level. Sup-
pose that another research team wants to reconduct the
same genetic analysis. In this regard, it is sensible to ask,
"How large is the sample size for each population in order
to achieve, say, 90% power at the 0.05 nominal level".

Based on the present study, we have  = (-0.064, -0.066,

-0.116, -0.125, -0.135, -0.087, -0.012, 0.012)',  =

(0.576, 0.225, 0.222, 0.286, 0.325, 0.296, 0.488, 0.512)'

and  = (0.849 0.850, 0.810, 0.796, 0.747, 0.824,

0.977, 0.977)'. By solving equation (3), n = 157 subjects
are required for each of the eight populations under the
balanced design.

(iii) Homogeneity of gametic disequilibrium among
those populations in Europe.

Our statistic X2* yields 7.48 with p-value being 0.11 and T2

yields 7.26 with p-value being 0.12. Both tests do not
reject the homogeneity hypothesis at the 0.05 nominal
level. In this case, we have evidence to believe that popu-
lations in Europe reach their gametic equilibrium.

To end this section, we analyze the hypothetical example
of gametic disequilibrium between tow loci (A, B) in ten
populations described in Zapata and Alvarez [8]. Here,
the gametic counts are simply set by multiplying the hap-
lotype frequencies given in Zapata and Alvarez [8] by
1000. The data are reproduced in Table 7. Obviously, the
r values are homogeneous across the ten populations. For
D' values, Zapata and Alvarez [8] utilized the bias-cor-
rected nonparametic bootstrap method to obtain the 95%
confidence interval for each D' values. Observing that the
resultant confidence intervals have no intersection, they

concluded that D' are heterogeneous. They suggested tests
for homogeneity of gametic disequilibrium should be
based on D', whose range is allele probability independ-
ent, rather than r. Although, the D values in Table 7 seem
to be homogeneous, our homogeneity score test yields X2*

= 33.44 with p-value being less than 0.0001. Therefore,
our test procedure also suggests the rejection of the homo-
geneity of gametic disequilibrium across the ten popula-
tions. In this case, our test reaches the same conclusion
drawn by Zapata and Alvarez [8].

Discussion
Verification of the homogeneity assumption of gametic
disequilibrium across several populations is crucial in
gametic disequilibrium analysis. We note that traditional
homogeneity test on gametic disequilibrium is based on
the Fisher's test of homogeneity among correlation coeffi-
cients. However, our simulations demonstrate that this
traditional test may not perform satisfactorily. Specifi-
cally, it can be very conservative or liberal, for almost all
the cases in which the common true gametic disequilib-
rium D is bounded away from zero. Most importantly,
these kinds of conservativeness and liberty can not effec-
tively alleviated with increased sample sizes.

Our proposed large-sample homogeneity score test on
gametic disequilibrium across several independent popu-
lations requires the count of haplotypes as input. In prac-
tice, only genotype data can be obtained in most
situations. To employ our method, one can use some hap-
lotyping software, such as PHASE, HAPLOTYPER, to
resolve the genotype data as haplotype data. In this way,
it separates haplotype phasing and gametic disequilib-
rium homogeneity test. Naturally, it is more promising to
extend our method which can directly handle the geno-
type data. In this sense, model assumptions are based on
genotype data. However, the haplotype phase uncertainty
for the double heterozygotes makes the definition of

D

p1+

p+1

Table 7: Hypothetical example of gametic disequilibrium between two loci (A, B) with twoalleles (A0, A1 and B0, B1, respectively) across 
ten populations

Gamete counts Allele frequencies Disequilibrium Estimation

Population A0 B0 A0 B1 A1 B0 A1 B1 A0 B0 r D' D

1 495 405 5 95 0.90 0.50 0.300 0.900 0.045
2 540 360 1 90 0.90 0.55 0.300 0.814 0.045
3 479 371 21 129 0.85 0.50 0.300 0.714 0.054
4 460 340 40 160 0.80 0.50 0.300 0.600 0.060
5 671 229 29 71 0.90 0.70 0.300 0.589 0.041
6 539 261 61 139 0.80 0.60 0.300 0.490 0.059
7 615 185 85 115 0.80 0.70 0.300 0.393 0.055
8 373 227 127 273 0.60 0.50 0.300 0.367 0.073
9 403 197 147 253 0.60 0.55 0.300 0.332 0.073
10 325 175 175 325 0.50 0.50 0.300 0.300 0.075
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gametic disequilibrium can not be directly expressed by
the genotype data even assuming Hardy-Weinberg equi-
librium holds. It may severely affect the further derivation
of the corresponding score test. Thus, extending our
method to handle genotype data is an avenue we intend
to explore future.

Conclusion
In this article, we propose a large-sample homogeneity
test on gametic disequilibrium across several independent
populations based on the likelihood score theory general-
ized to nuisance parameters. Our simulation results show
that our test is more reliable than the traditional test based
on the Fisher's test of homogeneity among correlation
coefficients. Although our test may also demonstrate con-
servativeness and liberty in some cases, unlike the tradi-
tional test these issues can be effectively resolved by
increasing sample sizes. For design purpose, sample size
formula that controls power is derived.
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Appendix
Consistency and the condition to attain asymptotic 
efficiency for D*
Let nk = nbk, with bk > 0 and k = 1, 2,...,K. The asymptotic
property of D* is obtained under the assumptions that K
is fixed and n approaches infinity (i.e., sufficiently large).
The Mantel-Haenszel-type estimator of D* can be rewrit-
ten as

where . By the Central Limit

Theorem,  has an asymptotic normal distri-

bution N(0, Σk/bk), where yk = (x00k, x01k, x10k, x11k)/nk, gk =

(p00k, p01k, p10k, p11k)', . Let

. By δ method,  follows an

asymptotic normal distribution . It is easy

to calculate that . Since Dk ≡ D

under H0 for k = 1, 2,...,K, we can conclude that D* is a

consistent estimate of D. Let wk = wk(D, p1+k, p+1k), vk = 1/

(p01kp10k). Thus, the asymptotic variance of D* under H0 is

given by

Let the information matrix with respect to D, p1+ and p+1
under H0 be

By inverting the information matrix I, we can obtain the

asymptotic variance of , that is,

By Cauchy-Schwarz inequality

, we have Asy-

Var( ) = AsyVar(D*). To this end, we obtain the suffi-
cient and necessary condition for the asymptotic
efficiency of D*, that is, wkvk = c, k = 1, 2,...,K, where c is a

constant independent of all parameters. When D = 0, the
condition is satisfied. From this, we know that D* is inef-
ficient for general cases.

A simple expression for 

For the k-th stratum, denote the information matrix with
respect to Dk, p1+k and p+1k by

According to the property of inverse matrix,

(Dk, p1+k, p+1k) is equal to the reciprocal of the

(1, 1) element of . By the property of MLEs, we have
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where  and  are the

MLEs of Dk, p1+k and p+1k, respectively. Hence, the asymp-

totic variance of  is .

On the contrary, by the Central Limit Theorem,

 follows an asymptotic normal distribution

N(0, Σk). By δ method, we immediately get that

 follows an asymptotic normal distribution

N(0, wk(Dk, p1+k, p+1k)). Therefore, we can obtain the exact

expression (Dk, p1+k, p+1k) = nk/wk(Dk, p1+k, p+1k).

Naturally, the expression of (D, p1+k, p+1k) is just

(Dk, p1+k, p+1k) by substituting D for Dk.
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