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Abstract
Background: For the last years reliable mapping of quantitative trait loci (QTLs) has become
feasible through linkage analysis based on the variance-components method. There are now many
approaches to the QTL analysis of various types of crosses within one population (breed) as well
as crosses between divergent populations (breeds). However, to analyse a complex pedigree with
dominance and inbreeding, when the pedigree's founders have an inter-population (hybrid) origin,
it is necessary to develop a high-powered method taking into account these features of the
pedigree.

Results: We offer a universal approach to QTL analysis of complex pedigrees descended from
crosses between outbred parental lines with different QTL allele frequencies. This approach
improves the established variance-components method due to the consideration of the genetic
effect conditioned by inter-population origin and inbreeding of individuals. To estimate model
parameters, namely additive and dominant effects, and the allelic frequencies of the QTL analysed,
and also to define the QTL positions on a chromosome with respect to genotyped markers, we
used the maximum-likelihood method. To detect linkage between the QTL and the markers we
propose statistics with a non-central χ2-distribution that provides the possibility to deduce
analytical expressions for the power of the method and therefore, to estimate the pedigree's size
required for 80% power. The method works for arbitrarily structured pedigrees with dominance
and inbreeding.

Conclusion: Our method uses the phenotypic values and the marker information for each
individual of the pedigree under observation as initial data and can be valuable for fine mapping
purposes. The power of the method is increased if the QTL effects conditioned by inter-population
origin and inbreeding are enhanced. Several improvements can be developed to take into account
fixed factors affecting trait formation, such as age and sex.

Background
The wide application of DNA markers scattered along the
genome together with the rapid development of statistical
methods provides reliable localization of quantitative
trait loci (QTLs). There are now many approaches to QTL

analysis of various types of crosses within one population
(breed) as well as crosses between divergent populations
(breeds) [1-5]. One of the most powerful approaches to
QTL mapping is the variance-components method. In this
method, variability among trait observations from indi-
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viduals within pedigrees is expressed in terms of the effect
caused by an unobservable trait-affecting major locus, of
the polygenic effect, and of the residual non-genetic effect
[2,3,6-13]. The effect attributable to a locus linked to a
marker is a function of the additive and dominance com-
ponents of variance of the locus, the recombination frac-
tion, and the portion of alleles that are identical by
descent (IBD) at the marker for each pair of individuals.
The polygenic variance component depends only on the
relationship between the relative pair.

If the pedigree analysed comes from a population with an
identical distribution of genotypes for all the members of
the pedigree and with an identical environmental influ-
ence on phenotypes, then the covariance between trait
values of related pairs is the weighted sum of the variance
components identical for all individuals [10,14-16]. The
presence of the marker information makes it possible to
separate the variance component caused by the locus
linked to the marker from the polygenic variance compo-
nent, and to test the significance of major locus contribu-
tion with respect to trait polymorphism.

Crosses between individuals from divergent populations
(breeds) that differ by trait distribution are often used in
investigations of traits of livestock breeding, laboratory
and domestic animals, and studies of human hereditary
diseases. A set of statistical methods for QTL mapping was
developed in which initial materials that are backcrosses
or the F2-generation descended from inbred lines were
used [17-21]. Recently several studies devoted to the anal-
ysis of crosses between outbreed lines has been reported
[2,3]. One of these statistical methods, known as the seg-
ment mapping method [2], is based on division of the
genome of hybrid individuals into segments. Here,
genetic covariance of a trait is defined for each segment
and depends on the variance of initial breeds and the per-
centage of genetic material of these breeds in this segment.
However, this method does not take into consideration
such effects as domination and inbreeding. On the con-
trary, another method developed in [3] assumes the pres-
ence of these effects and allows us to find distinctions in
genotype frequencies of the major locus analysed between
the crossed breeds. The essence of this method is that the
genetic covariance of any two individuals is expressed as a
non-linear function of the probability of up to 15 possible
identity modes differing by the allele origin of the locus.
The disadvantage of this method is its inherent compli-
cated calculations.

The objective of the present study is to present another
high-powered theoretical approach to analyse data from
crosses between outbreed lines using marker information.
This approach is based on the variance-components
method that takes into account dominance and inbreed-

ing and uses all the pedigree information available. This
study is structured as follows. First, we formulate assump-
tions about the genetic inter-population nature of the trait
so that these assumptions allow us to prove the genetic
model chosen and the distribution of phenotypes in the
pedigree. Second, we develop a universal way for decom-
posing variance and covariance into equi-type compo-
nents, so that weighting factors at these components
depend on the degree of relationship and the recombina-
tion frequency between the marker and the locus, and can
be obtained from joint distribution of IBD-alleles of the
QTL and the marker [7]. This ensures that we derive the
exact analytical expressions of variance components for
different types of relative pairs. Third, we obtain analytical
expressions for the power of our method without simula-
tion data. The method is demonstrated by an example of
hybrid sibships, which are widely popular in experimental
designs.

Results
The genetic model
A general explanatory multi-locus model describing the
quantitative trait for the ith individual of a hybrid pedi-
gree is

Xi = µi + gi + Gi + ei,

where µ is the overall mean, g and G denote independent
effects conditioned by the influence of QTLs (major locus
and polygene, respectively), and e denotes the environ-
mental effect. However, since the contribution of the
major locus to the trait studied has no priorities in rela-
tion to other loci listed in the polygene, we will consider
a simplified mono-locus model, which could be easily
extended to general cases without major difficulties.

For the analysis of crosses between two divergent popula-
tions, P1 and P2, it is necessary to consider additional
assumptions about equi-type distribution of the trait in
the parental populations, P1 and P2, and in the hybrid
pedigree, P1 × P2. We assume that QTL contributions to
trait formation do not depend on the population origin of
the individuals, and that crossed initial populations differ
by unequal QTL allele frequencies, p1 for P1 and p2 for P2
[3,23]. In addition, we assume that the Hardy-Weinberg
equilibrium is carried out for the P1 and P2 populations.

We consider the QTL analysed to be an autosomal locus
with alleles A and B, and its genotypic values g, equal to d,
a and -a for heterozygotic and homozygotic individuals of
alternative forms, respectively. AAi (ABi, or BBi) denotes
that individual i has genotype AA (AB, or BB). The distri-
bution of frequencies of the QTL genotypes, AAi, ABi and
BBi, for the ith inbred hybrid individual can be expressed
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by allelic frequencies of his (her) father (p(Af), p(Bf)) and
mother (p(Am), p(Bm)):

where τ denotes a positive-definite parameter of inbreed-
ing caused by the correlation between the uniting gametes
of the inbred individual, and shows the difference in gen-
otype frequencies between non-inbred and inbred
homozygous individuals [24]. If the individual is non-
inbred, then τ = 0. We have considered various types of
inbred crosses differing from each other in structure of
inbred loops and represented the derivations of the
parameter of inbreeding (see section "Parameter of
inbreeding" and Appendix). The allelic frequencies, p(Ai)
and p(Bi), are determined through the distribution of gen-
otypes as:

Furthermore, the allelic frequencies of the ith hybrid indi-
vidual can be expressed in terms of the allelic frequencies
of the initial populations, p1 and p2, and a parameter, εi1
(εi2 = 1-εi1), called portion of "blood" of the population P1
(P2) [23]:

p(Ai) = εi1 p1 + (1-εi1) p2.

We admit that the trait values of individuals from a hybrid
pedigree, as well as from P1 and P2 populations, have a
multi-normal distribution that is parameterised by an
expectation vector and a covariance matrix [25]. If the
influence of the environment is identical for all hybrid
individuals, then without sacrificing the model generality
we can assume that environmental effects for all individ-
uals are random effects distributed by the normal law with
identical parameters of distribution, N (0, Vare) [10].

Parameter of inbreeding
We have defined the parameter of inbreeding for two par-
ticular pedigrees with different inbred loops, and general-

ized the conclusions drawn to all other pedigrees. Let the
first pedigree under review include the shortest inbred
loop with a single common ancestor for parents of the
inbred individual (Figure 1a). In this case, the inbred indi-
vidual descends from a cross of the related pair of "parent-
offspring". To find τ, we have considered a similar pedi-
gree with the same structure but without inbreeding (Fig-
ure 1b). We need to determine the distributions of
genotype frequencies for the 4th individuals from inbred
and outbred crosses through allelic frequencies of the ped-
igree's founders, p(A1) and p(A2), and to compare them
with each other. For this purpose, we first defined the dis-
tribution of genotype frequencies for the 3rd individuals,
which are non-inbred for both pedigrees (using formulas
(1) at τ = 0):

As a consequence, allelic frequencies for the 3rd individu-
als are equal to p(A3) = 1/2 (p(A1) + p(A2)) and p(B3) = 1/
2 (p(B1) + p(B2)) in accordance with formulas (2). There-
fore we can write the distribution of genotype frequencies
for the 4th individual from the outbred cross (Figure 1b):

We deal with the conditional distribution of genotype fre-
quencies upon analysing the 4th individual from the
inbred cross. Let us therefore fix the genotype of the 2nd
individual, g2 = AA, AB or BB with a probability p(AA2) ,
p(AB2) or p(BB2). The conditional genotype probabilities
for the 3rd and 4th individuals are thus easily calculated
and are presented in Tables 1 and 2. According to the for-
mula of total probabilities, the unconditional probability
of the genotypes for the 4th inbred individual, pinb(g4), is
equal to:

To estimate the parameter of inbreeding, we compared
genotype probabilities of the 4th individuals from inbred
and outbred crosses, pinb(AA4) and p(AA4):
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Table 1: Conditional distribution of genotype frequencies of the 
QTL for an individual under the given genotype of his (her) 
parent

p(g3/g2) g2 = AA g2 = AB g2 = BB

p(AA3/g2) p(A1) 1/2 p(A1) 0
p(AB3/g2) p(B1) 1/2 p(A1)
p(BB3/g2) 0 1/2 p(B1) p(B1)
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The parameter of inbreeding may be generalized to any
type of crosses with a single common ancestor:

τ = (1/2)k f(go), (3)

where (1/2)k is the degree of relationship of the parents of
the inbred individual, and f(go) is the function of geno-
type frequencies of their common ancestor, go:

f(go) = (p(Ao) p(BBo) + p(Bo) p(AAo))/2. (4)

The proof of the validity of formulas (3–4) is presented in
the Appendix.

Let the second pedigree examined include the shortest
inbred loop with two common ancestors of parents of an

inbred individual (Figure 1c). In this case, an inbred indi-
vidual descends from a cross of sibs. To find τ, we consid-
ered a similar pedigree with the same structure but
without inbreeding (Figure 1d). We need to determine the
distributions of the genotype frequencies of the 5th indi-
viduals from inbred and outbred crosses through allelic
frequencies of the pedigree's founders, p(A1) and p(A2),
and to compare them with each other.

At the outbred cross (Figure 1d), genotype frequencies of
the 3rd and 4th individuals, p(g3) and p(g4), are identical,
and are calculated by formulas (1), when τ = 0. In this
case, the 3rd and 4th individuals transfer an allele A (B) to
the offspring with equal probabilities, p(A3) = p(A4) = 1/2
(p(A1) + p(A2)) (p(B3) = p(B4) = 1/2 (p(B1)+ p(B2)). The
distribution of genotype frequencies for the 5th individ-
ual is thus:

At the inbred cross (Figure 1c), the 3rd and 4th individu-
als as well as their inbred offspring (the 5th individual)
therefore have conditional genotype frequencies under
fixed genotypes of the 1st and 2nd individuals with the
probabilities p(AA1), p(AB1) or p(BB1), and p(AA2), p(AB2)
or p(BB2) (Tables 3 and 4). Knowing the conditional gen-
otype frequencies for the 5th individual, we can define
unconditional genotype frequencies using the formula of
total probabilities:

The parameter of inbreeding is then equal to:

and can be generalized to all inbred individuals having
parents with two common ancestors as:
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Table 2: Conditional distribution of genotype frequencies of the QTL for an inbred individual originated from cross "parent-offspring" 
under the given genotype of his (her) parent

p(g4/g2) g2 = AA g2 = AB g2 = BB pinb(g4)

p(AA4/g2) 1/2 (p(A1)+1) 1/4(p(A1)+1/2) 0 1/2[p(A1) p(A2) + p(A2) - 1/
4p(AB2)]

p(AB4/g2) 1/2(p(B1) 1/2 1/2p(A1) 1/2[p(B1) p(A2) + p(A1) 
p(B2) + 1/2p(AB2)]

p(BB4/g2) 0 1/4(p(B1)+ 1/2) 1/2 (p(B1)+ 1) 1/2[p(B1) p(B2) + p(B2) - 1/
4p(AB2)]

Pedigrees including the shortest inbred loop with a single and two common ancestors and pedigrees without the loopFigure 1
Pedigrees including the shortest inbred loop with a 
single and two common ancestors and pedigrees 
without the loop. a, b) Pedigrees with and without the 
loop formed as a result of inbred cross between parent and 
offspring, respectively. c, d) Pedigrees with and without the 
loop formed as a result of inbred cross between sibs, respec-
tively.
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τ = (1/2)k (f(g1o) + f(g2o))/2, (5)

where (1/2)k is the degree of relationship of the parents of
the inbred individual, and f(gio) for i = 1,2 is the function
of genotype frequencies, gio, of their ith common ancestor
calculated by formula (4). The proof of the validity of for-
mula (5) is presented in the Appendix.

Partitioning genetic covariance into components
For the QTL effect, we deduce the formulas of expectation,
EQTL = a p(AAi) + d p(ABi) - a p(BBi), and variance, VarQTL
= a2 p(AAi) + d2 p(ABi) + a2 p(BBi) - EQTL

2, depending on
the set of parameters {a, d, p(Af), p(Am), and τ}:

To partition the genetic variance into components, we
modernized the approach of Amos and Elston [7] adapt-
ing it for hybrid pedigree analyses.

Let Yj = (X1j-X2j)2, where X1j and X2j are phenotypic values

of a trait measured on individuals 1 and 2 of the jth
related pair. We denote the proportion (0, 1/2 or 1) of the
alleles identical by descent at the QTL and the marker as

πQTLj and πMj, respectively. Let  be the estimated

probability that the jth pair of individuals shares the k

IBD-alleles (k = 0, 1 or 2) at the marker. Then the πMj can

be estimated as . Amos and Elston

[7] have shown that covariance, Cov, can be obtained by:

where the conditional probabilities  are cal-

culated from the information given on the marker geno-

types, whereas the conditional probabilities Pr(πQTLj|πMj)

depend on the genetic relationship of the relative pair and
the recombination frequency between the QTL and the

marker, and have already been specified for many types of

relatives [7,26]. To determine E(Yj|πQTLj), we list all 9 pos-

sible values of Yj at various QTL genotypes and define the

probabilities Pr(Yj|πQTLj) for πQTLj = 0, 1/2 or 1:

Let us review in detail the process of finding genetic cov-
ariance and its components using the example of sib-pair
as the most often used in studies of hereditary diseases.

The analysis of sib-pair
The sibs present a special interest for researchers, since
they are well known to belong to two-linear relatives. We
deduced the formulas for the conditional probabilities
Pr(Yj|πQTLj) at πQTLj = 0, 1/2 or 1 (Table 5), to derive the
expressions of expectations E(Yj|πQTLj) by formula (6):

where ξj is the trait value difference caused by the environ-
ment. Apparently, a dependence on the parameter of
inbreeding is not present in formulas (7) for E(Yj|πQTLj).
This means that the components caused by inbreeding are
identical for covariance and variance.

Haseman and Elston [26] have shown that

where Z is the environmental variance component; A and
D are additive and dominance variance components,
respectively. When the pedigree under consideration is
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Table 3: Conditional distribution of genotype frequencies of the QTL for sibs under the given genotypes of their parents

p(g3,4/g1,g2) g1 × g2

AA × AA BB × BB AB × AB BB × AA, AA × BB AB × AA, AA × AB BB × AB, AB × BB

p(AA3,4/g1,g2) 1 0 1/4 0 1/2 0
p(AB3,4/g1,g2) 0 0 1/2 1 1/2 1/2
p(BB3,4/g1,g2) 0 1 1/4 0 0 1/2
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pure (p = p(Af) = p(Am) and q = 1-p), A and D are defined
as:

Let us find similar A and D parameters for hybrid sibs. In
this case, to determine the covariance between sibs,
weighting factors at components A and D are standard
functions that depend on the proportion of marker IBD-
alleles between sibs and the recombination frequency
[10,26]:

where Ψ = θ2 + (1-θ)2.

By equating expressions (7) and (8) we deduce formulas
of A and D for hybrid sibs:

where βp = (p(ABp) - 2 p(Ap) p(Bp)) at p = m, f.

The trait variance can be partitioned into components:

Var = A + D + R + Z,

where R is the residual component caused by inter-popu-
lation origin and inbreeding of sibs):(R = 0 for "pure"
non-inbred sibs):
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Table 4: Conditional distribution of genotype frequencies of the QTL for an inbred individual originated from the cross of sibs under 
the given genotypes of parents of sibs

p(g5/g1,g2) g1 × g2 pinb(g5)

AA × 
AA

BB × 
BB

AB × AB BB × AA, 
AA × BB

AB × AA, 
AA × AB

BB × AB, AB 
× BB

p(AA5/g1,g2) 1 0 1/4 1/4 9/16 1/16 1/4[p(A1) + p(A2) - 1/4p(AB1) - 1/4p(AB2)+ 2p(A1) p(A2)]
p(AB5/g1,g2) 0 0 1/2 1/2 3/8 3/8 1/2[p(B1)p(A2) + p(A1)p(B2) + 1/4p(AB1) + 1/4p(AB2)]
p(BB5/g1,g2) 0 1 1/4 1/4 1/16 9/16 1/4[p(B1)+ p(B2)- 1/4p(AB1) - 1/4p(AB2) + 2p(B1) p(B2)]

Table 5: Conditional probability distribution of Yj values for pair of sibs

Genotypes of sib-pair Yj Conditional probability Pr (Yj|πQTLj)

πQTLj = 0 πQTLj = 1/2 πQTLj = 1

AA-AA ξj
2 p(AAf)p(AAm) + τ 1/2 (p(AAf)p(Am) + 

p(Af)p(AAm)) + τ
p(Af) p(Am) + τ

BB-BB ξj
2 P(BBf)p(BBm) +τ 1/2 (p(BBf)p(Bm) + 

p(Bf)p(BBm))+τ
p(Bf)p(Bm)+ τ

AB-AB ξj
2 p(AAf)p(BBm) + 

p(BBf)p(AAm) + 1/2p(ABf) 
p(ABm) -2τ

p(Bf)p(Am) + p(Af)p(Bm) - 1/
4 [p(ABf)+ p(ABm)] - 2 τ

p(Af)p(Bm) + p(Bf)p(Am)-2τ

AA-AB (a-d +ξj)2 1/2 (p(ABf)p(AAm) + 
p(AAf)p(ABm))

1/4(p(Af)p(ABm) + 
p(ABf)p(Am))

0

AB-AA (-a + d + ξj)2 1/2 (p(ABf)p(AAm) + 
p(AAf)p(ABm))

1/4(p(Af)p(ABm)+ 
p(ABf)p(Am))

0

AB-BB (a + d +ξj)2 1/2 (p(ABf)p(BBm) + 
p(BBf)p(ABm))

1/4(p(Bf)p(ABm) + 
p(ABf)p(Bm))

0

BB-AB (-a-d +ξj)2 1/2 (p(ABf)p(BBm) + 
p(BBf)p(ABm))

1/4(p(Bf)p(ABm) + 
p(ABf)p(Bm))

0

AA-BB (2a +ξj)2 1/4 p(ABf) p(ABm) 0 0
BB-AA (-2a + ξj)2 1/4 p(ABf) p(ABm) 0 0

Total 1 1 1
Page 6 of 13
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Thus, we deduced the formula for covariance between
hybrid sibs as the weighted sum of three (additive, domi-
nance and residual) components:

One can conclude that trait covariance depends on the
necessary set of parameters {a, d, p1, p2, θ}.

Criterion for the definition of QTL position
To localize a QTL on a chromosome the maximum likeli-
hood method was used. This method enables to choose
the most suitable genetic model, estimate the modelling
parameters and define the position of the QTL with the
required accuracy. Note that if there are no genetic effects
(a = 0 and d = 0), it is impossible to localize a QTL since
the recombination fractions between the QTL and mark-
ers can not be estimated. Let us consider two genotyped
markers flanking the QTL and construct the suitable log-
likelihood function:

lnL = const - 1/2 ∑[ln|V| + (X - EX) V-1 (X - EX)T],

where the summation is over the two flanking markers; X
and EX are horizontal vectors of quantitative trait values

and their expectations, respectively; V is a covariance

matrix with the elements . The log-

likelihood function does not change a form at multiple
analyses, because to localize the QTL among multiple
markers, it is necessary to test each chromosome fragment
bracketed by only two adjacent genotyped markers.

We constructed the statistics as a double likelihood ratio,
2(lnL1-lnL0), where L0 is the maximum likelihood under a
null hypothesis H0, obtained by imposing restrictions on
certain parameters of interest, and L1 is the maximum like-
lihood under an alternative hypothesis H1, where these
restrictions are removed. Here, we have chosen hypothesis
H1 in which the parameter θ is not fixed, and hypothesis
H0 in which the parameter θ is equal to the fixed value, θk.
One can let the recombination frequency between one of
the markers and the QTL, θk, be correlated with genetic
distance, k, by the Kocambi mapping function [27], and
take into account interference:

θk = 1/2 (e4k - 1)/(e4k + 1),

where k varies from 0 to r discretely (with given step
length), and r is a fixed genetic distance between two
markers. Thus, we have several null hypotheses from
which it is necessary to choose a suitable one. If the value
of the statistics is calculated for each probable k-position

of the QTL and compared with the critical value, then we
can accept or reject the given position as correct. Indeed,
the specified criterion is the linkage test, for which the crit-
ical value transformed from LOD score is equal to
2ln(103) = 13.8. Note that in spite of the fact that many
authors have demonstrated that, for evidence of more sig-
nificant linkage, LOD score threshold is greater than 3, we
use just this traditional threshold as being more conven-
ient for comparison of our method with other ones with
same LOD score thresholds. But researchers can choose a
more severe threshold.

Power
From mathematical statistics it is known that the likeli-
hood ratio test has a central χ2-distribution under a null
hypothesis and a noncentral χ2-distribution under an
alternative hypothesis in large samples [25]. Given a criti-
cal P-value, the power of a χ2-test can be determined from
the noncentrality parameter, λ, which is directly propor-
tional to the sample size, N, and to the degree of freedom
of the noncentral χ2-distribution, df. To estimate the
power for any sample size at a given λ and df, one can refer
to the appropriate function of the noncentral χ2-distribu-
tion. It is possible to derive analytical formulas for the
noncentrality parameter without carrying out data simula-
tion [28]. For this, it is necessary to obtain the asymptoti-
cal values of the maximum-likelihood estimates of
parameters under both the H0 and H1 hypotheses, and
then to take the log-likelihood expectations under these
hypotheses evaluated at their respective asymptotical
parameter estimations. The noncentrality parameter is
then:

λ = E(2lnL1) - E(2lnL0). (10)

The linkage test is caused by distinctions only in covari-
ance matrixes, V, according to the marker IBD-distribu-
tion. For example, we constructed a noncentrality
parameter for sibs since they have identical variance com-
ponents. For notational convenience, we assume that the
quantitative trait has unit variance, so that VA, VD, VR and
Ve represent both the variances and the proportions of var-
iance. Then under the H0 hypothesis, when k varies from
0 to r, the asymptotic estimations of covariance are:

and under the alternative H1 hypothesis, when θ is not
fixed, they are:

Cov  A D Rj j Mj Mj Mj( , | ) ( , ) ( , ) .X X1 2 π π θ π θ= + +f g

(9)

Cov j j Mj( , | )X X1 2 π

V i j
V V V V if i j

V V V

A D R e

M A M D R
0( , )

, ,

( , ) ( , ) ,
=

+ + + =

= + = +f gπ θ θ π θ θk k iif i j≠
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V i j
V V V V if i j

V V V if i j
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M A M D R
1( , )
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( , ) ( , ) ,
=

+ + + =

+ + ≠f gπ θ π θ ,,
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In the presence of marker information, E(2lnLk), from for-
mula (10) for both hypotheses (k = 0 or 1) is calculated as
[28]:

where s is sibship size; and pi and Vki are the probability
and the covariance matrix for the ith marker genotype
configuration, respectively.

We defined the noncentrality parameter for the sib-pair
and then generalized it for an entire sibship. For any rela-
tive pair, one can unambiguously assign three covariance
matrices zπ differing by a portion of IBD-alleles on the
QTL, π = 0, 1/2 or 1. From formula (9) it follows that their
non-diagonal elements are equal to zπ = 0 (1,2) = VR, zπ = 0,5
(1,2) = 1/2 VA + VR and zπ = 1 (1,2) = VA + VD + VR, and diag-
onal elements are obviously equal to 1. In a random sam-
ple of sib-pairs, these covariance matrices are expected to
occur in the proportions 1/4:1/2:1/4, so that the noncen-
trality parameter for sibship is:

The conditional sib-pair correlations of trait values, given
the IBD-status at the QTL, can be deduced from the con-
ditional distribution Pr(πQTLj|πMj) as:

where Ψ = θ2 + (1-θ)2. The noncentrality parameter for sib-
pair is then given by:

λ = 1/4 ln(1-c0
2) + 1/2 ln(1-c1

2) + 1/4 ln(1-c2
2) - 1/4 ln(1-

c'02) - 1/2 ln(1-c'12) - 1/4 ln(1-c'22),

where c'i are values of ci (i = 0, 1, and 2) at the fixed Ψk, Ψk
= θk

2 + (1-θk)2.

When the first-order approximation, ln(1-x)≈-x, is used
for small values of x, the formula for the noncentrality
parameter becomes the simplest:

where ∆1 = Ψ-Ψk and ∆2 = 1-Ψk-Ψ. In this case λ1 is propor-
tional only to the squares and products of the additive VA
and dominance VD variance components and does not

depend on the component conditioned by the hybrid
(inter-population) origin of the sibs.

For a sufficiently accurate calculation of the noncentrality
parameter, as often as not the second-order approxima-
tion, ln(1-x)≈-x-1/2 x2, is used. It follows therefore that

λ ≈ λ1 + 1/8(c'04 - c0
4) + 1/4(c'14 - c1

4) + 1/8(c'24 - c2
4).

(12)

The analytical expression for the noncentrality parameter
after substituting the expressions (11) in formula (12) is
lengthy, but we can see that λ depends on all variance
components, VA, VD, and VR. Moreover, the power to
detect a given QTL effect increases with increasing propor-
tion of the residual component, VR. To obtain more accu-
rate results, it is possible to use an approximation by
involving higher-order terms.

To determine a noncentrality parameter for the entire sib-
ship, we used a suitable approximation to calculate a
determinant of correlation matrix (non-singular and sym-
metric) as shown in [28]:

ln|V| ≈ ln(1 - ∑Vjk
2) = -∑Vjk

2, (13)

where ∑ denotes the sum over all possible sib-pairs (j, k),
j <k. Then for an s-size sibship the noncentrality parame-
ter, λs, is equal to:

λs ≈ 1/2 s(s - 1) λ, (14)

where 1/2s(s-1) is the number of sib-pairs. As is obvious,
the noncentrality parameter for the linkage test is propor-
tional to the number of all pairs in the sibship. It is note-
worthy that formula (14) is not exact for small samples,
and in this case, it is necessary to calculate the power
through data simulation.

In the case of analyses of a hybrid pedigree of arbitrary
structure, the noncentrality parameter can be obtained in
a similar manner. For this purpose, noncentrality param-
eters are calculated for all relative pairs of the pedigree
analysed, and are then summarized according to approxi-
mation (13). When the theoretical noncentrality parame-
ter has been obtained, it is easy to calculate the size of the
sample required for any required level of significance and
power. For the linkage test, the level of significance
required is traditionally set at a LOD score of 3, which is
equivalent to a χ2 statistics of 13.8 with df = 2 and a fixed-
sample one-tailed significance level of 0.0001. The non-
centrality parameter required for 80% power is 20.8 [28].
For example, the number of sib-pairs required can be
obtained by dividing the noncentrality parameter
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required (i.e. 20.8 for the linkage test) by the theoretical
noncentrality parameter per sib-pair.

Table 6 demonstrates the sample sizes required for 80%
power at the critical value of 13,8 for a range of variance
components, VR, and Ψ. Additive and dominance compo-
nents are assumed to be 0.15. Sham et al. [28] have shown
that detection of QTL by linkage is only feasible if the pro-
portion of QTL variance considered is 10% or more. At
this level of QTL variance, more than 20000 sib-pairs are
required for linkage analysis.

Simulations
To examine the performance of the proposed approach in
realistic situations we conducted simulation studies on
examples of inbred sibships. We generated 10, 20, 30, and
40 hybrid pedigrees covering three generations of individ-
uals (F0, F1, and F2 generations). Founders (F0 individuals)
of each pedigree analysed are two individuals from the P1
population and single individual from the P2 population.
The founders from different populations formed a cross-
ing pair and had one offspring for the F1 generation.
Inbred crossing between related F1 individuals contrib-
uted to the F2 generation by the size of 10 offsprings. Thus,
each pedigree consisted of three founders, two F1 individ-
uals, and ten F2 individuals. For all inbred sibs from the F2
generation, the marker genotypes and phenotypic values
of the trait were simulated and were considered as known.

We considered two QTL positions between two markers,
in turn assuming that the QTL is located in the chromo-
some positions 5 and 10 cM, and that the markers flank-
ing it are fixed at positions 0 and 25 cM. We specified the
distribution of allele frequencies of the QTL for all the
individuals analysed based on the assumption that the
Hardy-Weinberg equilibrium is carried out for the found-
ers.

Let there be four-allelic markers (two unique alleles from
each initial population). The marker genotypes of the
founders were selected randomly, assuming an even dis-

tribution of frequencies of marker alleles. The additive
and dominance genetic values were taken to be a = 3 and
d = 1, respectively. For the founders, the QTL allelic fre-
quencies were taken to be p1 = 0.9 and p2 = 0.4. The phe-
notypic values were obtained by adding the normal
deviation N(0,1) to the genetic value. For each given set of
model parameters {p1, p2, a, d, θ} and the given sample
size, 100 replicates were simulated.

Our purpose is to locate the QTL estimating allelic fre-
quencies for initial populations P1 and P2 and the genetic
effects of the trait in question in each replicate. To locate
the QTL on a chromosome fragment between markers, we
discretely moved along the fragment at a step length of
0.01 cM and estimated the double likelihood ratio statis-
tics at each point. If the statistics calculated at a point was
higher than the critical value, then the hypothesis of the
localization of the QTL at this point was rejected. The QTL
was hypothetically located at the point where the statistics
had the lowest value.

We compared our method with the method for QTL anal-
ysis of F2 crosses between outbred lines, described in
[2,29], which was performed using the Qxpak software
available free at [30].

The performance of both methods was tested using the
same simulated data. The comparative characteristics were
the frequency of the events consisting in the fact that the
true location of the QTL would not rejected (W1), and the
frequency of the events consisting in the fact that the sta-
tistical test would indicate the true QTL location as the
most likely one (W2). It is obvious that W1 ≥ W2. It should
be noted that the value of (1-W1) can be interpreted as
type I error rate, and value of W2 can be analogous to
power of the method.

We compared the W1 and W2 frequencies for the two
methods at different sample sizes, Nped = 150, 300, 450,
and 600. Figures 2 and 3 show the results of simulation
studies for two positions of the QTL, 5 and 10 cM, respec-

Table 6: Sample sizes required for 80% power to detect linkage for the range of VR, recombination fraction and fixed components VD = 
0.15 and VA = 0.15

Recombinatio
n fraction, θ

Sample size required for VR =

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.00 1530 1460 1379 1291 1200 1110 1023 940
0.05 2453 2346 2220 2082 1938 1793 1653 1520
0.10 4078 3909 3704 3478 3240 3001 2767 2545
0.15 7142 6855 6504 6111 5697 5279 4871 4480
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tively. As can be seen, at both positions of the QTL, the
statistical characteristics W1 and W2 calculated by the
method proposed are higher than those calculated using
Qxpak at all sample sizes considered.

When the QTL is really localized at the position 5 cM (Fig-
ure 2), our method demonstrates the highest values of W1
frequency, exceeding 0.8 at any sample size. Only begin-
ning at Nped = 450, each of bar graphs for W1 gets in a
range of 5-percentage error of another. Regarding the W2
characteristic, its values do not exceed 0.8 for either
method at any sample size. When the QTL is localized at
position 10 cM (Figure 3), the frequencies W1 and W2 are
higher than 0.95 and 0.8, respectively, beginning at Nped =
150 for our method and beginning at Nped > 600 for
Qxpak.

All aforesaid facts speak in favour for our method for the
analysis of hybrid pedigrees with dominance and inbreed-
ing effects. The results obtained justify the QTL analysis by
our method that yields more accurate data on the locali-
zation of the QTL.

Discussion
In this study we have updated the variance-components
method for the analysis of hybrid pedigrees with domi-
nance and inbreeding. We have considered hybrid sib-
ships as an example to demonstrate the method. An
advantage of our method is to partition into variance

components, where one of the components is condi-
tioned by the inter-population origin of individuals and
inbreeding. There is no necessity to resolve this compo-
nent into separate elements caused by inter-population
origin and separate elements caused by inbreeding since
these elements are indivisible in variances and covari-
ances and therefore can not be estimated singly.

We have derived an intuitively appealing result regarding
the power of our method under a variance-components
model for larger samples of sibships. If the effects of QTL
are small, the results are particularly simple. We have gen-
erally arrived at the conclusion that the power of our
method decreases rapidly with decreasing proportion of
the variance component caused by the hybrid origin and
by inbreeding. This means that the sample size required
for 80% power for hybrid pedigrees is less than for pedi-
grees descended from one pure line.

For simplicity, we did not consider such fixed factors
affecting the formation of traits as for example, age and
sex, but these factors can easily be included in our model.
Moreover, the method suggested can be used to choose
the most suitable model for the description of the data:
additive models (d = 0), dominance models (a = 0), mod-
els of crosses of two pure lines (p1 = 0, and p2 = 1) or mod-
els of intra-population crosses (p1=p2).

Bar graphs for W1 and W2 statistical characteristics depending on the sample size at the QTL position 5 cMFigure 2
Bar graphs for W1 and W2 statistical characteristics depending on the sample size at the QTL position 5 cM. 
Bar graphs hatched by bold lines correspond to characteristic W1; bar graphs hatched by thin  lines correspond to characteris-
tic W2; vertical lines are intended for the method realized by software Qxpak; horizontal lines are intended for the method 
proposed in this study.
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The results obtained make it possible to draw conclusions
on the competence of the incorporated analysis that could
specify not only the localization of the QTL, but also an
estimate of the values of QTL effects.

Conclusion
We have presented a new modification of the variance-
components method for QTL analysis. It is a linkage test
method, whose originality consists in considering the trait
effect caused by inter-population origin and inbreeding.
Analytical derivations for the variance components make
it possible to analyse their dependence from the model
parameters.

The analytical expressions for the power of our method
avoid the intensive computations required for simulated
data processing and allow to estimate the size of the ped-
igree required. We have shown that the method is more
powerful if the QTL effects conditioned by inter-popula-
tion origin and inbreeding are increased. Several improve-
ments can be developed to take into account fixed factors
affecting trait formation, such as age and sex.

Our method uses the trait values and the marker informa-
tion for each individual of a pedigree with an arbitrary

structure including inbred loops as initial data and can be
valuable for fine mapping purposes.

Methods
To choose the most correct genetic model for quantitative
trait formation, estimate the modelling parameters, and
define the position of the QTL on a chromosome with the
accuracy required, we employed statistics based on likeli-
hood maximization:

This maximization is numerically carried out using the
simplex METHI – program specifically developed to
obtain maximum likelihood (ML) and ML-parameter esti-
mates of likelihood function. METHI uses a method of
configurations when maximising a function. We have free
access to METHGI on our laboratory website [31]. The
parameters {a, d, p1, p2} must be estimated. For the recom-
bination frequency, we have assigned different fixed val-
ues corresponding to specific distances on the
chromosome.

max ln ( , , , , | )
, , ,a d p p

L a d p p
1 2

1 2 θ πMj

Bar graphs for W1 and W2 statistical characteristics depending on the sample size at the QTL position 10 cMFigure 3
Bar graphs for W1 and W2 statistical characteristics depending on the sample size at the QTL position 10 cM. 
Bar graphs hatched by bold lines correspond to characteristic W1; bar graphs hatched by thin lines correspond to characteris-
tic W2; vertical lines are intended for the method realized by software Qxpak; horizontal lines are intended for the method 
proposed in this study.
Page 11 of 13
(page number not for citation purposes)



BMC Genetics 2007, 8:50 http://www.biomedcentral.com/1471-2156/8/50
Appendix
Let the relationship degree between the father (if) and the
mother (im) of an inbred individual (i) be equal to (1/2)k,
and the inbreeding parameter, τk, be calculated by for-
mula (3). Using the mathematical induction method, we
show that τk+1 = 1/2τk, if a single non-inbred (k+1)-rela-
tive is to be inserted into the inbred loop. For certainty, we
added the new member between individuals i and if. Con-
sequently, we re-denoted the ith individual as the jth indi-
vidual because his genotype distribution had changed.
Apparently, the renamed jth individual has the former
mother jm = im, and his father is the added relative denoted
as jf. In one turn, the father of the new member is the
father of the ith individual jff = if, and the mother of the
new member is the individual jfm, unrelated to the father.
It is easy to find the frequency of genotype AA of the off-
spring j analysed at the outbred cross:

and at the inbred cross:

where Go designates the set of genotypes of the common
ancestors for parents of the jth individual. We expressed
the frequencies of genotypes of the father jf through fre-
quencies of his parents:

After of some transformations, it is clear that the fre-
quency of genotype AA at the inbred cross can be
expressed through a similar frequency of the individual
ith:

pinb(AAj) = 1/2(pinb(AAi) + p(Ajfm) p(Aim)).

The inbreeding parameter τk+1 is then:

Thus, we have shown that the inbreeding parameter for
the individual descended from any type of inbred cross,
depends on the degree of relationship of his parents and

genotype distribution of the common ancestors, and does
not depend on the distribution of the inbred offspring.

As a result, inbreeding changes the parameters of distribu-
tion of quantitative trait values for hybrid individuals:
genotypic means decrease or are constant, and covari-
ances basically increase. It is important to note that the
account of inbreeding of hybrid individuals does not
complicate QTL analysis, and more exactly estimates
parameters of distribution of quantitative trait values.
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